首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
 Akutan Volcano is one of the most active volcanoes in the Aleutian arc, but until recently little was known about its history and eruptive character. Following a brief but sustained period of intense seismic activity in March 1996, the Alaska Volcano Observatory began investigating the geology of the volcano and evaluating potential volcanic hazards that could affect residents of Akutan Island. During these studies new information was obtained about the Holocene eruptive history of the volcano on the basis of stratigraphic studies of volcaniclastic deposits and radiocarbon dating of associated buried soils and peat. A black, scoria-bearing, lapilli tephra, informally named the "Akutan tephra," is up to 2 m thick and is found over most of the island, primarily east of the volcano summit. Six radiocarbon ages on the humic fraction of soil A-horizons beneath the tephra indicate that the Akutan tephra was erupted approximately 1611 years B.P. At several locations the Akutan tephra is within a conformable stratigraphic sequence of pyroclastic-flow and lahar deposits that are all part of the same eruptive sequence. The thickness, widespread distribution, and conformable stratigraphic association with overlying pyroclastic-flow and lahar deposits indicate that the Akutan tephra likely records a major eruption of Akutan Volcano that may have formed the present summit caldera. Noncohesive lahar and pyroclastic-flow deposits that predate the Akutan tephra occur in the major valleys that head on the volcano and are evidence for six to eight earlier Holocene eruptions. These eruptions were strombolian to subplinian events that generated limited amounts of tephra and small pyroclastic flows that extended only a few kilometers from the vent. The pyroclastic flows melted snow and ice on the volcano flanks and formed lahars that traveled several kilometers down broad, formerly glaciated valleys, reaching the coast as thin, watery, hyperconcentrated flows or water floods. Slightly cohesive lahars in Hot Springs valley and Long valley could have formed from minor flank collapses of hydrothermally altered volcanic bedrock. These lahars may be unrelated to eruptive activity. Received: 31 August 1998 / Accepted: 30 January 1999  相似文献   

2.
Fuji volcano is the largest active volcano in Japan, and consists of Ko-Fuji and Shin-Fuji volcanoes. Although basaltic in composition, small-volume pyroclastic flows have been repeatedly generated during the Younger stage of Shin-Fuji volcano. Deposits of those pyroclastic flows have been identified along multiple drainage valleys on the western flanks between 1,300 and 2,000 m a.s.l., and have been stratigraphically divided into the Shin-Fuji Younger pyroclastic flows (SYP) 1 to 4. Downstream debris flow deposits are found which contain abundant material derived from the pyroclastic flow deposits. The new14C ages for SYP1 to SYP4 are 3.2, 3.0, 2.9, and 2.5 ka, respectively, and correspond to a period where explosive summit eruptions generated many scoria fall deposits mostly toward the east. The SYP1 to SYP4 deposits consist of two facies: the massive facies is about 2 m thick and contains basaltic bombs of less than 50 cm in size, scoria lapilli, and fresh lithic basalt fragments supported in an ash matrix; the surge facies is represented by beds 1 to 15 cm thick, consisting mainly of ash with minor amount of fine lapilli. The bombs and scoria are 15 to 30% in volume within the massive facies. The ashes within the SYP deposits consist largely of comminuted basalt lithics and crystals that are derived from the Middle-stage lava flows exposed at the western flanks. SYP1 to SYP4 were only dispersed down the western flanks. The reason for this one-sided distribution is the asymmetric topography of the edifice; the western slopes of the volcano are the steepest (over 34 degrees). Most pyroclastic materials cannot rest stably on the slopes steeper than 33 degrees. Therefore, ejecta from the explosive summit eruptions that fell on the steep slopes tumbled down the slopes and were remobilized as high-temperature granular flows. These flows consisted of large pyroclastics and moved as granular avalanches along the valley bottom. Furthermore, the avalanching flows increased in volume by abrasion from the edifice and generated abundant ashes by the collision of clasts. The large amount of the fine material was presumably available within the transport system as the basal avalanches propagated below the angle of repose. Taking the typical kinetic friction coefficient of small pyroclastic flows, such flows could descend the western flanks where scattered houses are below 1,000 m a.s.l. A similar type of pyroclastic flow could result if explosive summit eruptions occur in the future.Editorial responsibility: R Cioni  相似文献   

3.
Hot springs and steam vents on the slopes of Nevado del Ruiz volcano provide evidence regarding the nature of hydrothermal activity within the summit and flanks of the volcano. At elevations below 3000 m, alkali-chloride water is discharged from two groups of boiling springs and several isolated warm springs on the western slope of Nevado del Ruiz. Chemical and isotopic geothermometers suggest that the boiling springs are fed by an aquifer having a subsurface equilibration temperature of at least 175°C, and the sampled warm spring is fed by an aquifer having a subsurface equilibration temperature near 150°C. Similarities in conservative solute ratios (e.g., B/Cl) indicate that the alkali-chloride waters may be related to a single reservoir at depth. Isotopic ratios of hydrogen and oxygen indicate that recharge for the alkali-chloride aquifers comes mostly from higher elevations on the volcano. Steam vents and steam-heated bicarbonate-sulfate springs at higher elevations, along a linear structural trend with the alkali-chloride springs, may be derived partly from the alkali-chloride water at depth by boiling. Steam from the vents (84°C) yields a gas geothermometer temperature of 209°C. Acid-sulfate-chloride and acid-sulfate waters are discharged widely from warm springs above 3000 m on the northern and eastern slopes of Nevado del Ruiz. Similarities in B/Cl and SO4/Cl ratios suggest that the acid waters are mixtures of water from an acid-sulfate-chloride reservoir with various proportions of shallow, dilute groundwater. The major source of sulfate, halogens, and acidity for the acid waters may be high-temperature magmatic gases. Available data on hot spring temperatures and compositions indicate that they have remained fairly stable since 1968. However, the eruption of November 13, 1985 apparently caused an increase in sulfate concentration in some of the acid springs that peaked about a year after the eruption. Long-term monitoring of hot spring compositions over many years will be required to better define the effects of volcanic activity on the Nevado del Ruiz hydrothermal system.  相似文献   

4.
Ten years after the last effusive eruption and at least 15 years of seismic quiescence, volcanic seismic activity started at Colima volcano on 14 February 1991, with a seismic crisis which reached counts of more than 100 per day and showed a diversity of earthquake types. Four other distinct seismic crises followed, before a mild effusive eruption in April 1991. The second crisis preceded the extrusion of an andesitic scoriaceous lava lobe, first reported on 1 March; during this crisis an interesting temporary concentration of seismic foci below the crater was observed shortly before the extrusion was detected. The third crisis was constituted by shallow seismicity, featuring possible mild degassing explosion-induced activity in the form of hiccups (episodes of simple wavelets that repeat with diminishing amplitude), and accompanied by increased fumarolic activity. The growth of the new lava dome was accompanied by changing seismicity. On 16 April during the fifth crisis which consisted of some relatively large, shallow, volcanic earthquakes and numerous avalanches of older dome material, part of the newly extruded dome, which had grown towards the edge of the old dome, collapsed, producing the largest avalanches and ash flows. Afterwards, block lava began to flow slowly along the SW flank of the volcano, generating frequent small incandescent avalanches. The seismicity associated with the stages of this eruptive activity shows some interesting features: most earthquake foci were located north of the summit, some of them relatively deep (7–11 km below the summit level), underneath the saddle between the Colima and the older Nevado volcanoes. An apparently seismic quiet region appears between 4 and 7 km below the summit level. In June, harmonic tremors were detected for the first time, but no changes in the eruptive activity could be correlated with them. After June, the seismicity decreasing trend was established, and the effusive activity stopped on September 1991.  相似文献   

5.
The November 13, 1985 eruption of Nevado del Ruiz produced a series of pyroclastic flows and surges that eroded channels on the surface of the summit glacier and generated lahars which descended down most of the rivers that drain the volcano. The stratigraphy of the proximal pyroclastic deposits indicates that there were at least four episodes to the eruption. Episode I, deposited an unusual surge consisting of small pieces of ice mixed with ash and exhibiting planar stratification. Ballistically emplaced fragments are also intercalated with this unit. During Episode II, at least two pyroclastic flows were erupted. Their deposits contain the most evolved pumice of the entire eruption; SiO2 content of matrix glass ranges between 74.5 and 74.9%. Episode III is marked by the emplacement of a welded tuff with an average SiO2 content of about 66% in the matrix glass. The final Episode IV was characterized by the development of a high-altitude eruption column and the emplacement of several nonwelded pyroclastic flows. Banded pumice are common in the pyroclastic flow as well as in the pumice fall deposits. Co-existing dark and light pumice bands differ in SiO2 content by 3.5% and in general are similar to the composition of the welded pumice from Episode III.The compositional zonation of the pyroclastic deposits from Episode I to IV suggests that a nearsurface compositionally-stratified portion of the magma body was tapped during Episode II. During Episodes III and IV the main body of magma was involved although the coexistence of the compositionally distinct pumice clasts at similar stratigraphic levels argues for mixing of magma from different levels in the chamber during the eruptive process.  相似文献   

6.
Observations of the summit eruption of Klyuchevskoi volcano in the period from February 15, 2007 to July 9, 2007 are considered. This typical (for this volcano) summit eruption was explosive-effusive in character. The ejectamenta volume is estimated at 0.025 km3. Calculation of active phases of the volcano was carried out in accordance with V.A. Shirokov’s technique. The identified active phases agree well with the eruptive periods. The 2007 summit eruption corresponds to an active phase (May 2006 to May 2009) favorable for the volcano’s eruption. Geodetic observations carried out since 1979 along a radial profile have revealed uplifts and subsidences of the northeastern slope of the volcano. The maximum displacement of 23 cm was recorded in 2007 on the site closest to the volcano crater at a distance of 11 km from the summit crater center. In the course of two previous summit eruptions (2003–2004 and 2005) insignificant uplifts and subsidences of the slope were also noted, although the general ascent of the slope remained. This indicated possible repeated eruptions in the nearest future. Changes in the seismicity before, during and after the eruption are also discussed.  相似文献   

7.
Systematic analyses of the major-element chemistry of products of several eruptions during syn-and post-caldera stages of Izu-Oshima volcano were compiled. Comparisons of the products of large-scale eruptions in 1338?, 1421? and 1777–1778, of intermediate-scale eruptions in 1950–1951 and 1986, and of small-scale eruptions in 1954, 1964 and 1974 clearly show the existence of two types of magmas. One is “plagioclase-controlled” and the other is “differentiated” magma (multimineral-controlled); i.e. the bulk chemistry of the first magma type is controlled by plagioclase addition or removal, while that of the second type is controlled by fractionation of plagioclase, orthopyroxene, clinopyroxene, and titanomagnetite. Eruptions of Izu-Oshima volcano have occurred at the summit and along the flanks. Summit eruptions tap only plagioclase-controlled magmas, while flank eruptions supply both magma types. It is considered unlikely that both magma types would coexist in the same magma chamber based on the petrology. In the case of the 1986 eruption, the flank magma was isolated sometime in the past from the summit magma chamber or central conduit, and formed small magma pockets, where further differentiation occurred due to relatively rapid cooling. In a period of quiescence prior to the 1986 eruption, new magma was supplied to the summit magma chamber, and the summit eruption began. The dike intrusion or fracturing around the small magma pockets triggered the flank eruption of the differentiated magma. This model can be applied to the large-scale flank eruption in 1338(?) which erupted differentiated magmas. In 1421(?), the flank eruption tapped plagioclase-controlled magma. In this case, the isolated magmas from the summit magma chamber directly penetrated the flank without differentiation.  相似文献   

8.
 The ca. 10,500 years B.P. eruptions at Ruapehu volcano deposited 0.2–0.3 km3 of tephra on the flanks of Ruapehu and the surrounding ring plain and generated the only known pyroclastic flows from this volcano in the late Quaternary. Evidence of the eruptions is recorded in the stratigraphy of the volcanic ring plain and cone, where pyroclastic flow deposits and several lithologically similar tephra deposits are identified. These deposits are grouped into the newly defined Taurewa Formation and two members, Okupata Member (tephra-fall deposits) and Pourahu Member (pyroclastic flow deposits). These eruptions identify a brief (<ca. 2000-year) but explosive period of volcanism at Ruapehu, which we define as the Taurewa Eruptive Episode. This Episode represents the largest event within Ruapehu's ca. 22,500-year eruptive history and also marks its culmination in activity ca. 10,000 years B.P. Following this episode, Ruapehu volcano entered a ca. 8000-year period of relative quiescence. We propose that the episode began with the eruption of small-volume pyroclastic flows triggered by a magma-mingling event. Flows from this event travelled down valleys east and west of Ruapehu onto the upper volcanic ring plain, where their distal remnants are preserved. The genesis of these deposits is inferred from the remanent magnetisation of pumice and lithic clasts. We envisage contemporaneous eruption and emplacement of distal pumice-rich tephras and proximal welded tuff deposits. The potential for generation of pyroclastic flows during plinian eruptions at Ruapehu has not been previously considered in hazard assessments at this volcano. Recognition of these events in the volcanological record is thus an important new factor in future risk assessments and mitigation of volcanic risk at Tongariro Volcanic Centre. Received: 5 July 1998 / Accepted: 12 March 1999  相似文献   

9.
Of 1.1 million people living on the flanks of the active Merapi volcano, 440,000 are at relatively high risk in areas prone to pyroclastic flows, surges, and lahars. For the last two centuries, the activity of Merapi has alternated regularly between long periods of viscous lava dome extrusion, and brief explosive episodes at 8–15 year intervals, which generated dome-collapse pyroclastic flows and destroyed part of the pre-existing domes. Violent explosive episodes on an average recurrence of 26–54 years have generated pyroclastic flows, surges, tephra-falls, and subsequent lahars. The 61 reported eruptions since the mid-1500s killed about 7000 people. The current hazard-zone map of Merapi (Pardyanto et al., 1978) portrays three areas, termed ‘forbidden zone’, ‘first danger zone’ and ‘second danger zone’, based on successively declining hazards. Revision of the hazard map is desirable, because it lacks details necessary to outline hazard zones with accuracy, in particular the valleys likely to be swept by lahars, and excludes some areas likely to be devastated by pyroclastic gravity-currents such as the 22 November 1994 surge. In addition, risk maps should be developed to incorporate social, technical, and economic factors of vulnerability.Eruptive hazard assessment at Merapi is based on reconstructed eruptive history, on eruptive behavior and scenarios, and on existing models and preliminary numerical modeling. Firstly, the reconstructed eruptive activity, in particular for the past 7000 years and from historical accounts of eruptions, helps to define the extent and recurrence frequency of the most hazardous phenomena (Newhall et al., 2000; Camus et al., 2000). Pyroclastic flows traveled as far as 9–15 km from the source, pyroclastic surges swept the flanks as far as 9–20 km away from the vent, thick tephra fall buried temples in the vicinity of Yogyakarta 25 km to the south, and subsequent lahars spilled down the radial valleys as far as 30 km to the west and south. At least one large edifice collapse has occurred in the past 7000 years (Newhall et al., 2000; Camus et al., 2000). Secondly, four eruption scenarios are portrayed as hazardous zones on two maps and derived from the past eruptive behavior of Merapi and from the most affected areas in the past. Thirdly, simple numerical simulation, based on a Digital Elevation Model, a stereo-pair of SPOT satellite images, and one 2D-orthoimage helps to simulate pyroclastic and lahar flowage on the flanks and in radial valley channels, and to outline areas likely to be devastated.Three major threats are identified: (1) a collapse of the summit dome in the short-to mid-term, that can release large-volume pyroclastic flows and high-energy surges towards the south–southwest sector of the volcano; (2) an explosive eruption, much larger than any since 1930, may sweep all the flanks of Merapi at least once every century; (3) a potential collapse of the summit area, involving the fumarolic field of Gendol and part of the southern flank, which can contribute to moderate-scale debris avalanches and debris flows.  相似文献   

10.
The evolution of the Colima volcanic complex can be divided into successive periods characterized by different dynamic and magmatic processes: emission of andesitic to dacitic lava flows, acid-ash and pumice-flow deposits, fallback nuées ardentes leading to pyroclastic flows with heterogeneous magma, plinian air-fall deposits, scoriae cones of alkaline and calc-alkaline nature. Four caldera-forming events, resulting either from major ignimbrite outbursts or Mount St. Helens-type eruptions, separate the main stages of development of the complex from the building of an ancient shield volcano (25 × 30 km wide) up to two summit cones, Nevado and Fuego.The oldest caldera, C1 (7–8 km wide), related to the pouring out of dacitic ash flows, marks the transition between two periods of activity in the primitive edifice called Nevado I: the first one, which is at least 0.6 m.y. old, was mainly andesitic and effusive, whereas the second one was characterized by extrusion of domes and related pyroclastic products. A small summit caldera, C2 (3–3.5 km wide), ended the evolution of Nevado I.Two modern volcanoes then began to grow. The building of the Nevado II started about 200,000 y. ago. It settled into the C2 caldera and partially overflowed it. The other volcano, here called Paleofuego, was progressively built on the southern side of the former Nevado I. Some of its flows are 50,000 y. old, but the age of its first outbursts is not known. However, it is younger than Nevado II. These two modern volcanoes had similar evolutions. Each of them was affected by a huge Mount St. Helens-type (or Bezymianny-type) event, 10,000 y. ago for the Paleofuego, and hardly older for the Nevado II. The landslides were responsible for two horseshoe-shaped avalanche calderas, C3 (Nevado) and C4 (Paleofuego), each 4–5 km wide, opening towards the east and the south. In both cases, the activity following these events was highly explosive and produced thick air-fall deposits around the summit craters.The Nevado III, formed by thick andesitic flows, is located close to the southwestern rim of the C3 caldera. It was a small and short-lived cone. Volcan de Fuego, located at the center of the C4 caldera, is nearly 1500 m high. Its activity is characterized by an alternation of long stages of growth by flows and short destructive episodes related to violent outbursts producing pyroclastic flows with heterogeneous magma and plinian air falls.The evolution of the primitive volcano followed a similar pattern leading to formation of C1 and then C2. The analogy between the evolutions of the two modern volcanoes (Nevado II–III; Paleofuego-Fuego) is described. Their vicinity and their contemporaneous growth pose the problem of the existence of a single reservoir, or two independent magmatic chambers, after the evolution of a common structure represented by the primitive volcano.  相似文献   

11.
Soputan is a high-alumina basalt stratovolcano located in the active North Sulawesi-Sangihe Islands magmatic arc. Although immediately adjacent to the still geothermally active Quaternary Tondono Caldera, Soputan’s magmas are geochemically distinct from those of the caldera and from other magmas in the arc. Unusual for a basalt volcano, Soputan produces summit lava domes and explosive eruptions with high-altitude ash plumes and pyroclastic flows—eight explosive eruptions during the period 2003–2011. Our field observations, remote sensing, gas emission, seismic, and petrologic analyses indicate that Soputan is an open-vent-type volcano that taps basalt magma derived from the arc-mantle wedge, accumulated and fractionated in a deep-crustal reservoir and transported slowly or staged at shallow levels prior to eruption. A combination of high phenocryst content, extensive microlite crystallization and separation of a gas phase at shallow levels results in a highly viscous basalt magma and explosive eruptive style. The open-vent structure and frequent eruptions indicate that Soputan will likely erupt again in the next decade, perhaps repeatedly. Explosive eruptions in the Volcano Explosivity Index (VEI) 2–3 range and lava dome growth are most probable, with a small chance of larger VEI 4 eruptions. A rapid ramp up in seismicity preceding the recent eruptions suggests that future eruptions may have no more than a few days of seismic warning. Risk to population in the region is currently greatest for villages located on the southern and western flanks of the volcano where flow deposits are directed by topography. In addition, Soputan’s explosive eruptions produce high-altitude ash clouds that pose a risk to air traffic in the region.  相似文献   

12.
Ubinas volcano has had 23 degassing and ashfall episodes since A.D. 1550, making it the historically most active volcano in southern Peru. Based on fieldwork, on interpretation of aerial photographs and satellite images, and on radiometric ages, the eruptive history of Ubinas is divided into two major periods. Ubinas I (Middle Pleistocene >376 ka) is characterized by lava flow activity that formed the lower part of the edifice. This edifice collapsed and resulted in a debris-avalanche deposit distributed as far as 12 km downstream the Rio Ubinas. Non-welded ignimbrites were erupted subsequently and ponded to a thickness of 150 m as far as 7 km south of the summit. These eruptions probably left a small collapse caldera on the summit of Ubinas I. A 100-m-thick sequence of ash-and-pumice flow deposits followed, filling paleo-valleys 6 km from the summit. Ubinas II, 376 ky to present comprises several stages. The summit cone was built by andesite and dacite flows between 376 and 142 ky. A series of domes grew on the southern flank and the largest one was dated at 250 ky; block-and-ash flow deposits from these domes filled the upper Rio Ubinas valley 10 km to the south. The summit caldera was formed between 25 and 9.7 ky. Ash-flow deposits and two Plinian deposits reflect explosive eruptions of more differentiated magmas. A debris-avalanche deposit (about 1.2 km3) formed hummocks at the base of the 1,000-m-high, fractured and unstable south flank before 3.6 ka. Countless explosive events took place inside the summit caldera during the last 9.7 ky. The last Plinian eruption, dated A.D.1000–1160, produced an andesitic pumice-fall deposit, which achieved a thickness of 25 cm 40 km SE of the summit. Minor eruptions since then show phreatomagmatic characteristics and a wide range in composition (mafic to rhyolitic): the events reported since A.D. 1550 include many degassing episodes, four moderate (VEI 2–3) eruptions, and one VEI 3 eruption in A.D. 1667. Ubinas erupted high-K, calc-alkaline magmas (SiO2=56 to 71%). Magmatic processes include fractional crystallization and mixing of deeply derived mafic andesites in a shallow magma chamber. Parent magmas have been relatively homogeneous through time but reflect variable conditions of deep-crustal assimilation, as shown in the large variations in Sr/Y and LREE/HREE. Depleted HREE and Y values in some lavas, mostly late mafic rocks, suggest contamination of magmas near the base of the >60-km-thick continental crust. The most recently erupted products (mostly scoria) show a wide range in composition and a trend towards more mafic magmas.Recent eruptions indicate that Ubinas poses a severe threat to at least 5,000 people living in the valley of the Rio Ubinas, and within a 15-km radius of the summit. The threat includes thick tephra falls, phreatomagmatic ejecta, failure of the unstable south flank with subsequent debris avalanches, rain-triggered lahars, and pyroclastic flows. Should Plinian eruptions of the size of the Holocene events recur at Ubinas, tephra fall would affect about one million people living in the Arequipa area 60 km west of the summit.Editorial responsibility: D Dingwell  相似文献   

13.
The initial explosions at Mount St. Helens, Washington, on the moring of 18 May 1980 developed into a huge pyroclastic surge that generated catastrophic floods off the east and west flanks of the volcano. Near-source surge deposits on the east and west were lithic, sorted, lacking in accretionary lapilli and vesiculated ash, not plastered against upright obstacles, and hot enough to char wood — all attributes of dry pyroclastic surge. Material deposited at the surge base on steep slopes near the volcano transformed into high-concentration lithic pyroclastic flows whose deposits contain charred wood and other features indicating that these flows were hot and dry. Stratigraphy shows that even the tail of the surge had passed the east and west volcano flanks before the geomorphically distinct floods (lahars) arrived. This field evidence undermines hypotheses that the turbulent surge was itself wet and that its heavy components segregated out to transform directly into lahars. Nor is there evidence that meters-thick snow-slab avalanches intimately mixed with the surge to form the floods. The floods must have instead originated by swift snowmelt at the base of a hot and relatively dry turbulent surge. Impacting hot pyroclasts probably transferred downslope momentum to the snow surface and churned snow grains into the surge base. Melting snow and accumulating hot surge debris may have moved initially as thousands of small thin slushflows. As these flows removed the surface snow and pyroclasts, newly uncovered snow was partly melted by the turbulent surge base; this and accumulating hot surge debris in turn began flowing, a self-sustaining process feeding the initial flows. The flows thus grew swiftly over tens of seconds and united downslope into great slushy ejecta-laden sheetfloods. Gravity accelerated the floods to more than 100 km/h as they swept down and off the volcano flanks while the snow component melted to form great debris-rich floods (lahars) channeled into valleys.  相似文献   

14.
Field, geochronologic, and geochemical evidence from proximal fine-grained tephras, and from limited exposures of Holocene lava flows and a small pyroclastic flow document ten–12 eruptions of Mount Rainier over the last 2,600 years, contrasting with previously published evidence for only 11–12 eruptions of the volcano for all of the Holocene. Except for the pumiceous subplinian C event of 2,200 cal year BP, the late-Holocene eruptions were weakly explosive, involving lava effusions and at least two block-and-ash pyroclastic flows. Eruptions were clustered from ∼2,600 to ∼2,200 cal year BP, an interval referred to as the Summerland eruptive period that includes the youngest lava effusion from the volcano. Thin, fine-grained tephras are the only known primary volcanic products from eruptions near 1,500 and 1,000 cal year BP, but these and earlier eruptions were penecontemporaneous with far-traveled lahars, probably created from newly erupted materials melting snow and glacial ice. The most recent magmatic eruption of Mount Rainier, documented geochemically, was the 1,000 cal year BP event. Products from a proposed eruption of Mount Rainier between AD 1820 and 1854 (X tephra of Mullineaux (US Geol Surv Bull 1326:1–83, 1974)) are redeposited C tephra, probably transported onto young moraines by snow avalanches, and do not record a nineteenth century eruption. We found no conclusive evidence for an eruption associated with the clay-rich Electron Mudflow of ∼500 cal year BP, and though rare, non-eruptive collapse of unstable edifice flanks remains as a potential hazard from Mount Rainier. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. T. W. Sisson and J. W. Vallance contributed equally to this study.  相似文献   

15.
Maps of the eruptive vents on the active shield volcanoes of Fernandina and Isabela islands, Galapagos, made from aerial photographs, display a distinctive pattern that consists of circumferential eruptive fissures around the summit calderas and radial fissures lower on the flanks. On some volcano flanks either circumferential or radial eruptions have been dominant in recent time. The location of circumferential vents outside the calderas is independent of caldera-related normal faults. The eruptive fissures are the surface expression of dike emplacement, and the dike orientations are interpreted to be controlled by the state of stress in the volcano. Very few subaerial volcanoes display a pattern of fissures similar to that of the Galapagos volcanoes. Some seamounts and shield volcanoes on Mars morphologically resemble the Galapagos volcanoes, but more specific evidence is needed to determine if they also share common structure and eruptive style.  相似文献   

16.
17.
The Whangaehu fan is the youngest sedimentary component on the eastern ring plain surrounding Ruapehu volcano. Fan history comprises constructional (830–200 years bp) and dissectional (<200 years bp) phases. The constructional phase includes four aggradational periods associated with both syneruptive and inter-eruptive behavior. All four aggradational periods began when deposition by large lahars changed flow conditions on the fan from channelized to unchannelized. Subsequent behavior was a function of the rate of sediment influx to the fan. The rate of sediment influx, in turn, was controlled by frequency and magnitude of volcanic eruptions, short-term climate change, and the amount of sediment stored on the volcano flanks. Fanwide aggradation occurred when rates of sediment influx and deposition on the fan were high enough to maintaìn unchannelized flow conditions on the fan surface. Maintenance of an undissected surface required sedimentation from frequent and large lahars that prevented major dissection between events. These conditions were best met during major eruptive episodes when high frequency and magnitude eruptions blanketed the volcano flanks with tephra and rates of lahar initiation were high. During major eruptive episodes, volcanism is the primary control on sedimentation. Climatic variations do not influence sediment accumulation. Local aggradation occurred when lahars were too small to maintain unchannelized flow across the entire fan. In this case, only the major channel system received much sediment following the deposition from the initial lahar. This localized aggradation occurred if (1) the sediment reservoir on the flank was large enough for floods to bulk into debris flows and (2) sedimentation events were frequent enough to maintain sediment supply to only some parts of the fan. These conditions were met during both minor eruptive and inter-eruptive episodes. In both cases, a large sediment reservoir remained on the volcano flanks from previous major eruptive intervals. Periods of increased storm activity produced floods that bulked to relatively small debris flows. When the sediment reservoir was depleted, the fan entered the present dissectional phase. Syneruptive and noneruptive lahars are mostly channelized and sediment bypasses the fan. Fan deposits are rapidly reworked. This is the present case at Ruapehu, even though the volcano is in a minor eruptive episode and the climate favors generation of intense storm floods.  相似文献   

18.
The Nevado de Toluca is a quiescent volcano located 20 km southwest of the City of Toluca and 70 km west of Mexico City. It has been quiescent since its last eruptive activity, dated at ∼ 3.3 ka BP. During the Pleistocene and Holocene, it experienced several eruptive phases, including five dome collapses with the emplacement of block-and-ash flows and four Plinian eruptions, including the 10.5 ka BP Plinian eruption that deposited more than 10 cm of sand-sized pumice in the area occupied today by Mexico City. A detailed geological map coupled with computer simulations (FLOW3D, TITAN2D, LAHARZ and HAZMAP softwares) were used to produce the volcanic hazard assessment. Based on the final hazard zonation the northern and eastern sectors of Nevado de Toluca would be affected by a greater number of phenomena in case of reappraisal activity. Block-and-ash flows will affect deep ravines up to a distance of 15 km and associated ash clouds could blanket the Toluca basin, whereas ash falls from Plinian events will have catastrophic effects for populated areas within a radius of 70 km, including the Mexico City Metropolitan area, inhabited by more than 20 million people. Independently of the activity of the volcano, lahars occur every year, affecting small villages settled down flow from main ravines.  相似文献   

19.
The eruptions of Nevado del Ruiz in 1985 were unusually rich in sulfur dioxide. These eruptions were observed with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) which can quantitatively map volcanic sulfur dioxide plumes on a global scale. A small eruption, originally believed to be of phreatic origin, took place on September 11, 1985. However, substantial amounts of sulfur dioxide from this eruption were detected with TOMS on the following day. The total mass of SO2, approximately 9 ± 3 × 104 metric tons, was deposited in two clouds, one in the upper troposphere, the other possibly at 15 km near the stratosphere.The devastating November 13 eruptions were first observed with TOMS at 1150 EST on November 14. Large amounts of sulfur dioxide were found in an arc extending 1100 km from south of Ruiz northeastward to the Gulf of Venezuela and as an isolated cloud centered at 7°N on the Colombia-Venezuela border. On November 15 the plume extended over 2700 km from the Pacific Ocean off the Colombia coast to Barbados, while the isolated mass was located over the Brazil-Guyana border, approximately 1600 km due east of the volcano. Based on wind data from Panama, most of the sulfur dioxide was located at 10–16 km in the troposphere and a small amount was quite likely deposited in the stratosphere at an altitude above 24 km.The total mass of sulfur dioxide in the eruption clouds was approximately 6.6 ± 1.9 × 105 metric tons on November 14. When combined with quiescent sulfur dioxide emissions during this period, the ratio of sulfur dioxide to erupted magma from Ruiz was an order of magnitude greater than in the 1982 eruption of El Chichon or the 1980 eruption of Mount St. Helens.  相似文献   

20.
Between 1971 and 2001, the Southeast Crater was the most productive of the four summit craters of Mount Etna, with activity that can be compared, on a global scale, to the opening phases of the Pu‘u ‘Ō‘ō-Kūpaianaha eruption of Kīlauea volcano, Hawai‘i. The period of highest eruptive rate was between 1996 and 2001, when near-continuous activity occurred in five phases. These were characterized by a wide range of eruptive styles and intensities from quiet, non-explosive lava emission to brief, violent lava-fountaining episodes. Much of the cone growth occurred during these fountaining episodes, totaling 105 events. Many showed complex dynamics such as different eruptive styles at multiple vents, and resulted in the growth of minor edifices on the flanks of the Southeast Crater cone. Small pyroclastic flows were produced during some of the eruptive episodes, when oblique tephra jets showered the steep flanks of the cone with hot bombs and scoriae. Fluctuations in the eruptive style and eruption rates were controlled by a complex interplay between changes in the conduit geometry (including the growth of a shallow magma reservoir under the Southeast Crater), magma supply rates, and flank instability. During this period, volume calculations were made with the aid of GIS and image analysis of video footage obtained by a monitoring telecamera. Between 1996 and 2001, the bulk volume of the cone increased by ~36×106 m3, giving a total (1971–2001) volume of ~72×106 m3. At the same time, the cone gained ~105 m in height, reaching an elevation of about 3,300 m. The total DRE volume of the 1996–2001 products was ~90×106m3. This mostly comprised lava flows (72×106 m3) erupted at the summit and onto the flanks of the cone. These values indicate that the productivity of the Southeast Crater increased fourfold during 1996–2001 with respect to the previous 25 years, coinciding with a general increase in the eruptive output rates and eruption intensity at Etna. This phase of intense summit activity has been followed, since the summer of 2001, by a period of increased structural instability of the volcano, marked by a series of important flank eruptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号