首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Integrated models of diamond formation and craton evolution   总被引:4,自引:0,他引:4  
Two decades of diamond research in southern Africa allow the age, average N content and carbon composition of diamonds, and the dominant paragenesis of their syngenetic silicate and sulfide inclusions to be integrated on a cratonwide scale with a model of craton formation. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the mid-Proterozoic and display little correspondence with the prominent variations in the P-wave velocity (±1%) that the mantle lithosphere shows at depths within the diamond stability field (150–225 km). Silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane show a regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity relative to the craton average correlates with a greater proportion of eclogitic vs. peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds. The oldest formation ages of diamonds support a model whereby mantle that became part of the continental keel of cratonic nuclei first was created by middle Archean (3.2–3.3 Ga or older) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of eclogitic sulfide inclusions in the 2.9 Ga age population links late Archean (2.9 Ga) subduction–accretion events to craton stabilization. These events resulted in a widely distributed, late Archean generation of eclogitic diamonds in an amalgamated craton. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite. Similar age/paragenesis systematics are seen for the more limited data sets from the Slave and Siberian cratons.  相似文献   

2.
S.H. Richardson  S.B. Shirey  J.W. Harris   《Lithos》2004,77(1-4):143-154
Major element and Re–Os isotope analysis of single sulfide inclusions in diamonds from the 240 Ma Jwaneng kimberlite has revealed the presence of at least two generations of eclogitic diamonds at this locality, one Proterozoic (ca. 1.5 Ga) and the other late Archean (ca. 2.9 Ga). The former generation is considered to be the same as that of eclogitic garnet and clinopyroxene inclusion bearing diamonds from Jwaneng with a Sm–Nd isochron age of 1.54 Ga. The latter is coeval with the 2.89 Ga subduction-related generation of eclogitic sulfide inclusion bearing diamonds from Kimberley formed during amalgamation of the western and eastern Kaapvaal craton near the Colesberg magnetic lineament.

The Kimberley, Jwaneng, and Premier kimberlites are key localities for characterizing the relationship between episodic diamond genesis and Kaapvaal craton evolution. Kimberley has 3.2 Ga harzburgitic diamonds associated with creation of the western Kaapvaal cratonic nucleus, and 2.9 Ga eclogitic diamonds resulting from its accretion to the eastern Kaapvaal. Jwaneng has two main eclogitic diamond generations (2.9 and 1.5 Ga) reflecting both stabilization and subsequent modification of the craton. Premier has 1.9 Ga lherzolitic diamonds that postdate Bushveld–Molopo magmatism (but whose precursors have Archean Sm–Nd model ages), as well as 1.2 Ga eclogitic diamonds. Thus, Jwaneng provides the overlap between the dominantly Archean vs. Proterozoic diamond formation evident in the Kimberley and Premier diamond suites, respectively. In addition, the 1.5 Ga Jwaneng eclogitic diamond generation is represented by both sulfide and silicate inclusions, allowing for characterization of secular trends in diamond type and composition. Results for Jwaneng and Kimberley eclogitic sulfides indicate that Ni- and Os-rich end members are more common in Archean diamonds compared to Proterozoic diamonds. Similarly, published data for Kimberley and Premier peridotitic silicates show that Ca-rich (lherzolitic) end members are more likely to be found in Proterozoic diamonds than Archean diamonds. Thus, the available diamond distribution, composition, and age data support a multistage process to create, stabilize, and modify Archean craton keels on a billion-year time scale and global basis.  相似文献   


3.
The Orapa and Jwaneng kimberlites are located along the western margin of the Kalahari Craton and the prevalence of eclogitic over peridotitic diamonds in both mines has recently been linked to lower P-wave velocities in the deep mantle lithosphere (relative to the bulk of the craton) to suggest a diamond formation event prompted by mid-Proterozoic growth and modification of preexisting Archean lithosphere (Shirey et al. 2002). Here we study peridotitic diamonds from both mines, with an emphasis on the style of metasomatic source enrichment, to evaluate their relationship with this major eclogitic diamond formation event. In their major element chemistry, the peridotitic inclusions compare well with a world-wide database but reveal differences to diamond sources located in the interior of the Western Terrane of the Kaapvaal block, where the classical mines in the Kimberley region are located. The most striking difference is the relative paucity of low-Ca (<2 wt% CaO in garnet) harzburgites and a low ratio of harzburgitic to lherzolitic garnets (2:1). This suggests that lithospheric mantle accreted to the rim of the Zimbabwe and Kaapvaal blocks was overall chemically less depleted. Alternatively, this more fertile signature may be assigned to stronger metasomatic re-enrichment but the trace element signature of garnet inclusions is not in favor of strong enrichment in major elements. For both mines the majority of lherzolitic and harzburgitic garnet inclusions are characterized by moderately sinusoidal REEN patterns and low Ti, Zr and Y contents, indicative of a metasomatic agent with very high LREE/HREE and low HFSE. This is consistent with metasomatism by a CHO-fluid or, as modeled by Burgess and Harte (2003), a highly fractionated, low-volume silicate melt from the MORB-source. In both cases, changes in the major element chemistry of the affected rocks will be limited. In a few garnets from Orapa preferential MREE enrichment is observed, suggesting that the percolating fluid/melt fractionated a LREE-phyllic phase (such as crichtonite). The overall moderate degree of metasomatism reflected by the inclusion chemistry is in stark contrast to lithospheric sections for Orapa and Jwaneng based on mantle xenocrysts and xenoliths, revealing extensive mantle metasomatism (Griffin et al. 2003). This suggests that the formation of peridotitic diamonds predates the intensive modification of the subcratonic lithosphere during Proterozoic rifting and compression, implying that diamonds may survive major tectonothermal events.Editorial responsibility: J. Hoefs  相似文献   

4.
Kimberlite-hosted diamond deposits of southern Africa: A review   总被引:4,自引:0,他引:4  
Following the discovery of diamonds in river deposits in central South Africa in the mid nineteenth century, it was at Kimberley where the volcanic origin of diamonds was first recognized. These volcanic rocks, that were named “kimberlite”, were to become the corner stone of the economic and industrial development of southern Africa. Following the discoveries at Kimberley, even more valuable deposits were discovered in South Africa and Botswana in particular, but also in Lesotho, Swaziland and Zimbabwe.A century of study of kimberlites, and the diamonds and other mantle-derived rocks they contain, has furthered the understanding of the processes that occurred within the sub-continental lithosphere and in particular the formation of diamonds. The formation of kimberlite-hosted diamond deposits is a long-lived and complex series of processes that first involved the growth of diamonds in the mantle, and later their removal and transport to the earth's surface by kimberlite magmas. Dating of inclusions in diamonds showed that diamond growth occurred several times over geological time. Many diamonds are of Archaean age and many of these are peridotitic in character, but suites of younger Proterozoic diamonds have also been recognized in various southern African mines. These younger ages correspond with ages of major tectono-thermal events that are recognized in crustal rocks of the sub-continent. Most of these diamonds had eclogitic, websteritic or lherzolitic protoliths.In southern Africa, kimberlite eruptions occurred as discrete events several times during the geological record, including the Early and Middle Proterozoic, the Cambrian, the Permian, the Jurassic and the Cretaceous. Apart from the Early Proterozoic (Kuruman) kimberlites, all of the other events have produced deposits that have been mined. It should however be noted that only about 1% of the kimberlites that have been discovered have been successfully exploited.In this paper, 34 kimberlite mines are reviewed with regard to their geology, mantle xenolith, xenocryst and diamond characteristics and production statistics. These mines vary greatly in size, grade and diamond-value, as well as in the proportions and types of mantle mineral suites that they contain. They include some of the world's richest mines, such as Jwaneng in Botswana, to mines that are both small and marginal, such as the Frank Smith Mine in South Africa. They include large diatremes such as Orapa and small dykes such as those mined at Bellsbank, Swartruggens and near Theunissen. These mines are all located on the Archaean Kalahari Craton, and it is apparent that the craton and its associated sub-continental lithosphere played an important role in providing the right environment for diamond growth and for the formation of the kimberlite magmas that were to transport them to the surface.  相似文献   

5.
The concentrations of platinum-group elements (PGE; Os, Ir, Ru, Pd and Pt) and Re, and the Os isotopic compositions were determined for 33 lithospheric mantle peridotite xenoliths from the Somerset Island kimberlite field. The Os isotopic compositions are exclusively less radiogenic than estimates of bulk-earth (187Os/188Os as low as 0.1084) and require a long-term evolution in a low Re–Os environment. Re depletion model ages (TRD) indicate that the cratonic lithosphere of Somerset Island stabilised by at least 2.8 Ga, i.e. in the Neoarchean and survived into the Mesozoic to be sampled by Cretaceous kimberlite magmatism. An Archean origin also is supported by thermobarometry (Archean lithospheric keels are characterised by >150 km thick lithosphere), modal mineralogy and mineral chemistry observations. The oldest ages recorded in the lithospheric mantle beneath Somerset Island are younger than the Mesoarchean (>3 Ga) ages recorded in the Slave craton lithospheric mantle to the southwest [Irvine, G.J., et al., 1999. Age of the lithospheric mantle beneath and around the Slave craton: a Rhenium–Osmium isotopic study of peridotite xenoliths from the Jericho and Somerset Island kimberlites. Ninth Annual V.M. Goldschmidt Conf., LPI Cont., 971: 134–135; Irvine, G.J., et al., 2001. The age of two cratons: a PGE and Os-Isotopic study of peridotite xenoliths from the Jericho kimberlite (Slave craton) and the Somerset Island kimberlite field (Churchill Province). The Slave–Kaapvaal Workshop, Merrickville, Ontario, Canada]. Younger, Paleoproterozoic, TRD model ages for Somerset Island samples are generally interpreted as the result of open system behaviour during metasomatic and/or magmatic processes, with possibly the addition of new lithospheric material during tectono-thermal events related to the Taltson–Thelon orogen. PGE patterns highly depleted in Pt and Pd generally correspond to older Archean TRD model ages indicating closed system behaviour since the time of initial melt extraction. Younger Proterozoic TRD model ages generally correspond to more complex PGE patterns, indicating open system behaviour with possible sulfide or melt addition. There is no correlation between the age of the lithosphere and depth, at Somerset Island.  相似文献   

6.
The thermal structure of Archean and Proterozoic lithospheric terranes in southern Africa during the Mesozoic was evaluated by thermobarometry of mantle peridotite xenoliths erupted in alkaline magmas between 180 and 60 Ma. For cratonic xenoliths, the presence of a 150–200 °C isobaric temperature range at 5–6 GPa confirms original interpretations of a conductive geotherm, which is perturbed at depth, and therefore does not record steady state lithospheric mantle structure.

Xenoliths from both Archean and Proterozoic terranes record conductive limb temperatures characteristic of a “cratonic” geotherm (40 mW m−2), indicating cooling of Proterozoic mantle following the last major tectonothermal event in the region at 1 Ga and the probability of thick off-craton lithosphere capable of hosting diamond. This inference is supported by U–Pb thermochronology of lower crustal xenoliths [Schmitz and Bowring, 2003. Contrib. Mineral. Petrol. 144, 592–618].

The entire region then suffered a protracted regional heating event in the Mesozoic, affecting both mantle and lower crust. In the mantle, the event is recorded at 150 Ma to the southeast of the craton, propagating to the west by 108–74 Ma, the craton interior by 85–90 Ma and the far southwest and northwest by 65–70 Ma. The heating penetrated to shallower levels in the off-craton areas than on the craton, and is more apparent on the southern margin of the craton than in its western interior. The focus and spatial progression mimic inferred patterns of plume activity and supercontinent breakup 30–100 Ma earlier and are probably connected.

Contrasting thermal profiles from Archean and Proterozoic mantle result from penetration to shallower levels of the Proterozoic lithosphere by heat transporting magmas. Extent of penetration is related not to original lithospheric thickness, but to its more fertile character and the presence of structurally weak zones of old tectonism. The present day distribution of surface heat flow in southern Africa is related to this dynamic event and is not a direct reflection of the pre-existing lithospheric architecture.  相似文献   


7.
U-Pb isotopic thermochronometry of rutile, apatite and titanite from kimberlite-borne lower crustal granulite xenoliths has been used to constrain the thermal evolution of Archean cratonic and Proterozoic off-craton continental lithosphere beneath southern Africa. The relatively low closure temperature of the U-Pb rutile thermochronometer (~400-450 °C) allows its use as a particularly sensitive recorder of the establishment of "cratonic" lithospheric geotherms, as well as subsequent thermal perturbations to the lithosphere. Contrasting lower crustal thermal histories are revealed between intracratonic and craton margin regions. Discordant Proterozoic (1.8 to 1.0 Ga) rutile ages in Archean (2.9 to 2.7 Ga) granulites from within the craton are indicative of isotopic resetting by marginal orogenic thermal perturbations influencing the deep crust of the cratonic nucleus. In Proterozoic (1.1 to 1.0 Ga) granulite xenoliths from the craton-bounding orogenic belts, rutiles define discordia arrays with Neoproterozoic (0.8 to 0.6 Ga) upper intercepts and lower intercepts equivalent to Mesozoic exhumation upon kimberlite entrainment. In combination with coexisting titanite and apatite dates, these results are interpreted as a record of postorogenic cooling at an integrated rate of approximately 1 °C/Ma, and subsequent variable Pb loss in the apatite and rutile systems during a Mesozoic thermal perturbation to the deep lithosphere. Closure of the rutile thermochronometer signals temperatures of 𙠂 °C in the lower crust during attainment of cratonic lithospheric conductive geotherms, and such closure in the examined portions of the "off-craton" Proterozoic domains of southern Africa indicates that their lithospheric thermal profiles were essentially cratonic from the Neoproterozoic through to the Late Jurassic. These results suggest similar lithospheric thickness and potential for diamond stability beneath both Proterozoic and Archean domains of southern Africa. Subsequent partial resetting of U-Pb rutile and apatite systematics in the cratonic margin lower crust records a transient Mesozoic thermal modification of the lithosphere, and modeling of the diffusive Pb loss from lower crustal rutile constrains the temperature and duration of Mesozoic heating to 𙡦 °C for ₞ ka. This result indicates that the thermal perturbation is not simply a kimberlite-related magmatic phenomenon, but is rather a more protracted manifestation of lithospheric heating, likely related to mantle upwelling and rifting of Gondwana during the Late Jurassic to Cretaceous. The manifestation of this thermal pulse in the lower crust is spatially and temporally correlated with anomalously elevated and/or kinked Cretaceous mantle paleogeotherms, and evidence for metasomatic modification in cratonic mantle peridotite suites. It is argued that most of the geographic differences in lithospheric thermal structure inferred from mantle xenolith thermobarometry are likewise due to the heterogeneous propagation of this broad upper mantle thermal anomaly. The differential manifestation of heating between cratonic margin and cratonic interior indicates the importance of advective heat transport along pre-existing lithosphere-scale discontinuities. Within this model, kimberlite magmatism was a similarly complex, space- and time-dependent response to Late Mesozoic lithospheric thermal perturbation.  相似文献   

8.
Analyses of mineral inclusions, carbon isotopes, nitrogen contents and nitrogen aggregation states in 29 diamonds from two Buffalo Hills kimberlites in northern Alberta, Canada were conducted. From 25 inclusion bearing diamonds, the following paragenetic abundances were found: peridotitic (48%), eclogitic (32%), eclogitic/websteritic (8%), websteritic (4%), ultradeep? (4%) and unknown (4%). Diamonds containing mineral inclusions of ferropericlase, and mixed eclogitic-asthenospheric-websteritic and eclogitic-websteritic mineral associations suggests the possibility of diamond growth over a range of depths and in a variety of mantle environments (lithosphere, asthenosphere and possibly lower mantle).

Eclogitic diamonds have a broad range of C-isotopic composition (δ13C=−21‰ to −5‰). Peridotitic, websteritic and ultradeep diamonds have typical mantle C-isotope values (δ13C=−4.9‰ av.), except for two 13C-depleted peridotitic (δ13C=−11.8‰, −14.6‰) and one 13C-depleted websteritic diamond (δ13C=−11.9‰). Infrared spectra from 29 diamonds identified two diamond groups: 75% are nitrogen-free (Type II) or have fully aggregated nitrogen defects (Type IaB) with platelet degradation and low to moderate nitrogen contents (av. 330 ppm-N); 25% have lower nitrogen aggregation states and higher nitrogen contents (30% IaB; <1600 ppm-N).

The combined evidence suggests two generations of diamond growth. Type II and Type IaB diamonds with ultradeep, peridotitic, eclogitic and websteritic inclusions crystallised from eclogitic and peridotitic rocks while moving in a dynamic environment from the asthenosphere and possibly the lower mantle to the base of the lithosphere. Mechanisms for diamond movement through the mantle could be by mantle convection, or an ascending plume. The interaction of partial melts with eclogitic and peridotitic lithologies may have produced the intermediate websteritic inclusion compositions, and can explain diamonds of mixed parageneses, and the overlap in C-isotope values between parageneses. Strong deformation and extremely high nitrogen aggregation states in some diamonds may indicate high mantle storage temperatures and strain in the diamond growth environment. A second diamond group, with Type IaA–IaB nitrogen aggregation and peridotitic inclusions, crystallised at the base of the cratonic lithosphere. All diamonds were subsequently sampled by kimberlites and transported to the Earth's surface.  相似文献   


9.
The diamond population from the Jagersfontein kimberlite is characterized by a high abundance of eclogitic, besides peridotitic and a small group of websteritic diamonds. The majority of inclusions indicate that the diamonds are formed in the subcratonic lithospheric mantle. Inclusions of the eclogitic paragenesis, which generally have a wide compositional range, include two groups of eclogitic garnets (high and low Ca) which are also distinct in their rare earth element composition. Within the eclogitic and websteritic suite, diamonds with inclusions of majoritic garnets were found, which provide evidence for their formation within the asthenosphere and transition zone. Unlike the lithospheric garnets all majoritic garnet inclusions show negative Eu-anomalies. A narrow range of isotopically light carbon compositions (δ13C −17 to −24 ‰) of the host diamonds suggests that diamond formation in the sublithospheric mantle is principally different to that in the lithosphere. Direct conversion from graphite in a subducting slab appears to be the main mechanism responsible for diamond formation in this part of the Earth’s mantle beneath the Kaapvaal Craton. The peridotitic inclusion suite at Jagersfontein is similar to other diamond deposits on the Kaapvaal Craton and characterized by harzburgitic to low-Ca harzburgitic compositions.  相似文献   

10.
Diamonds and their mineral inclusions are valuable for studying the genesis of diamonds, the characteristics and processes of ancient lithospheric mantle and deeper mantle. This has been paid lots of attentions by geologists both at home and abroad. Most diamonds come from lithospheric mantle. According to their formation preceded, accompanied or followed crystallization of their host diamonds, mineral inclusions in diamonds are divided into three groups: protogenetic, syngenetic and epigenetic. To determine which group the mineral inclusions belong to is very important because it is vital for understanding the data’s meaning. According to the type of mantle source rocks, mineral inclusions in diamonds are usually divided into peridotitic (or ultramafic) suite and eclogitic suite. The mineral species of each suite are described and mineralogical characteristics of most common inclusions in diamonds, such as olivine, clinopyroxene, orthopyroxene, garnet, chromite and sulfide are reviewed in detail. In this paper, the main research fields and findings of diamonds and their inclusions were described: ①getting knowledge of mineralogical and petrologic characteristics of diamond source areas, characteristics of mantle fluids and mantle dynamics processes by studying the major element and trace element compositions of mineral inclusions; ②discussing deep carbon cycle by studying carbon isotopic composition of diamonds; ③determining forming temperature and pressure of diamonds by using appropriate assemblages of mineral inclusions or single mineral inclusion as geothermobarometry, by using the abundance and aggregation of nitrogen impurities in diamonds and by measuring the residual stress that an inclusion remains under within a diamond ; ④estimating the crystallization ages of diamonds by using the aggregation of nitrogen impurities in diamonds and by determine the radiometric ages of syngenetic mineral inclusions in diamonds. Genetic model of craton lithospheric diamonds and their mineral inclusion were also introduced. In the end, the research progress on diamonds and their inclusions in China and the gap between domestic and international research are discussed.  相似文献   

11.
Several thousand clinopyroxene, garnet, and phlogopite inclusions of mantle rocks from Jurassic and Triassic kimberlites in the northeastern Siberian craton have been analyzed and compared with their counterparts from Paleozoic kimberlites, including those rich in diamond. The new and published mineral chemistry data make a basis for an updated classification of kimberlite-hosted clinopyroxenes according to peridotitic and mafic (eclogite and pyroxenite) parageneses. The obtained results place constraints on the stability field of high-Na lherzolitic clinopyroxenes, which affect the coexisting garnet and decrease its Ca contents. As follows from analyses of the mantle minerals from Mesozoic kimberlites, the cratonic lithosphere contained more pyroxenite and eclogite in the Mesozoic than in the Paleozoic. It virtually lacked ultradepleted harzburgite-dunite lithologies and contained scarce eclogitic diamonds. On the other hand, both inclusions in diamond and individual eclogitic minerals from Mesozoic kimberlites differ from eclogitic inclusions in diamond from Triassic sediments in the northeastern Siberian craton. Xenocrystic phlogopites from the D’yanga pipe have 40Ar/39Ar ages of 384.6, 432.4, and 563.4 Ma, which record several stages of metasomatic impact on the lithosphere. These phlogopites are younger than most of Paleozoic phlogopites from the central part of the craton (Udachnaya kimberlite). Therefore, hydrous mantle metasomatism acted much later on the craton periphery than in the center. Monomineral clinopyroxene thermobarometry shows that Jurassic kimberlites from the northeastern craton part trapped lithospheric material from different maximum depths (170 km in the D’yanga pipe and mostly < 130 km in other pipes). The inferred thermal thickness of cratonic lithosphere decreased progressively from ~ 260 km in the Devonian-Carboniferous to ~ 225 km in the Triassic and to ~ 200 km in the Jurassic, while the heat flux (Hasterok-Chapman model) was 34.9, 36.7, and 39.0 mW/m2, respectively. Dissimilar PT patterns of samples from closely spaced coeval kimberlites suggest different emplacement scenarios, which influenced both the PT variations across the lithosphere and the diamond potential of kimberlites.  相似文献   

12.
A mineral inclusion, carbon isotope, nitrogen content, nitrogen aggregation state and morphological study of 576 microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, was conducted. Mineral inclusion data show the diamonds are largely eclogitic (64%), followed by peridotitic (25%) and ultradeep (11%). The paragenetic abundances are similar to macrodiamonds from the DO27 kimberlite (Davies, R.M., Griffin, W.L., O'Reilly, S.Y., 1999. Diamonds from the deep: pipe DO27, Slave craton, Canada. In: Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H. (Eds.), The J. B. Dawson Vol., Proc. 7th Internat. Kimberlite Conf., Red Roof Designs, Cape Town, pp. 148–155) but differ to diamonds from nearby kimberlites at Ekati (e.g., Lithos (2004); Tappert, R., Stachel, T., Harris, J.W., Brey, G.P., 2004. Mineral Inclusions in Diamonds from the Panda Kimberlite, S. P., Canada. 8th International Kimberlite Conference, extended abstracts) and Snap Lake to the south (Dokl. Earth Sci. 380 (7) (2001) 806), that are dominated by peridotitic stones.

Eclogitic diamonds with variable inclusion compositions and temperatures of formation (1040–1300 °C) crystallised at variable lithospheric depths sometimes in changing chemical environments. A large range to very 13C-depleted C-isotope compositions (δ13C=−35.8‰ to −2.2‰) and an NMORB bulk composition, calculated from trace elements in garnet and clinopyroxene inclusions, are consistent with an origin from subducted oceanic crust and sediments. Carbon isotopes in the peridotitic diamonds have mantle compositions (δ13C mode −4.0‰). Mineral inclusion compositions are largely harzburgitic. Variable temperatures of formation (garnet TNi=800–1300 °C) suggest the peridotitic diamonds originate from the shallow ultra-depleted and deeper less depleted layers of the central Slave lithosphere. Carbon isotopes (δ13C av.=−5.1‰) and mineral inclusions in the ultradeep diamonds suggest they formed in peridotitic mantle (670 km). The diamonds may have been entrained in a plume and subcreted to the base of the central Slave lithosphere.

Poorly aggregated nitrogen (IaA without platelets) in a large number of eclogitic (67%) and peridotitic (32%) diamonds, with similar nitrogen contents, indicates the diamonds were stored in the mantle at low temperatures (1060–<1100 °C) following crystallisation in the Archean. Type IaA diamonds have largely cubo-octahedral growth forms, and Type II and Type IaAB diamonds, with higher nitrogen aggregation states, mostly have octahedral morphologies. However, no correlation between these groups and their mineral inclusion compositions, C-isotopes, and N-contents rules out the possibility of unique source origins and suggests eclogitic and peridotitic diamonds experienced variable mantle thermal states. Variation in mineral inclusion chemistries in single diamonds, possible overgrowths of 13C-depleted eclogitic diamond on diamonds with peridotitic and ultradeep inclusions, and Type I ultradeep diamond with low N-aggregation is consistent with diamond growth over time in changing chemical environments.  相似文献   


13.
The age of continental roots   总被引:39,自引:0,他引:39  
D. G. Pearson 《Lithos》1999,48(1-4):171-194
Determination of the age of the mantle part of continental roots is essential to our understanding of the evolution and stability of continents. Dating the rocks that comprise the mantle root beneath the continents has proven difficult because of their high equilibration temperatures and open-system geochemical behaviour. Much progress has been made in the last 20 years that allows us to see how continental roots have evolved in different areas. The first indication of the antiquity of continental roots beneath cratons came from the enriched Nd and Sr isotopic signatures shown by both peridotite xenoliths and inclusions in diamonds, requiring isolation of cratonic roots from the convecting mantle for billions of years. The enriched Nd and Sr isotopic signatures result from mantle metasomatic events post-dating the depletion events that led to the formation and isolation of the peridotite from convecting mantle. These signatures document a history of melt– and fluid–rock interaction within the lithospheric mantle. In some suites of cratonic rocks, such as eclogites, Nd and Pb isotopes have been able to trace probable formation ages. The Re–Os isotope system is well suited to dating lithospheric peridotites because of the compatible nature of Os and its relative immunity to post-crystallisation disturbance compared with highly incompatible element isotope systems. Os isotopic compositions of lithospheric peridotites are overwhelmingly unradiogenic and indicate long-term evolution in low Re/Os environments, probably as melt residues. Peridotite xenoliths from kimberlites can show some disturbed Re/Os systematics but analyses of representative suites show that beneath cratons the oldest Re depletion model ages are Archean and broadly similar to major crust-forming events. Some locations, such as Premier in southern Africa, and Lashaine in Tanzania, indicate more recent addition of lithospheric material to the craton, in the Proterozoic, or later. Of the cratons studies so far (Kaapvaal, Siberia, Wyoming and Tanzania), all indicate Archean formation of their lithospheric mantle roots. Few localities studied show any clear variation of age with depth of derivation, indicating that >150 km of lithosphere may have formed relatively rapidly. In circum-cratonic areas where the crustal basement is Proterozoic in age kimberlite-derived xenoliths give Proterozoic model ages, matching the age of the overlying crust. This behaviour shows how the crust and mantle parts of continental lithospheric roots have remained coupled since formation in these areas, for billions of years, despite continental drift. Orogenic massifs show more systematic behaviour of Re–Os isotopes, where correlations between Os isotopic composition and S or Re content yield initial Os isotopic ratios that define Re depletion model ages for the massifs. Ongoing Sr–Nd–Pb–Hf–Os isotopic studies of massif peridotites and new kimberlite- and basalt-borne xenolith suites from new areas, will soon enable a global understanding of the age of continental roots and their subsequent evolution.  相似文献   

14.
博茨瓦纳是世界上金刚石资源最为丰富的国家之一。奥拉帕金刚石矿床是该国最大的金刚石矿,矿床的金伯利岩为Ⅰ型,其中的包体可以分为2种:橄榄岩型和榴辉岩型;金刚石可以分为3类:橄榄岩型、榴辉岩型及两者的过渡类型-二辉岩型。其中,橄榄岩型和部分榴辉岩型金刚石来自于地幔结晶堆晶体,而榴辉岩型则与板块俯冲的构造-热事件有关。金伯利岩的形成时代主要为白垩纪,而金刚石则主要形成于元古宙和太古宙,金伯利岩和金刚石为不同时期的产物,金刚石为金伯利岩侵位期间捕获的上地幔物理破碎产物。其中年龄为900~1000Ma的金刚石为板块构造-热事件的产物,并对早期金刚石进行了改造破坏。  相似文献   

15.
Although the diamond potential of cratons is linked mainly to thick and depleted Archean lithospheric keels, there are examples of craton-edge locations and circum-cratonic Proterozoic terranes underlain by diamondiferous mantle. Here, we use the results of comprehensive major and trace-element studies of detrital garnets from diamond-rich Late Triassic (Carnian) sedimentary rocks in the northeastern Siberia to constrain the thermal and chemical state of the pre-Triassic mantle and its ability to sustain the diamond storage. The studied detrital mantle-derived garnets are dominated by low- to medium-Cr lherzolitic (~45%) and low-Cr megacrystic (~39%) chemistries, with a significant proportion of eclogitic garnets (~11%), and only subordinate contribution from harzburgitic garnets (~5%) with variable Cr2O3 contents (1.2–8.4 wt.%). Low-Cr megacrysts display uniform, “normal” rare-earth element (REE) patterns with no Eu/Eu* anomalies, systematic Zr and Ti enrichment (mainly within 2.5–5), which are evidence of their crystallization from deep metasomatic melts. Lherzolitic (G9) garnets exhibit normal or humped to MREE-depleted sinusoidal REE patterns and elevated Nd/Y (up to 0.33–0.41) and Zr/Y ratios (up to 7.62). Rare low- to high-Cr harzburgitic (G10) garnets have primarily “depleted”, sinusoidal REE-patterns, low Ti, Y and HREE, but vary significantly in Zr-Hf, Ti and MREE-HREE contents, Nd/Y (within 0.1–2.4) and Zr/Y (1.53–19.9) ratios. The observed trends of chemical enrichment from the most depleted, harzburgitic garnets towards lherzolitic (including high-Ti high-Cr G11-type) garnets and megacrysts result from either voluminous high-temperature metasomatism by plume-derived silicate melts or recurrent mobilization of less voluminous kimberlitic or related carbonated mantle melts, rather than the initially primitive, fertile nature of the Proterozoic SCLM. Calculated Ni-in-garnet temperatures (primarily within ~1150–1250 °C) indicate their derivation from at least ~220 km thick Cr-undersaturated lithosphere at the relevant Devonian to Triassic thermal flow of ~45 mW/m2 or cooler. We suggest the existence of rare harzburgitic domains in the primarily lherzolitic diamond-facies SCLM beneath the northeastern Siberian craton at least by Triassic, whereas the abundance of eclogitic garnets, predominance of E-type inclusions in placer diamonds and specific morphologies argue for diamondiferous eclogites occurring within a ~50–65 kbar diamond window of the Olenek province by the same time.  相似文献   

16.
The kimberlite fields scattered across the NE part of the Siberian Craton have been used to map the subcontinental lithospheric mantle (SCLM), as it existed during Devonian to Late Jurassic time, along a 1000-km traverse NE–SW across the Archean Magan and Anabar provinces and into the Proterozoic Olenek Province. 4100 garnets and 260 chromites from 65 kimberlites have been analysed by electron probe (major elements) and proton microprobe (trace elements). These data, and radiometric ages on the kimberlites, have been used to estimate the position of the local (paleo)geotherm and the thickness of the lithosphere, and to map the detailed distribution of specific rock types and mantle processes in space and time. A low geotherm, corresponding approximately to the 35 mW/m2 conductive model of Pollack and Chapman [Tectonophysics 38, 279–296, 1977], characterised the Devonian lithosphere beneath the Magan and Anabar crustal provinces. The Devonian geotherm beneath the northern part of the area was higher, rising to near a 40 mW/m2 conductive model. Areas intruded by Mesozoic kimberlites are generally characterised by this higher, but still ‘cratonic' geotherm. Lithosphere thickness at the time of kimberlite intrusion varied from ca. 190 to ca. 240 km beneath the Archean Magan and Anabar provinces, but was less (150–180 km) beneath the Proterozoic Olenek Province already in Devonian time. Thinner Devonian lithosphere (140 km) in parts of this area may be related to Riphean rifting. Near the northern end of the traverse, differences in geotherm, lithosphere thickness and composition between the Devonian Toluopka area and the nearby Mesozoic kimberlite fields suggest thinning of the lithosphere by ca. 50–60 km, related to Devonian rifting and Triassic magmatism. A major conclusion of this study is that the crustal terrane boundaries defined by geological mapping and geophysical data (extended from outcrops in the Anabar Shield) represent major lithospheric sutures, which continue through the upper mantle and juxtapose lithospheric domains that differ significantly in composition and rock-type distribution between 100 and 250 km depth. The presence of significant proportions of harzburgitic and depleted lherzolitic garnets beneath the Magan and Anabar provinces is concordant with their Archean surface geology. The lack of harzburgitic garnets, and the chemistry of the lherzolitic garnets, beneath most of the other fields are consistent with the Proterozoic surface rocks. Mantle sections for different terranes within the Archean portion of the craton show pronounced differences in bulk composition, rock-type distribution, metasomatic overprint and lithospheric thickness. These observations suggest that individual crustal terranes, of both Archean and Proterozoic age, had developed their own lithospheric roots, and that these differences were preserved during the Proterozoic assembly of the craton. Data from kimberlite fields near the main Archean–Proterozoic suture (the Billyakh Shear Zone) suggest that reworking and mixing of Archean and Proterozoic mantle was limited to a zone less than 100 km wide.  相似文献   

17.
产于克拉通地块及其边缘褶皱带金伯利岩和钾镁煌斑岩中的原生金刚石 ,其主体上属地幔捕虏晶并具复杂的生长历史。从克拉通岩石圈存在复杂多发的壳幔相互作用和多层次的流体活动事件的角度 ,结合金刚石的精细内部结构所反映的不连续生长及微区原位傅立叶变换红外光谱研究成果 ,认为具复杂生长环带的金刚石是克拉通地块内部增生过程中的地幔流体对已形成金刚石间的相互作用的产物。这一认识有助于增进金刚石微观结构与地块内部改造事件有机联系的研究。地幔交代作用的介质成分主要为SiO2 不饱和的碳酸岩熔体或富含不相容微量元素的CHON流体。多种年龄数据所给出的 1 1~ 1 2Ga结果 ,可能反映华北地块东部的岩石圈深部存在一次明显的地幔增生改造过程。  相似文献   

18.
With an age of ca. 2.7 Ga, greenschist facies volcaniclastic rocks and lamprophyre dikes in the Wawa area (Superior Craton) host the only diamonds emplaced in the Archean available for study today. Nitrogen aggregation in Wawa diamonds ranges from Type IaA to IaB, suggesting mantle residence times of tens to hundreds of millions of years. The carbon isotopic composition (δ13C) of cube diamonds is similar to the accepted mantle value (− 5.0‰). Octahedral diamonds show a slight shift (by + 1.5‰) to isotopically less negative values suggesting a subduction-derived, isotopically heavy component in the diamond-forming fluids. Syngenetic inclusions in Wawa diamonds are exclusively peridotitic and, similar to many diamond occurrences worldwide, are dominated by the harzburgitic paragenesis. Compositionally they provide a perfect match to inclusions from diamonds with isotopically dated Paleo- to Mesoarchean crystallization ages. Several high-Cr harzburgitic garnet inclusions contain a small majorite component suggesting crystallization at depth of up to 300 km. Combining diamond and inclusion data indicates that Wawa diamonds formed and resided in a very thick package of chemically depleted lithospheric mantle that predates stabilization of the Superior Craton. If late granite blooms are interpreted as final stages of cratonization then a similar disconnect between Paleo- to Mesoarchean diamondiferous mantle lithosphere and Neoarchean cratonization is also apparent in other areas (e.g., the Lac de Gras area of the Slave Craton) and may suggest that early continental nuclei formed and retained their own diamondiferous roots.  相似文献   

19.
贵州镇远是中国金刚石原生矿找矿的重点区域之一。镇远地区马坪D1号岩体是1965年中国首次发现的含原生金刚石金伯利岩。该岩体岩石具典型的金伯利岩结构和组成特征,其中的锆石捕虏晶U–Pb年代学和Hf同位素分析结果表明,该地区存在未暴露的太古宙基底物质残余。基于壳幔耦合性规律,可能对应有古老的岩石圈地幔,这种古老的克拉通属性是金刚石形成的有利因素。但另一方面,马坪金伯利岩普遍含有伴生矿物含铬镁铝榴石,其CaO含量较高,多数属于G9(二辉橄榄岩)类型,不是全球富含金刚石的方辉橄榄岩原岩类型(G10),暗示当时的岩石圈发生了部分改造而可能不利于高品质金刚石的形成。需要注意的是,在金刚石找矿过程中,应该以详细的野外工作与岩石学对比研究为基础,同时依赖于金伯利岩及其相关的岩浆活动所携带的捕虏体/捕虏晶的研究,配合以岩浆成分来反演地幔源区特征,才能较全面地揭示古老大陆岩石圈的形成年龄与演化历史、物质组成与精细结构,以及大陆岩石圈根的厚度、热状态、氧逸度、流体作用等,进而为寻找金刚石提供重要的依据。  相似文献   

20.
Forty-one diamonds sourced from the Juina-5 kimberlite pipe in Southern Brazil, which contain optically identifiable inclusions, have been studied using an integrated approach. The diamonds contain <20 ppm nitrogen (N) that is fully aggregated as B centres. Internal structures in several diamonds revealed using cathodoluminescence (CL) are unlike those normally observed in lithospheric samples. The majority of the diamonds are composed of isotopically light carbon, and the collection has a unimodal distribution heavily skewed towards δ13C ~ ?25 ‰. Individual diamonds can display large carbon isotope heterogeneity of up to ~15 ‰ and predominantly have isotopically lighter cores displaying blue CL, and heavier rims with green CL. The light carbon isotopic compositions are interpreted as evidence of diamond growth from abiotic organic carbon added to the oceanic crust during hydrothermal alteration. The bulk isotopic composition of the oceanic crust, carbonates plus organics, is equal to the composition of mantle carbon (?5 ‰), and we suggest that recycling/mixing of subducted material will replenish this reservoir over geological time. Several exposed, syngenetic inclusions have bulk compositions consistent with former eclogitic magnesium silicate perovskite, calcium silicate perovskite and NAL or CF phases that have re-equilibrated during their exhumation to the surface. There are multiple occurrences of majoritic garnet with pyroxene exsolution, coesite with and without kyanite exsolution, clinopyroxene, Fe or Fe-carbide and sulphide minerals alongside single occurrences of olivine and ferropericlase. As a group, the inclusions have eclogitic affinity and provide evidence for diamond formation at pressures extending to Earth’s deep transition zone and possibly the lower mantle. It is observed that the major element composition of inclusions and isotopic compositions of host Juina-5 diamonds are not correlated. The diamond and inclusion compositions are intimately related to subducted material and record a polybaric growth history across a depth interval stretching from the lower mantle to the base of the lithosphere. It is suggested that the interaction of slab-derived melts and mantle material combined with subsequent upward transport in channelised networks or a buoyant diapir explains the formation of Juina-5 diamonds. We conclude that these samples, despite originating at great mantle depths, do not provide direct information about the ambient mantle, instead, providing a snapshot of the Earth’s deep carbon cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号