首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Recent estimates of the timing of the last glaciation in the southern and western Uinta Mountains of northeastern Utah suggest that the start of ice retreat and the climate-driven regression of pluvial Lake Bonneville both occurred at approximately 16 cal. ka. To further explore the possible climatic relationship of Uinta Mountain glaciers and the lake, and to add to the glacial chronology of the Rocky Mountains, we assembled a range-wide chronology of latest Pleistocene terminal moraines based on seventy-four cosmogenic 10Be surface-exposure ages from seven glacial valleys. New cosmogenic-exposure ages from moraines in three northern and eastern valleys of the Uinta Mountains indicate that glaciers in these parts of the range began retreating at 22–20 ka, whereas previously reported cosmogenic-exposure ages from four southern and western valleys indicate that ice retreat began there between 18 and 16.5 ka. This spatial asynchrony in the start of the last deglaciation was accompanied by a 400-m east-to-west decline in glacier equilibrium-line altitudes across the Uinta Mountains. When considered together, these two lines of evidence support the hypothesis that Lake Bonneville influenced the mass balance of glaciers in southern and western valleys of the range, but had a lesser impact on glaciers located farther east. Regional-scale variability in the timing of latest Pleistocene deglaciation in the Rocky Mountains may also reflect changing precipitation patterns, thereby highlighting the importance of precipitation controls on the mass balance of Pleistocene mountain glaciers.  相似文献   

2.
This paper presents results of the analysis of paired cosmogenic isotopes (10Be and 26Al) from eight quartz‐rich samples collected from ice‐moulded bedrock on the Aran ridge, the highest land in the British Isles south of Snowdon. On the Aran ridge, comprising the summits of Aran Fawddwy (905 m a.s.l.) and Aran Benllyn (885 m a.s.l.), 26Al and 10Be ages indicate complete ice coverage and glacial erosion at the global Last Glacial Maximum (LGM). Six samples from the summit ridge above 750–800 m a.s.l. yielded paired 10Be and 26Al ages ranging from 17.2 to 34.4 ka, respectively. Four of these samples are very close in age (10Be ages of 17.5 ± 0.6, 17.5 ± 0.7, 19.7 ± 0.8 and 20.0 ± 0.7 ka) and are interpreted as representing the exposure age of the summit ridge. Two other summit samples are much older (10Be ages of 27.5 ± 1.0 and 33.9 ± 1.2 ka) and these results may indicate nuclide inheritance. The 26Al/10Be ratios for all samples are indistinguishable within one‐sigma uncertainty from the production rate ratio line, indicating that there is no evidence for a complex exposure history. These results indicate that the last Welsh Ice Cap was thick enough to completely cover the Aran ridge and achieve glacial erosion at the LGM. However, between c. 20 and 17 ka ridge summits were exposed as nunataks at a time when glacial erosion at lower elevations (below 750–800 m a.s.l.) was achieved by large outlet glaciers in the valleys surrounding the mountains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The High Plateaus of Utah include seven separate mountain ranges that supported glaciers during the Pleistocene. The Fish Lake Plateau, located on the eastern edge of the High Plateaus, preserves evidence of at least two glacial advances. Four cosmogenic 3He exposure ages of boulders in an older moraine range from 79 to 159 ka with a mean age of 129 ± 39 ka and oldest ages of 152 ± 3 and 159 ± 5 ka. These ages suggest deposition during the type Bull Lake glaciation and Marine Oxygen Isotope Stage (MIS) 6. Twenty boulder exposure ages from four different younger moraines indicate a local last glacial maximum (LGM) of ~ 21.1 ka, coincident with the type Pinedale glaciation and MIS 2. Reconstructed Pinedale-age glaciers from the Fish Lake Plateau have equilibrium-line altitudes ranging from 2950 to 3190 m. LGM summer temperature depressions for the Fish Lake Plateau range from −10.7 to −8.2°C, assuming no change in precipitation. Comparison of the Fish Lake summer temperature depressions to a regional dataset suggests that the Fish Lake Plateau may have had a slight increase (~ 1.5× modern) in precipitation during the LGM. A series of submerged ridges in Fish Lake were identified during a bathymetric survey and are likely Bull Lake age moraines.  相似文献   

4.
During the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26–21 ka (LGM I — maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N–S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.  相似文献   

5.
We report cosmogenic surface exposure 10Be ages of 21 boulders on moraines in the Jeullesh and Tuco Valleys, Cordillera Blanca, Peru (~10°S at altitudes above 4200 m). Ages are based on the sea-level at high-latitude reference production rate and scaling system of Lifton et al. (2005. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth and Planetary Science Letters 239, 140–161) in the CRONUS-Earth online calculator of Balco et al. (2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174–195). Using the Lifton system, large outer lateral moraines in the Jeullesh Valley have a 10Be exposure age of 12.4 ka, inside of which are smaller moraine systems dated to 10.8, 9.7 and 7.6 ka. Large outer lateral moraines in the Tuco Valley have a 10Be exposure age of 12.5 ka, with inner moraines dated to 11.3 and 10.7 ka. Collectively, these data indicate that glacier recession from the Last Glacial Maximum (LGM) in the Cordillera Blanca was punctuated by three to four stillstands or minor advances during the period 12.5–7.6 ka, spanning the Younger Dryas Chronozone (YDC; ~12.9–11.6 ka) and the cold event identified in Greenland ice cores and many other parts of the world at 8.2 ka. The inferred fluctuations of tropical glaciers at these times, well after their withdrawal from the LGM, indicate an increase in precipitation or a decrease in temperature in this region. Although palaeoenvironmental records show regional and temporal variability, comparison with proxy records (lacustrine sediments and ice cores) indicate that regionally this was a cold, dry period so we ascribe these glacier advances to reduced atmospheric temperature rather than increased precipitation.  相似文献   

6.
Trimlines separating glacially abraded lower slopes from blockfield‐covered summits on Irish mountains have traditionally been interpreted as representing the upper limit of the last ice sheet during the Last Glacial Maximum (LGM). Cosmogenic 10Be exposure ages obtained for samples from glacially deposited perched boulders resting on blockfield debris on the summit area of Slievenamon (721 m a.s.l.) in southern Ireland demonstrate emplacement by the last Irish Ice Sheet (IIS), implying preservation of the blockfield under cold‐based ice during the LGM, and supporting the view that trimlines throughout the British Isles represent former englacial thermal regime boundaries between a lower zone of warm‐based sliding ice and an upper zone of cold‐based ice. The youngest exposure age (22.6±1.1 or 21.0±0.9 ka, depending on the 10Be production rate employed) is statistically indistinguishable from the mean age (23.4±1.2 or 21.8±0.9 ka) obtained for two samples from ice‐abraded bedrock at high ground on Blackstairs Mountain, 51 km to the east, and with published cosmogenic 36Cl ages. Collectively, these ages imply (i) early (24–21 ka) thinning of the last IIS and emergence of high ground in SE Ireland; (ii) relatively brief (1–3 ka) glacial occupation of southernmost Ireland during the LGM; (iii) decoupling of the Irish Sea Ice Stream and ice from the Irish midlands within a similar time frame; and (iv) that the southern fringe of Ireland was deglaciated before western and northern Ireland.  相似文献   

7.
This study presents results from geomorphological mapping and cosmogenic radionuclide dating (10Be) of moraine sequences at Otgon Tenger (3905 m), the highest peak in the Khangai Mountains (central Mongolia). Our findings indicate that glaciers reached their last maximum extent between 40 and 35 ka during Marine Oxygen Isotope Stage (MIS) 3. Large ice advances also occurred during MIS-2 (at ~ 23 and 17–16 ka), but these advances did not exceed the limits reached during MIS-3. The results indicate that climatic conditions during MIS-3, characterized by a cool-wet climate with a greater-than-today input from winter precipitation, generated the most favorable setting for glaciation in the study region. Yet, glacial accumulation also responded positively to the far colder and drier conditions of MIS-2, and again during the last glacial–interglacial transition when precipitation levels increased. Viewed in context of other Pleistocene glacial records from High Asia, the pattern of glaciation in central Mongolia shares some features with records from southern Central Asia and NE-Tibet (i.e. ice maxima during interstadial wet phases), while other features of the Mongolian record (i.e. major ice expansion during the MIS-2 insolation minimum) are more in tune with glacier responses known from Siberia and western Central Asia.  相似文献   

8.
10Be terrestrial cosmogenic nuclide surface exposure ages from moraines on Nevado Illimani, Cordillera Real, Bolivia suggest that glaciers retreated from moraines during the periods 15.5-13.0 ka, 10.0-8.5 ka, and 3.5-2.0 ka. Late glacial moraines at Illimani are associated with an ELA depression of 400-600 m, which is consistent with other local reconstructions of late glacial ELAs in the Eastern Cordillera of the central Andes. A comparison of late glacial ELAs between the Eastern Cordillera and Western Cordillera indicates a marked change toward flattening of the east-to-west regional ELA gradient. This flattening is consistent with increased precipitation from the Pacific during the late glacial period.  相似文献   

9.
Lateral moraines constructed along west to east sloping outlet glaciers from mountain centred, pre-last glacial maximum (LGM) ice fields of limited extent remain largely preserved in the northern Swedish landscape despite overriding by continental ice sheets, most recently during the last glacial. From field evidence, including geomorphological relationships and a detailed weathering profile including a buried soil, we have identified seven such lateral moraines that were overridden by the expansion and growth of the Fennoscandian ice sheet. Cosmogenic 10Be and 26Al exposure ages of 19 boulders from the crests of these moraines, combined with the field evidence, are correlated to episodes of moraine stabilisation, Pleistocene surface weathering, and glacial overriding. The last deglaciation event dominates the exposure ages, with 10Be and 26Al data derived from 15 moraine boulders indicating regional deglaciation 9600 ± 200 yr ago. This is the most robust numerical age for the final deglaciation of the Fennoscandian ice sheet. The older apparent exposure ages of the remaining boulders (14,600-26,400 yr) can be explained by cosmogenic nuclide inheritance from previous exposure of the moraine crests during the last glacial cycle. Their potential exposure history, based on local glacial chronologies, indicates that the current moraine morphologies formed at the latest during marine oxygen isotope stage 5. Although numerous deglaciation ages were obtained, this study demonstrates that numerical ages need to be treated with caution and assessed in light of the geomorphological evidence indicating moraines are not necessarily formed by the event that dominates the cosmogenic nuclide data.  相似文献   

10.
《Quaternary Science Reviews》2007,26(3-4):494-499
Cosmogenic surface-exposure ages from boulders on a terminal moraine complex establish the timing of the local last glacial maximum (LGM) in the Taylor River drainage basin, central Colorado. Five zero-erosion 10Be ages have a mean of 19.5±1.8 ka while that for three 36Cl ages is 20.7±2.3 ka. Corrections for modest rates (∼1 mm ka−1) of boulder surface erosion result in individual and mean ages that are generally within 2% of their zero-erosion values. Both the means and the range in ages of individual boulders are consistent with those reported for late Pleistocene moraines elsewhere in the southern and middle Rocky Mountains, and thus suggest local LGM glacier activity was regionally synchronous. Two anomalously young (?) zero-erosion 10Be ages (mean 14.4±0.8 ka) from a second terminal moraine are tentatively attributed to the boulders having been melted out during a late phase of ice stagnation.  相似文献   

11.
The sensitivity of Tibetan glacial systems to North Atlantic climate forcing is a major issue in palaeoclimatology. In this study, we present surface exposure ages of erratic boulders from a valley system in the Hengduan Mountains, southeastern Tibet, showing evidence of an ice advance during Heinrich event 1. Cosmogenic nuclide analyses (10Be and 21Ne) revealed consistent exposure ages, indicating no major periods of burial or pre-exposure. Erosion-corrected (3 mm/ka) 10Be exposure ages range from 13.4 to 16.3 ka. This is in agreement with recalculated exposure ages from the same valley system by [Tschudi, S., Schäfer, J.M., Zhao, Z., Wu, X., Ivy-Ochs, S., Kubik, P.W., Schlüchter, C., 2003. Glacial advances in Tibet during the Younger Dryas? Evidence from cosmogenic 10Be, 26Al, and 21Ne. Journal of Asian Earth Sciences 22, 301–306.]. Thus this indicates that local glaciers advanced in the investigated area as a response to Heinrich event 1 cooling and that periglacial surface adjustments during the Younger Dryas overprinted the glacial morphology, leading to deceptively young exposure ages of certain erratic boulders.  相似文献   

12.
Along the northeast Greenland continental margin, bedrock on interfjord plateaus is highly weathered, whereas rock surfaces in fjord troughs are characterized by glacial scour. Based on the intense bedrock weathering and lack of glacial deposits from the last glaciation, interfjord plateaus have long been thought to be ice-free throughout the last glacial maximum (LGM). In recent years there is growing evidence from shelf and fjord settings that the northeast Greenland continental margin was more extensively glaciated during the LGM than previously thought. However, little is still known from interfjord settings. We present cosmogenic 10Be data from meltwater channels and weathered sandstone outcrops on Jameson Land, an interfjord highland north of Scoresby Sund. The mean exposure age of samples from channel beds (n = 3) constrains on the onset of deglaciation on interior Jameson Land to 18.5 ± 1.3–21.4 ± 1.9 ka (for erosion conditions of 0–10 mm/ka, respectively). This finding adds to growing evidence that the northeast Greenland continental margin was more heavily glaciated during the LGM than previously thought.  相似文献   

13.
Cosmogenic 10Be ages on boulders of 54-51 ka (n = 4) on a penultimate Cordilleran ice sheet (CIS) drift confirm that Marine Oxygen Isotope Stage (MIS) 4 (early Wisconsin) glaciation was extensive in parts of Yukon Territory, the first confirmed evidence in the Canadian Cordillera. We name the glaciation inferred from the mapped and dated drift the Gladstone. These results are in apparent contrast to the MIS 6 (Illinoian) age of the penultimate Reid glaciation to the east in central Yukon but are equivalent to exposure ages on MIS 4 drift in Alaska. Contrasting penultimate ice extents in Yukon requires that different source areas of the northern CIS in Yukon responded differently to climatic forcing during glaciations. The variation in glacier extent for different source areas likely relates to variation in precipitation during glaciation, as the northern CIS was a precipitation-limited system. Causes for a variation in precipitation remain unclear but likely involve the style of precipitation delivery over the St. Elias Mountains possibly related to variations in the Aleutian low.  相似文献   

14.
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP.  相似文献   

15.
We use cosmogenic 10Be surface exposure age techniques at a locality close to Rannoch Moor, western Scottish Highlands, in order to establish the age and chronology of its most recent glaciation. Glacial erratics and an in situ bedrock quartz vein sampled from this site—the summit of Beinn Inverveigh—have yielded zero‐erosion exposure ages of 12.9 ± 1.5 ka to 11.6 ± 1.0 ka, implying complete ice cover of the mountain during the Younger Dryas, or Loch Lomond Stadial. These results fit closely with published 14C dates that bracket the maximum (lateral) extent of ice cap outlet glaciers, and are the first internally consistent ages to specifically address this period of glaciation in Scotland. Furthermore, the dates imply that previous palaeoglaciological reconstructions for this area may have underestimated both the thickness of the former ice cap and, by implication, its volume. © British Geological Survey/Natural Environment Research Council copyright 2007. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   

16.
Understanding the timing of mountain glacier and paleolake expansion and retraction in the Great Basin region of the western United States has important implications for regional-scale climate change during the last Pleistocene glaciation. The relative timing of mountain glacier maxima and the well-studied Lake Bonneville highstand has been unclear, however, owing to poor chronological limits on glacial deposits. Here, this problem is addressed by applying terrestrial cosmogenic 10Be exposure dating to a classic set of terminal moraines in Little Cottonwood and American Fork Canyons in the western Wasatch Mountains. The exposure ages indicate that the main phase of deglaciation began at 15.7 ± 1.3 ka in both canyons. This update to the glacial chronology of the western Wasatch Mountains can be reconciled with previous stratigraphic observations of glacial and paleolake deposits in this area, and indicates that the start of deglaciation occurred during or at the end of the Lake Bonneville hydrologic maximum. The glacial chronology reported here is consistent with the growing body of data suggesting that mountain glaciers in the western U.S. began retreating as many as 4 ka after the start of northern hemisphere deglaciation (at ca. 19 ka).  相似文献   

17.
Cosmogenic 36Cl was measured in bedrock and moraine boulders in the Za Mnichem Valley (High Tatra Mountains). The post‐LGM deglaciation of the study area occurred about 15.9 ka ago. The northernmost part of the valley slopes was ice‐free around 15 ka ago. The terminal moraine on the valley threshold was finally stabilized 12.5 ka ago during the Younger Dryas cold event (Greenland Stadial 1). At that time, the Za Mnichem glacier was 1.3 km long and had an area of 0.57 km2. The AAR equilibrium line of the glacier was located at 1990 m a.s.l., which corresponds to an ELA depression of ~500 m compared to today. The mean summer temperature was colder by 4°–4.5°C than the present‐day temperature. The mean annual temperature was colder by 6°C than today. Such conditions suggest a decrease of the annual precipitation by ~15–25% compared with the present‐day annual average. These data indicate a probable uniform temperature change across central and western Europe, with the precipitation being the most significant factor affecting the mass balance of mountain glaciers. The spatial distribution of balance data suggests increasing continentality towards the east during the Younger Dryas.  相似文献   

18.
The Yulong Mountain massif is tectonically active during Quaternary and contains the southernmost glacierized mountains in China, and all of Eurasia. Past glacial remnants remain preserved on the east and west sides of the Yulong Mountains. A ridge of moraine protruded into the Jinsha River at the Daju Basin, damming the river, and forming a lake at the head of the Jinsha River. Cosmogenic 10Be and 26Al provide exposure age dates for the moraine-based fluvial terraces left behind after the dam breached, and for moraine boulders on both the eastern and western sides of the Yulong Mountains. Our results yield exposure ages for the terraces that range from 29 ka to 8 ka, and a downcutting rate of 7.6 m/ka. The preservation of the remaining dam for over 10,000 years suggests stability of the moraine dam and gradual erosion of the dam during drainage of the dammed lake. From the relationship between exposure ages and elevations of the fluvial terraces located in different walls of the Daju fault, we obtain a late Quaternary dip-slip rate of about 5.6 m/ka for the Daju fault. The exposure ages of 10.2 ka and 47 ka for moraine boulders located in the east and west sides of the Yulong Mountains, respectively, coincide with warm periods in the late Quaternary. This implies that precipitation provides the major control for glaciations on the Yulong Mountains, a domain of the southwest Asian monsoon.  相似文献   

19.
《Quaternary Science Reviews》2007,26(19-21):2316-2321
Traditional ice sheet reconstructions have suggested two distinctly different ice sheet regimes along the East Greenland continental margin during the Last Glacial Maximum (LGM): ice to the shelf break south of Scoresby Sund and ice extending no further than to the inner shelf at and north of Scoresby Sund. We report new 10Be ages from erratic boulders perched at 250 m a.s.l. on the Kap Brewster peninsula at the mouth of Scoresby Sund. The average 10Be ages, calculated with an assumed maximum erosion rate of 1 cm/ka and no erosion (respectively, 17.3±2.3 ka and 15.1±1.7 ka) overlap with a period of increased sediment input to the Scoresby Sund fan (19–15 ka). The results presented here suggest that ice reached at least 250 m a.s.l. at the mouth of Scoresby Sund during the LGM and add to a growing body of evidence indicating that LGM ice extended onto the outer shelf in northeast Greenland.  相似文献   

20.
We demonstrate that cosmogenic nuclide surface exposure dating can be used to provide the first well-constrained age for a Fiordland bedrock surface that was created by coastal erosion and has since been uplifted. Tight clustering of 10Be and 26Al apparent exposure ages between 102-119 kyr on a terrace with strandline at 65 ± 8 m gives a last interglacial age of terrace formation of 130-120 ka, and an uplift rate of 0.52 ± 0.08 mm/yr. Apparent exposure ages from a higher (92-130 m), more incised region of remnant coastal morphology fall in the range 53-111 kyr. The anomalously low ages and large variance demonstrate that weathering and fluvial or rockfall erosion rates are too extreme at the higher sites to determine an age of coastal erosion. Sea level samples have apparent exposure ages in the range 2-11 kyr, with an uncertainty of about 3 kyr. This is consistent with surface exposure during the present sea level high-stand, indicates minimal inheritance of ancient cosmogenic nuclides, and is in accord with geomorphic arguments. Mean 26Al/10Be ratios of 6.6 for each sample set is consistent with the actively exhuming late Quaternary tectonic setting. Large boulders and gently convex rocky outcrops formed during coastal erosion preserve surfaces that are least modified during later uplift, and are hence the best sites for determining the age of coastal erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号