首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marginal likelihoods for the cosmic expansion rates are evaluated using the ‘Constitution’ data of 397 supernovas, thereby updating the results in some previous works. Even when beginning with a very strong prior probability that favors an accelerated expansion, we obtain a marginal likelihood for the deceleration parameter q 0 peaked around zero in the spatially flat case. It is also found that the new data significantly constrains the cosmographic expansion rates, when compared to the previous analyses. These results may strongly depend on the Gaussian prior probability distribution chosen for the Hubble parameter represented by h, with h=0.68±0.06. This and similar priors for other expansion rates were deduced from previous data. Here again we perform the Bayesian model-independent analysis in which the scale factor is expanded into a Taylor series in time about the present epoch. Unlike such Taylor expansions in terms of redshift, this approach has no convergence problem.  相似文献   

2.
An exact Bianchi type-V perfect fluid cosmological model is obtained in a scalar tensor theory proposed by Sen (Z. Phys. 149:311, 1957) based on Lyra Manifold in case of β is a constant and it is shown that this cosmological model exists only in the case of Radiation Universe (ρ=3p) if β is a function of ‘t’ using negative constant deceleration parameter. Some physical and geometrical properties of these models are discussed.  相似文献   

3.
The work presented in paper I (Papadakis, K.E., Goudas, C.L.: Astrophys. Space Sci. (2006)) is expanded here to cover the evolution of the approximate general solution of the restricted problem covering symmetric and escape solutions for values of μ in the interval [0, 0.5]. The work is purely numerical, although the available rich theoretical background permits the assertions that most of the theoretical issues related to the numerical treatment of the problem are known. The prime objective of this work is to apply the ‘Last Geometric Theorem of Poincaré’ (Birkhoff, G.D.: Trans. Amer. Math. Soc. 14, 14 (1913); Poincaré, H.: Rend. Cir. Mat. Palermo 33, 375 (1912)) and compute dense sets of axisymmetric periodic family curves covering the initial conditions space of bounded motions for a discrete set of values of the basic parameter μ spread along the entire interval of permissible values. The results obtained for each value of μ, tested for completeness, constitute an approximation of the general solution of the problem related to symmetric motions. The approximate general solution of the same problem related to asymmetric solutions, also computable by application of the same theorem (Poincaré-Birkhoff) is left for a future paper. A secondary objective is identification-computation of the compact space of escape motions of the problem also for selected values of the mass parameter μ. We first present the approximate general solution for the integrable case μ = 0 and then the approximate solution for the nonintegrable case μ = 10−3. We then proceed to presenting the approximate general solutions for the cases μ = 0.1, 0.2, 0.3, 0.4, and 0.5, in all cases building them in four phases, namely, presenting for each value of μ, first all family curves of symmetric periodic solutions that re-enter after 1 oscillation, then adding to it successively, the family curves that re-enter after 2 to 10 oscillations, after 11 to 30 oscillations, after 31 to 50 oscillations and, finally, after 51 to 100 oscillations. We identify in these solutions, considered as functions of the mass parameter μ, and at μ = 0 two failures of continuity, namely: 1. Integrals of motion, exempting the energy one, cease to exist for any infinitesimal positive value of μ. 2. Appearance of a split into two separate sub-domains in the originally (for μ = 0) unique space of bounded motions. The computed approximations of the general solution for all values of μ appear to fulfill the ‘completeness’ criterion inside properly selected sub-domains of the domain of bounded motions in the (x, C) plane, which means that these sub-domains are filled countably densely by periodic family curves, which form a laminar flow-line pattern. The family curves in this pattern may, or may not, be intersected by a ‘basic’ family curve segment of order from 1 up to 3. The isolated points generating asymptotic solutions resemble ‘sink’ points toward which dense sets of periodic family curves spiral. The points in the compact domain in the (x, C) plane resting outside the domain of bounded motions (μ = 0), including the gap between the two large sub-domains (μ > 0) created by the aforementioned split, generate escape motions. The gap between the two large sub-domains of bounded motions grows wider for growing μ. Also, a number of compact gaps that generate escape motions exist within the body of the two sub-domains of bounded motions. The approximate general solutions computed include symmetric, heteroclinic, asymptotic, collision and escape solutions, thus constituting one component of the full approximate general solution of the problem, the second and final component being that of asymmetric solutions.  相似文献   

4.
The vertical stability character of the families of short and long period solutions around the triangular equilibrium points of the restricted three-body problem is examined. For three values of the mass parameter less than equal to the critical value of Routh (μ R ) i.e. for μ = 0.000953875 (Sun-Jupiter), μ = 0.01215 (Earth-Moon) and μ = μ R = 0.038521, it is found that all such solutions are vertically stable. For μ > (μ R ) vertical stability is studied for a number of ‘limiting’ orbits extended to μ = 0.45. The last limiting orbit computed by Deprit for μ = 0.044 is continued to a family of periodic orbits into which the well known families of long and short period solutions merge. The stability characteristics of this family are also studied.  相似文献   

5.
By solving a Wheeler-De Witt ‘extended’ equation in the Brans-Dicke theory, we have found that the probability distribution predicts: i) An initial value for the Brans-Dicke scalar field φ ∼ ρ1/2_VAC in the beginning of the inflation, where ρVAC is the vacuum density energy (this gives a planck mass ∼ ρ1/4_VAC) ii) Large values for the Brans-Dicke parameter w. On the other hand it is shown that by taking into account the dynamical behaviour of φ and the matter scalar field σ we can formulate a ‘creation boundary condition’ where in the ‘beginning’ of the Universe (R =0, ‘nothing’ for some authors) we have a dynamical σ already ‘created’. This could be the energetic mechanism which makes Universe tunnels the potential barrier to evolve classically after. Besides we have found the possibility of a cosmological uncertainty principle. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Properties of even and odd 11-year solar cycles as part of the 22-year magnetic cycle have been studied on the basis of the data on the zonal structure of the large-scale magnetic field, of polar faculae activity cycles, duration of 11-year cycles, high-latitude prominence areas, inclinations of the coronal streamers, velocity of magnetic neutral line migration, and peculiarities of the polar magnetic field reversal. It is shown that the properties of the odd cycle depend on those of the preceding even cycle. The 22-year magnetic cycle, consisting of an even and odd cycle, is a unified dynamic process. The new data obtained show that the poloidal magnetic fieldB(p) of ‘+’ and ‘−’ polarity for the new 22-year magnetic cycle is formed simultaneously, possibly in deep layers of the Sun in the form of a certain magnetic configuration, containing alternating ‘+’ and ‘−’ polarities of the field.  相似文献   

7.
An analysis of the stars included in the catalogue of λ Bootis by Paunzen et al. (1997) and with IUE Low Resolution observations is presented here. Using line-ratios of carbon to heavier elements (Al and Ni) allows us to establish unambiguous membership criteria for the λ Bootis group. These criteria have been used to look for new λ Bootis candidates in the IUE Final Archive. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Evolution of a homogeneous, isotropic Universe with flat geometry filled with a viscous fluid is investigated in presence of a variable cosmological Λ. A non-singular solution leading to a variable deceleration parameter is obtained which reduces to the solution of Murphy in the ‘no Λ limit’ and to the recent solution of Vishwakarma in the context of ‘a Machian model of dark energy’ in the ‘no viscosity’ limit.  相似文献   

9.
We present an analysis of the behaviour of the ‘coarse-grained’ (‘mesoscopic’) rank partitioning of the mean energy of collections of particles composing virialized dark matter halos in a Λ-CDM cosmological simulation. We find evidence that rank preservation depends on halo mass, in the sense that more massive halos show more rank preservation than less massive ones. We find that the most massive halos obey Arnold’s theorem (on the ordering of the characteristic frequencies of the system) more frequently than less massive halos. This method may be useful to evaluate the coarse-graining level (minimum number of particles per energy cell) necessary to reasonably measure signatures of ‘mesoscopic’ rank orderings in a gravitational system.  相似文献   

10.
It is surprising that we hardly know only 4% of the universe. Rest of the universe is made up of 73% of dark-energy and 23% of dark-matter. Dark-energy is responsible for acceleration of the expanding universe; whereas dark-matter is said to be necessary as extra-mass of bizarre-properties to explain the anomalous rotational-velocity of galaxy. Though the existence of dark-energy has gradually been accepted in scientific community, but the candidates for dark-matter have not been found as yet and are too crazy to be accepted. Thus, it is obvious to look for an alternative theory in place of dark-matter. Milgrom (Astrophys. J. 270:365, 1983a; 270:371, 1983b) has suggested a ‘Modified Newtonian Dynamics (MOND)’ which appears to be highly successful for explaining the anomalous rotational-velocity. But unfortunately MOND lacks theoretical support. The MOND, in-fact, is (empirical) modification of Newtonian-Dynamics through modification in the kinematical acceleration term ‘a’ (which is normally taken as a=\fracv2ra=\frac{v^{2}}{r}) as effective kinematic acceleration aeffective = a m(\fracaa0)a_{\mathit{effective}} = a \mu(\frac{a}{a_{0}}), wherein the μ-function is 1 for usual-values of accelerations but equals to \fracaa0 ( << 1)\frac{a}{a_{0}} (\ll1) if the acceleration ‘a’ is extremely-low lower than a critical value a 0(10−10 m/s2). In the present paper, a novel variant of MOND is proposed with theoretical backing; wherein with the consideration of universe’s acceleration a d due to dark-energy, a new type of μ-function on theoretical-basis emerges out leading to aeffective = a(1 -K \fraca0a)a_{\mathit{effective}} = a(1 -K \frac{a_{0}}{a}). The proposed theoretical-MOND model too is able to fairly explain ‘qualitatively’ the more-or-less ‘flat’ velocity-curve of galaxy-rotation, and is also able to predict a dip (minimum) on the curve.  相似文献   

11.
It is shown (1) that the coefficients Ai of the limb darkening functions I(μ)/Icenter = P5 (μ) = ∑Ai μi (i = 0... 5; μ = cos ϑ), which had been published by Neckel and Labs (Solar Phys. 153, 91, 1994), can well be approximated by analytical functions of wavelength λ, and (2) that at first sight purely formal extrapolation of the functions P5(μ) to the very limb (μ = 0.0) is not meaningless: in combination with absolute intensities for the disk center these functions yield ‘limb intensities’ which all correspond to almost the same ‘limb temperature’, Tlimb≈4746 K. Together these results lead to ‘reference functions’ which can quickly yield rather reliable values of the Sun's continuum intensities, for any values of μ and λ.  相似文献   

12.
We suggest that elliptical galaxies, as stellar systems in a stage of quasi-equilibrium, may have a specific entropy. We use the Sérsic law to describe the light profile. The specific entropy (the Boltzmann–Gibbs definition) is then calculated assuming that the galaxy behaves as a spherical, isotropic, one-component system. We predict a relation between the three parameters of the Sérsic law linked to the specific entropy, defining a surface in the parameter space, an ‘entropic plane’. We have analysed a sample of simulated merging elliptical galaxies (virtual) and a sample of galaxies belonging to the Coma Cluster (real). Both virtual and realgalaxies are: 1) located in their own ‘entropic plane‘ and 2) in this plane, they are located on a straight line, indicating constant entropy: another physical property A careful examination of the value of the specific entropy indicates a very small increase in the specific entropy with the generation after merging (virtual sample). Although one cannot distinguish between various generations for real galaxies, the distribution of specific entropy in this sample is very similar to that in the virtual sample. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
A new equivalence relation, named relation of ‘similarity’ is defined and applied in the restricted three-body problem. Using this relation, a new class of trajectories (named ‘similar’ trajectories) are obtained; they have the theoretical role to give us new details in the restricted three-body problem. The ‘similar’ coordinate systems allow us in addition to obtain a unitary and an elegant demonstration of some analytical relations in the Roche geometry. As an example, some analytical relations published by Seidov (in Astrophys. J. 603:283, 2004) are demonstrated.  相似文献   

14.
In a previous work we studied the effects of (I) the J 2 and C 22 terms of the lunar potential and (II) the rotation of the primary on the critical inclination orbits of artificial satellites. Here, we show that, when 3rd-degree gravity harmonics are taken into account, the long-term orbital behavior and stability are strongly affected, especially for a non-rotating central body, where chaotic or collision orbits dominate the phase space. In the rotating case these phenomena are strongly weakened and the motion is mostly regular. When the averaged effect of the Earth’s perturbation is added, chaotic regions appear again for some inclination ranges. These are more important for higher values of semi-major axes. We compute the main families of periodic orbits, which are shown to emanate from the ‘frozen eccentricity’ and ‘critical inclination’ solutions of the axisymmetric problem (‘J 2 + J 3’). Although the geometrical properties of the orbits are not preserved, we find that the variations in e, I and g can be quite small, so that they can be of practical importance to mission planning.  相似文献   

15.
The deep galaxy sample of MacGillivray & Dodd (1980), obtained from purely objective means, is investigated using the technique of Kuhn & Uson (1982) for the presence of structure of a filamentary nature. A variety of synthetic fields of galaxies (including both ‘filament’ and ‘non-filament’ models) generated by means of a computer simulation technique have also been studied for comparison purposes. No strong evidence for filamentary structure in the galaxy distribution is found for this deep sample.  相似文献   

16.
Poincaré surface of section technique is used to study the evolution of a family ‘f’ of simply symmetric retrograde periodic orbits around the smaller primary in the framework of restricted three-body problem for a number of systems, actual and hypothetical, with mass ratio varying from 10−7 to 0.015. It is found that as the mass ratio decreases the region of phase space containing the two separatrices shrinks in size and moves closer to the smaller primary. Also the corresponding value of Jacobi constant tends towards 3.  相似文献   

17.
Two basic problems of dynamics, one of which was tackled in the extensive work of Z. Kopal (see e.g. Kopal, 1978, Dynamics of Close Binary Systems, D. Reidel Publication, Dordrecht, Holland.), are presented with their approximate general solutions. The ‘penetration’ into the space of solution of these non-integrable autonomous and conservative systems is achieved by application of ‘The Last Geometric Theorem of Poincaré’ (Birkhoff, 1913, Am. Math. Soc. (rev. edn. 1966)) and the calculation of sub-sets of ‘solutions précieuses’ that are covering densely the spaces of all solutions (non-periodic and periodic) of these problems. The treated problems are: 1. The two-dimensional Duffing problem, 2. The restricted problem around the Roche limit. The approximate general solutions are developed by applying known techniques by means of which all solutions re-entering after one, two, three, etc, revolutions are, first, located and then calculated with precision. The properties of these general solutions, such as the morphology of their constituent periodic solutions and their stability for both problems are discussed. Calculations of Poincaré sections verify the presence of chaos, but this does not bear on the computability of the general solutions of the problems treated. The procedure applied seems efficient and sufficient for developing approximate general solutions of conservative and autonomous dynamical systems that fulfil the PoincaréBirkhoff theorems. The same procedure does not apply to the sub-set of unbounded solutions of these problems.  相似文献   

18.
A simple approximate model of the asteroid dynamics near the 3:1 mean–motion resonance with Jupiter can be described by a Hamiltonian system with two degrees of freedom. The phase variables of this system evolve at different rates and can be subdivided into the ‘fast’ and ‘slow’ ones. Using the averaging technique, wisdom obtained the evolutionary equations which allow to study the long-term behavior of the slow variables. The dynamic system described by the averaged equations will be called the ‘Wisdom system’ below. The investigation of the, wisdom system properties allows us to present detailed classification of the slow variables’ evolution paths. The validity of the averaged equations is closely connected with the conservation of the approximate integral (adiabatic invariant) possessed by the original system. Qualitative changes in the behavior of the fast variables cause the violations of the adiabatic invariance. As a result the adiabatic chaos phenomenon takes place. Our analysis reveals numerous stable periodic trajectories in the region of the adiabatic chaos.  相似文献   

19.
The regularization of a new problem, namely the three-body problem, using ‘similar’ coordinate system is proposed. For this purpose we use the relation of ‘similarity’, which has been introduced as an equivalence relation in a previous paper (see Roman in Astrophys. Space Sci. doi:, 2011). First we write the Hamiltonian function, the equations of motion in canonical form, and then using a generating function, we obtain the transformed equations of motion. After the coordinates transformations, we introduce the fictitious time, to regularize the equations of motion. Explicit formulas are given for the regularization in the coordinate systems centered in the more massive and the less massive star of the binary system. The ‘similar’ polar angle’s definition is introduced, in order to analyze the regularization’s geometrical transformation. The effect of Levi-Civita’s transformation is described in a geometrical manner. Using the resulted regularized equations, we analyze and compare these canonical equations numerically, for the Earth-Moon binary system.  相似文献   

20.
This paper gives the results of a programme attempting to exploit ‘la seule bréche’ (Poincaré, 1892, p. 82) of non-integrable systems, namely to develop an approximate general solution for the three out of its four component-solutions of the planar restricted three-body problem. This is accomplished by computing a large number of families of ‘solutions précieuses’ (periodic solutions) covering densely the space of initial conditions of this problem. More specifically, we calculated numerically and only for μ = 0.4, all families of symmetric periodic solutions (1st component of the general solution) existing in the domain D:(x 0 ∊ [−2,2],C ∊ [−2,5]) of the (x 0, C) space and consisting of symmetric solutions re-entering after 1 up to 50 revolutions (see graph in Fig. 4). Then we tested the parts of the domain D that is void of such families and established that they belong to the category of escape motions (2nd component of the general solution). The approximation of the 3rd component (asymmetric solutions) we shall present in a future publication. The 4th component of the general solution of the problem, namely the one consisting of the bounded non-periodic solutions, is considered as approximated by those of the 1st or the 2nd component on account of the `Last Geometric Theorem of Poincaré' (Birkhoff, 1913). The results obtained provoked interest to repeat the same work inside the larger closed domain D:(x 0 ∊ [−6,2], C ∊ [−5,5]) and the results are presented in Fig. 15. A test run of the programme developed led to reproduction of the results presented by Hénon (1965) with better accuracy and many additional families not included in the sited paper. Pointer directions construed from the main body of results led to the definition of useful concepts of the basic family of order n, n = 1, 2,… and the completeness criterion of the solution inside a compact sub-domain of the (x 0, C) space. The same results inspired the ‘partition theorem’, which conjectures the possibility of partitioning an initial conditions domain D into a finite set of sub-domains D i that fulfill the completeness criterion and allow complete approximation of the general solution of this problem by computing a relatively small number of family curves. The numerical results of this project include a large number of families that were computed in detail covering their natural termination, the morphology, and stability of their member solutions. Zooming into sub-domains of D permitted clear presentation of the families of symmetric solutions contained in them. Such zooming was made for various values of the parameter N, which defines the re-entrance revolutions number, which was selected to be from 50 to 500. The areas generating escape solutions have being investigated. In Appendix A we present families of symmetric solutions terminating at asymptotic solutions, and in Appendix B the morphology of large period symmetric solutions though examples of orbits that re-enter after from 8 to 500 revolutions. The paper concludes that approximations of the general solution of the planar restricted problem is possible and presents such approximations, only for some sub-domains that fulfill the completeness criterion, on the basis of sufficiently large number of families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号