首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—A numerical study is conducted to simulate complicated sliding behavior and earthquake activity on a subducting plate boundary. A 2-D model of a uniform elastic half-space with a semi-infinite thrust fault is set up, and the frictional stress prescribed by a rate- and state-dependent friction law is assumed to act on the plate boundary fault. Spatial nonuniformity of friction parameters representing rate-dependence of friction and of slip-dependence of friction are introduced in the model to obtain complicated sliding behavior in the numerical simulation. Analogs of great earthquakes that break the entire seismogenic plate boundary repeatedly occur at a constant time interval. Smaller events of seismic or aseismic sliding occur during a great earthquake cycle. Regions of rate-strengthening of friction and of a large characteristic distance in slip-dependence of friction behave as barriers or asperities. Rupture propagation is often arrested in such a region and a great earthquake occurs later when the region is broken. The variety of earthquake activity observed in many regions along real plate boundaries may be explained by similar nonuniformity in friction parameters. Conversely, the friction parameters on plate boundaries might be estimated from comparison of theoretical simulations with observations of earthquake activity. Simulation results indicate that spatiotemporal variation in stress due to aseismic sliding may play an important part in generating earthquakes.  相似文献   

2.
断层带摩擦稳定性转换及其对应的微破裂特征对于地震成核条件和慢地震机理研究具有重要的意义.本文利用双轴实验装置研究了硬石膏断层带摩擦稳定性的转换及其对应的应变变化、微破裂特征,并分析了实验标本的微观结构.实验结果表明,σ2和加载点速度对断层滑动稳定性具有显著影响.在低σ2条件下,硬石膏断层带出现不稳定滑动,变形以局部化的脆性破裂和摩擦为主;随σ2的增加,断层由不稳定滑动向稳定滑动转换,断层带变形方式逐渐转变为分布式的破裂.在低σ2条件下,硬石膏断层带在较低加载点速度下表现为速度强化且滑动稳定,在中等加载点速度下表现为速度弱化并伴有准周期性的黏滑,在较高加载点速度下又有转向速度强化的趋势,σ2的提高使得速度弱化的范围逐渐减少,滑动趋于稳定.上述两次转换对应不同的微破裂特征,在较高速度下从速度弱化转换为速度强化时,断层滑动伴有能量较小但频度很高的微破裂活动,而在较低速度下从速度弱化转换为速度强化时,断层滑动伴有间歇性的微破裂,这与断层带的微观结构特征有较好的对应关系,表明其转换机制是不同的.  相似文献   

3.
Virtual California: Fault Model, Frictional Parameters, Applications   总被引:1,自引:0,他引:1  
Virtual California is a topologically realistic simulation of the interacting earthquake faults in California. Inputs to the model arise from field data, and typically include realistic fault system topologies, realistic long-term slip rates, and realistic frictional parameters. Outputs from the simulations include synthetic earthquake sequences and space-time patterns together with associated surface deformation and strain patterns that are similar to those seen in nature. Here we describe details of the data assimilation procedure we use to construct the fault model and to assign frictional properties. In addition, by analyzing the statistical physics of the simulations, we can show that that the frictional failure physics, which includes a simple representation of a dynamic stress intensity factor, leads to self-organization of the statistical dynamics, and produces empirical statistical distributions (probability density functions: PDFs) that characterize the activity. One type of distribution that can be constructed from empirical measurements of simulation data are PDFs for recurrence intervals on selected faults. Inputs to simulation dynamics are based on the use of time-averaged event-frequency data, and outputs include PDFs representing measurements of dynamical variability arising from fault interactions and space-time correlations. As a first step for productively using model-based methods for earthquake forecasting, we propose that simulations be used to generate the PDFs for recurrence intervals instead of the usual practice of basing the PDFs on standard forms (Gaussian, Log-Normal, Pareto, Brownian Passage Time, and so forth). Subsequent development of simulation-based methods should include model enhancement, data assimilation and data mining methods, and analysis techniques based on statistical physics.  相似文献   

4.
--In this paper, a finite element model for simulating long-term crustal deformation with large slipping along fault interface is developed, where a rate- and state-dependent frictional law is introduced to represent the faulting processes and frictional behaviors of fault interface. Moreover, viscous and plastic material properties are used to simulate pressure solution creep and cataclasis, respectively. Throughout the simulations on a structural model of fault-bend folds, the distributions of the stress invariants, equivalent viscous plastic strain, and the traction on the fault interface are investigated. The sequence of deformation mechanisms during movement over a ramp is discussed. It is also found that this kind of frictional model is suitable to represent the rate-dependent behavior of fault slipping due to the movement over a ramp and the tractions on fault interface for treating the low frictional problem of fault-bend folds.  相似文献   

5.
-- In order to understand the earthquake nucleation process, we need to understand the effective frictional behavior of faults with complex geometry and fault gouge zones. One important aspect of this is the interaction between the friction law governing the behavior of the fault on the microscopic level and the resulting macroscopic behavior of the fault zone. Numerical simulations offer a possibility to investigate the behavior of faults on many different scales and thus provide a means to gain insight into fault zone dynamics on scales which are not accessible to laboratory experiments. Numerical experiments have been performed to investigate the influence of the geometric configuration of faults with a rate- and state-dependent friction at the particle contacts on the effective frictional behavior of these faults. The numerical experiments are designed to be similar to laboratory experiments by Dieterich and Kilgore (1994) in which a slide-hold-slide cycle was performed between two blocks of material and the resulting peak friction was plotted vs. holding time. Simulations with a flat fault without a fault gouge have been performed to verify the implementation. These have shown close agreement with comparable laboratory experiments. The simulations performed with a fault containing fault gouge have demonstrated a strong dependence of the critical slip distance Dc on the roughness of the fault surfaces and are in qualitative agreement with laboratory experiments.  相似文献   

6.
为更好地理解层状硅酸盐对断层强度、滑动速度依赖性及地震活动特征的影响,利用双轴摩擦实验对含白云母岩盐断层带在干燥及含水条件下摩擦的速度依赖性进行了实验研究,并观测了摩擦滑动过程中的声发射,分析了断层带的微观结构.实验结果表明,干燥条件下含白云母岩盐断层带在0.1 ~ 100μm/s的速度范围内表现为黏滑和速度弱化,增大σ2会使断层带从速度弱化向速度强化转化,速度依赖性转换出现在0.1 μm/s,其中断层滑动表现为稳滑或应力释放时间较长的黏滑事件;含水条件下含白云母岩盐断层带在0.05 ~0.01μm/s的速度范围内表现为速度强化,0.1 ~10μm/s的速度范围内表现为速度弱化,50~100μm/s的速度范围内又转换为速度强化行为.含白云母岩盐断层带在干燥条件下一次黏滑伴随一个或一丛声发射事件,而在含水条件下与稳滑相对应,滑动过程中并未记录到声发射事件.显微结构观察表明,速度弱化域的主要变形机制是岩盐颗粒的脆性破裂和局部化的滑动;干燥条件下,速度强化域的主要变形机制是岩盐颗粒的均匀破裂;含水条件下2个速度强化域对应不同的微观机制,高速域的速度强化受控于岩盐颗粒在白云母相互连结形成的网状结构上的滑动及其均匀碎裂作用,而低速域的速度强化还受岩盐的压溶作用控制.通过与岩盐断层带摩擦实验结果对比可知,白云母的存在对于燥岩盐断层带摩擦滑动方式和速度依赖性没有显著影响,而在含水条件下白云母的存在使得岩盐断层带滑动趋于稳定.实验结果为分析含层状硅酸盐断层的强度和稳定性提供了依据.此外,在速度依赖性转换域上观察到的应力缓慢释放的现象进一步证实了在岩盐断层带摩擦滑动过程中观察到的现象,这对慢地震机制研究具有参考意义.  相似文献   

7.
为了深入理解断层带摩擦滑动速度依赖性转换及其机制,利用双轴摩擦实验对干燥及含水条件下岩盐断层带摩擦的速度依赖性进行了实验研究,并观测了摩擦滑动过程中的声发射,分析了断层带的微观结构.实验结果表明,干燥岩盐断层带在0.1~100 μm/s的速度范围内表现为速度弱化,增大σ2会使断层带向速度强化转变;含水条件下岩盐断层带在1~100 μm/s的速度范围内表现为速度弱化,而在0.1~0.01 μm/s的速度范围内表现为速度强化,速度依赖性转换出现在0.1~1 μm/s,其中断层表现为振荡或应力释放时间较长的黏滑事件;岩盐断层带在干燥条件下表现出很强的声发射活动,每个黏滑均对应一丛声发射事件,而在含水条件下一次黏滑只对应一个声发射事件.显微观察表明,局部化的脆性破裂是速度弱化域的主要变形机制,分布式的碎裂流动是干燥岩盐断层带在速度强化域的变形机制,颗粒边界迁移以及压溶作用的塑性变形是含水条件下岩盐断层带在速度强化域的主要变形机制,而脆性破裂和塑性变形共同控制着速度依赖性转换域断层带的变形.水的存在促进岩盐发生塑性变形,进而导致断层带从速度弱化向速度强化转换.上述结果有助于理解断层带上地震活动的特征和慢地震的机制.  相似文献   

8.
对几种不同结构的岩石标本在变形过程中声发射b值和频谱随时间的变化特征进行了对比研究 ,其中包括完整花岗岩标本、含有天然愈合节理的花岗岩标本、含有拉张型和挤压型雁列式断层以及平直断层的标本等。研究表明 ,声发射b值和频谱的特征不仅会受标本结构的影响 ,而且在同一标本的不同变形阶段也可能表现出不同的特征 ,其机制与变形方式以破裂为主或以摩擦为主有关。当变形以破裂为主时 ,声发射b值和频谱在失稳前会出现明显的下降 ;当变形以摩擦为主时 ,声发射b值和频谱在失稳前变化相对较小 ,且上升或下降均可能出现。实验结果意味着b值和频谱特征作为失稳前兆 ,在不同的构造环境下可能会有不同的特征 ,而强震孕震区内不同断裂构造的存在会造成前兆时空分布的非均匀性  相似文献   

9.
Simulation of the Micro-physics of Rocks Using LSMearth   总被引:4,自引:0,他引:4  
-- The particle-based Lattice Solid Model (LSM) was developed to provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes (M0ra and Place, 1994; Place and Mora, 1999). A new modular and flexible LSM approach has been developed that allows different micro-physics to be easily included in or removed from the model. The approach provides a virtual laboratory where numerical experiments can easily be set up and all measurable quantities visualised. The proposed approach provides a means to simulate complex phenomena such as fracturing or localisation processes, and enables the effect of different micro-physics on macroscopic behaviour to be studied. The initial 2-D model is extended to allow three-dimensional simulations to be performed and particles of different sizes to be specified. Numerical bi-axial compression experiments under different confining pressure are used to calibrate the model. By tuning the different microscopic parameters (such as coefficient of friction, microscopic strength and distribution of grain sizes), the macroscopic strength of the material and can be adjusted to be in agreement with laboratory experiments, and the orientation of fractures is consistent with the theoretical value predicted based on Mohr-Coulomb diagram. Simulations indicate that 3-D numerical models have different macroscopic properties than in 2-D and, hence, the model must be recalibrated for 3-D simulations. These numerical experiments illustrate that the new approach is capable of simulating typical rock fracture behaviour. The new model provides a basis to investigate nucleation, rupture and slip pulse propagation in complex fault zones without the previous model limitations of a regular low-level surface geometry and being restricted to two-dimensions.  相似文献   

10.
— Attempts to understand the physics of earthquakes over the past decade generally have focused on applying methods and theories developed based upon phase transitions, materials science, and percolation theory to a variety of numerical simulations of extended fault networks. This recent work suggests that fault systems can be interpreted as mean-field threshold systems in metastable equilibrium (Rundle et al., 1995; Klein et al., 1997; Ferguson et al., 1999), and that these results strongly support the view that seismic activity is highly correlated across many space and time scales within large volumes of the earth’s crust (Rundle et al., 2000; Tiampo et al., 2002). In these systems, the time averaged elastic energy of the system fluctuates around a constant value for some period of time and is punctuated by major events that reorder the system before it settles into another metastable energy well. One way to measure the stability of such a system is to check a quantity called the Thirumalai-Mountain (TM) energy metric (Thirumalai and Mountain, 1993; Klein et al., 1996). In particular, using this metric, we show that the actual California fault system is ergodic in space and time for the period in question, punctuated by the occurrence of large earthquakes, and that, for individual events in the system, there are correlated regions that are a subset of the larger fault network.  相似文献   

11.
-- Large earthquakes can be viewed as catastrophic ruptures in the earth's crust. There are two common features prior to the catastrophe transition in heterogeneous media. One is damage localization and the other is critical sensitivity; both of which are related to a cascade of damage coalescence. In this paper, in an attempt to reveal the physics underlying the catastrophe transition, analytic analysis based on mean-field approximation of a heterogeneous medium as well as numerical simulations using a network model are presented. Both the emergence of damage localization and the sensitivity of energy release are examined to explore the inherent statistical precursors prior to the eventual catastrophic rupture. Emergence of damage localization, as predicted by the mean-field analysis, is consistent with observations of the evolution of damage patterns. It is confirmed that precursors can be extracted from the time-series of energy release according to its sensitivity to increasing crustal stress. As a major result, present research indicates that the catastrophe transition and the critical point hypothesis (CPH) of earthquakes are interrelated. The results suggest there may be two cross-checking precursors of large earthquakes: damage localization and critical sensitivity.  相似文献   

12.
In weather forecasting, current and past observational data are routinely assimilated into numerical simulations to produce ensemble forecasts of future events in a process termed “model steering”. Here we describe a similar approach that is motivated by analyses of previous forecasts of the Working Group on California Earthquake Probabilities (WGCEP). Our approach is adapted to the problem of earthquake forecasting using topologically realistic numerical simulations for the strike-slip fault system in California. By systematically comparing simulation data to observed paleoseismic data, a series of spatial probability density functions (PDFs) can be computed that describe the probable locations of future large earthquakes. We develop this approach and show examples of PDFs associated with magnitude M > 6.5 and M > 7.0 earthquakes in California.  相似文献   

13.
南北地震带区域形变异常特征与地震关系研究   总被引:1,自引:0,他引:1  
利用南北地震带及附近地区20世纪70年代以来的区域水准网和90年代以来的GPS监测网资料, 结合地质构造和监测区发生的多次6级左右及以上震例, 分析了震前区域性形变场异常的基本特征。 进而根据资料支持程度, 分别以GPS、 区域水准观测位移为地表约束, 以“973”项目活动地块划分结果为地质依据, 进行非震负位错模型反演计算, 研究了数值模拟结果反映的活动块体和边界断裂构造变形状态与地震的关系。 在此基础上, 定性与定量相结合分析研究了强震前区域性水平、 垂直构造形变异常特征及可能的机理, 初步总结了基于区域水准、 GPS观测与数值模拟的强震前区域构造形变异常的一些判据。  相似文献   

14.
The roles of chemically assisted crack and fracture propagation and chemically assisted comminution in frictional deformation are evaluated in this study. Double cantilever beam (DCB) crack propagation data are presented which show that the role of pH in chemically assisted fracture, and to a lesser extent the role of ionic concentration are important in stress corrosion cracking. Data on very slow crack growth and the stress corrosion limit are also presented. These data suggest that stress corrosion cracking may play an important role in compound earthquakes and in asperity breakdown in faults. The comminution literature is also reviewed in order to assess the role of chemically assisted comminution in frictional deformation. It appears that chemically assisted comminution may be important at low and high ionic strength because it may reduce the effective viscosity and the shear strength of fault gouge. At intermediate ionic concentration the role of pH, as an agent which enhances crack and fracture propagation, appears to be more important in reducing the coefficient of sliding friction.  相似文献   

15.
16.
剪切破裂与粘滑——浅源强震发震机制的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
周口店花岗闪长岩的高温高压三轴实验和理论分析表明,剪切破裂和摩擦滑移具有类似的孕育过程和发生机制。剪切破裂贯通强度就是一种摩擦强度。剪切破裂和摩擦滑移各自都有渐进式和突发式之分。突发式摩擦滑移是已有断层的粘滑滑移。突发式剪切破裂则是完整岩石的初始粘滑滑移。考虑到地壳温度随深度增加,完整岩石剪裂强震要求较高的围压,因此,多数浅源强震的发震方式很可能是已有断层的粘滑  相似文献   

17.
— Earthquake fault systems are now thought to be an example of a complex nonlinear system (Bak, et al., 1987; Rundle and Klein, 1995). The spatial and temporal complexity of this system translates into a similar complexity in the surface expression of the underlying physics, including deformation and seismicity. Here we show that a new pattern dynamic methodology can be used to define a unique, finite set of deformation patterns for the Southern California Integrated GPS Network (SCIGN). Similar in nature to the empirical orthogonal functions historically employed in the analysis of atmospheric and oceanographic phenomena (Preisendorfer, 1988), the method derives the eigenvalues and eigenstates from the diagonalization of the correlation matrix using a Karhunen-Loeve expansion (KLE) (Fukunaga, 1970; Rundle et al., 2000; Tiampo et al., 2002). This KLE technique may be used to determine the important modes in both time and space for the southern California GPS data, modes that potentially include such time-dependent signals as plate velocities, viscoelasticity, and seasonal effects. Here we attempt to characterize several of the seasonal vertical signals on various spatial scales. These, in turn, can be used to better model geophysical signals of interest such as coseismic deformation, viscoelastic effects, and creep, as well as provide data assimilation and model verification for large-scale numerical simulations of southern California.  相似文献   

18.
地震引起的滑坡对生命、环境和经济造成了巨大的威胁。目前,对于地震作用下边坡稳定性的研究主要集中在单一滑动面破坏模式,对于具有多个潜在滑动面边坡的地震稳定性研究比较欠缺。基于此,利用有限差分软件FLAC对不同边坡进行地震稳定性数值模拟,对比分析不同强度地震动作用下均质土体、分层土体和含软弱夹层土体边坡的滑动面演化过程和永久变形分布特征。结果表明:对于均质边坡,地震引起的滑动面为单一的整体滑动面,地震动强度的增加仅导致沿滑动面的永久变形量增大;对于非均质边坡,在地震作用下还可能形成通过土层交界面的局部滑动变形,且地震作用下最先形成和发生变形的滑动面与静力条件下得到的最小安全系数对应的最危险滑动面一致;同时,地震引起的边坡浅层和深层变形破坏存在复杂的相互影响,当局部浅层滑动先发生时,地震动的进一步增大很容易诱发更深层的坡体滑动,而当深层滑动先发生时,由于塑性变形影响地震惯性力向上部坡体的传播,浅层坡体的进一步滑动变形相对较难被触发。  相似文献   

19.
--The mechanical and statistical characteristics of acoustic emission (AE) events during stable sliding are investigated through a laboratory experiment using a granite specimen with a pre-cut fault. Numerous AE events are found to be generated on the pre-cut fault, indicating that microscopically unstable fracture occurs during macroscopically stable sliding. The composite focal mechanism solution of AE events is determined from the first motion directions of P-waves. The determined mechanism is consistent with the double-couple one expected for the slip on the pre-cut fault. The source radii of large AE events are estimated to be about 10 mm from the widths of the first P-wave pulses. These indicate that the AE events are generated by shear fracture whose faulting area is a part of the pre-cut fault plane. The occurrence of AE events as a stochastic process approximately obeys the Poisson process, if the effect of mutually dependent events consti tuting clusters is corrected. The observed amplitude-frequency relation of AE events approximately follows a power law for a limited amplitude range. As the macroscopic sliding rate increases, the number of AE events per unit sliding distance decreases. This rate dependence of the AE activity is qualitatively consistent with the observation that the real area of contact between sliding surfaces decreases with an increase in the sliding rate as reported in the literature.  相似文献   

20.
— Earthquake faultings have a wide variety of slip behaviors, such as, a log-linear frequency-magnitude relation, characteristic earthquakes, slow slip events, and so on. We report a model which can reproduce a certain variety of observed complex slip behaviors on a fault. Our 3-D model simulates the seismic cycle on a shallow dipping subduction fault in a homogeneous elastic half-space, on which frictional sliding is controlled by a rate- and state-dependent friction law. We find that the behaviors of reproduced seismic cycles depend on a lateral dimension of a seismogenic zone (H) with respect to a constant seismogenic width in dip direction (W). The following three domains appear in the seismic cycle behaviors: (1) Regular, periodic behaviors when H is comparable to W; (2) transitional, quasi-periodic behaviors when H/W~ 3; and (3) complex behaviors when H/W is larger than about 4. The slip behavior in the domain (1) is characterized by a periodical recurrence of a characteristic earthquake, which is centered in strike direction. In the domain (2), although earthquakes are still centered, these recurrence intervals and the sizes are modulated within a certain range. Also, in the domain (3), earthquakes occur not only at the center but at various lateral positions on the seismogenic zone. In this domain, the log-linear frequency-magnitude relations, like the Gutenberg-Richter relation, are produced. Slow slip events also occur at source areas of the earthquakes. It is suggested that a heterogeneous stress distribution at a source region is important, as well as heterogeneities in friction properties on the fault, for understanding the wide variety of slip behaviors in faultings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号