首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Rocks and many other materials display a rather complicated, but characteristic, dependence of friction on sliding history. These effects are well-described by empirical rate- and state-dependent constitutive formulations which have been utilized for analysis of fault slip and earthquake processes. We present a procedure for direct quantitative microscopic observation of frictional contacts during slip. The observations reveal that frictional state dependence represents an increase of contact area with contact age. Transient changes of sliding resistance correlate with changes in contact area and arise from shifts of contact population age. Displacement-dependent replacement of contact populations is shown to cause the diagnostic evolution of friction over a characteristic sliding distance that occurs whenever slip begins or sliding conditions change.  相似文献   

3.
Constitutive behavior and stability of frictional sliding of granite   总被引:4,自引:0,他引:4  
An understanding of the frictional sliding on faults that can lead to earthquakes requires a knowledge of both constitutive behavior of the sliding surfaces and its mechanical interaction with the loading system. We have determined the constitutive parameters for frictional sliding of initially bare surfaces of Westerly granite, using a recently developed high pressure rotary shear apparatus that allows long distances of sliding and therefore a greater assurance of attaining steady state behavior. From experiments conducted at room temperature and normal stresses of 27–84 MPa several important results have been found. (1) A gouge layer 100 to 200 m thick was developed from the initially bare rock surfaces after 18 to 70 mm of sliding. (2) The steady state frictional resistance, attained after about 10 mm of sliding, is proportional to the negative of the logarithm of the sliding velocity. (3) Abrup changes in the velocity of sliding result in initial changes in the frictional resistance, which have the same sign as the velocity change, and are followed by a gradual decay to a new steady state value over a characteristic distance of sliding. This velocity weakening behavior is essentially identical with that found by several previous workers on the same material at lower normal stress. (4) Our results are well described by a two state variable constitutive law. The values of the constitutive parameters are quite similar to those found previously at low normal stress, but the characteristic distance is about an order of magnitude smaller than that found at 10 MPa normal stress with thicker layers of coarser gouge. (5) We have approximated our results with a one state variable constitutive law and compared the results with the predictions of existing nonlinear stability analysis; in addition, we have extended the stability analysis to systems possessing two state variables. With such formulations good agreement is found between the experimentally observed and theoretically predicted transitions between stable and unstable sliding. These results allow a better understanding of the instabilities that lead to earthquakes.  相似文献   

4.
We use preseismic, coseismic, and postseismic GPS data of the 1999 Chi-Chi earthquake to infer spatio-temporal variation of fault slip and frictional behavior on the Chelungpu fault. The geodetic data shows that coseismic slip during the Chi-Chi earthquake occurred within a patch that was locked in the period preceding the earthquake, and that afterslip occurred dominantly downdip from the ruptured area. To first-order, the observed pattern and the temporal evolution of afterslip is consistent with models of the seismic cycle based on rate-and-state friction. Comparison with the distribution of temperature on the fault derived from thermo-kinematic modeling shows that aseismic slip becomes dominant where temperature is estimated to exceed 200° at depth. This inference is consistent with the temperature induced transition from velocity-weakening to velocity-strengthening friction that is observed in laboratory experiments on quartzo-feldspathic rocks. The time evolution of afterslip is consistent with afterslip being governed by velocity-strengthening frictional sliding. The dependency of friction, μ, on the sliding velocity, V, is estimated to be ${{\partial \mu }/{\partial \, {\rm ln}\, V}} = 8 \times 10^{ - 3}$ . We report an azimuthal difference of about 10–20° between preseismic and postseismic GPS velocities, which we interpret to reflect the very low shear stress on the creeping portion of the décollement beneath the Central Range, of the order of 1–3 MPa, implying a very low friction of about 0.01. This study highlights the importance of temperature and pore pressure in determining fault frictional sliding.  相似文献   

5.
断层带摩擦稳定性转换及其对应的微破裂特征对于地震成核条件和慢地震机理研究具有重要的意义.本文利用双轴实验装置研究了硬石膏断层带摩擦稳定性的转换及其对应的应变变化、微破裂特征,并分析了实验标本的微观结构.实验结果表明,σ2和加载点速度对断层滑动稳定性具有显著影响.在低σ2条件下,硬石膏断层带出现不稳定滑动,变形以局部化的脆性破裂和摩擦为主;随σ2的增加,断层由不稳定滑动向稳定滑动转换,断层带变形方式逐渐转变为分布式的破裂.在低σ2条件下,硬石膏断层带在较低加载点速度下表现为速度强化且滑动稳定,在中等加载点速度下表现为速度弱化并伴有准周期性的黏滑,在较高加载点速度下又有转向速度强化的趋势,σ2的提高使得速度弱化的范围逐渐减少,滑动趋于稳定.上述两次转换对应不同的微破裂特征,在较高速度下从速度弱化转换为速度强化时,断层滑动伴有能量较小但频度很高的微破裂活动,而在较低速度下从速度弱化转换为速度强化时,断层滑动伴有间歇性的微破裂,这与断层带的微观结构特征有较好的对应关系,表明其转换机制是不同的.  相似文献   

6.
采用速度和状态摩擦本构控制的一维弹簧滑块模型研究断裂分段间相互作用对运动特征的影响,为研究东昆仑活动断裂带库赛湖段和西大滩段2个断裂分段之间的相互影响,采用由弹簧相连的2个滑块模拟断裂分段,通过弹簧滑块系统的动力学分析,将断裂运动性质的描述归结为一组微分方程,数值求解该微分方程组,最终得到断裂运动性质的参数,从而达到确定断裂未来强震复发周期的目的。通过位错模型计算、借鉴前人研究成果以及古地震资料确定模型相关参数。研究断裂分段在不同相互作用下的强震复发周期,模拟表明断裂间不同相互作用对地震复发周期和地震时断裂错动位移的大小没有规律性的影响;只是对地震发生时断裂错动的速度有明显的影响,作用强时,地震发生时断裂错动速度大;反之,地震发生时断裂错动速度小。  相似文献   

7.
A model of frictional sliding with anN-shaped curve for the sliding velocity dependence of the coefficient of friction is considered. This type of friction law is shown to be related to dynamic i.e., velocity dependent ageing of asperity junctions. Mechanisms of ageing for ductile (Bowden-Tabor) and brittle (Byerlee) materials, though different in nature, lead to qualitatively similarN-shaped velocity dependencies of the coefficient of friction. Estimates for the velocities limiting the range of negative velocity sensitivity of the coefficient of friction are obtained for the ductile case and—albeit with a lesser degree of reliability—for the brittle one. It is shown by linear stability analysis that discontinuous sliding (stick-slip) is associated with thedescending portion of theN-shaped curve. An instability criterion is obtained. An expression for the period of the attendant relaxation oscillations of the sliding velocity is given in terms of the calculated velocity dependence of the coefficient of friction. It is suggested that the micromechanically motivated friction law proposed should be used in models of earthquakes due to discontinuous frictional sliding on a crustal fault.  相似文献   

8.
Slip-softening instability on a vertical strike-slip fault with asperities has been analysed. The fault strength is uniform in depth, but the strength is nonuniform in the strike direction, i.e., there are asperities on the fault. These asperities and other segments of the fault have the same type of constitutive law but different peak stresses. The material surrounding the fault is represented by elastic plates, of which the top and bottom surfaces are stress-free.We use a finite element method to study the evolution of theoretical displacement, stress and strain field with a growing displacement applied at the remote plate ends. The slip and frictional stress are obtained as part of the solution. We have compared the difference of theoretical displacement, strain field and the distribution of frictional stress on the fault between unstable and stable slip. In addition, we have studied the effect of size and strength of asperities on instability, and the softening behaviour of asperities before instability.We find that (1) the failure of the fault zone may be due to either dynamic instability or rapid quasistable slip. A general characteristic of unstable mode is that slippage, on some parts of asperities increases indefinitely for a small finite increase in remote imposed displacement until, immediately before the unstable slip; (2) the size and peak strength of asperities have a large effect on instability. Reducing the size and peak strength of asperities tends to replace inertially unstable deformation with stable deformation; (3) the location with maximum acceleration during unstable slip, as the plausible nucleating seismic source, is in asperities; (4) the shapes of the changes in theoretical stress and strain at a given location, caused by the nonlinear constitutive property of the fault, are all similar whether instability, happens or not. This fact suggests that the changes of peak type or bend type in crustal deformation are not required for earthquake instability.  相似文献   

9.
Following the theory and definition of the Corioli force in physics, the Corioli force at the site of the M=8.1 Kunlun Mountain Pass earthquake on November 14, 2001, is examined in this paper on the basis of a statistical research on relationship between the Corioli force effect and the maximum aftershock magnitude of 20 earthquakes with M≥7.5 in Chinese mainland, and then the variation tendency of aftershock activity of the M=8.1 earthquake is discussed. The result shows: a) Analyzing the Corioli force effect is an effective method to predict maximum aftershock magnitude of large earthquakes in Chinese mainland. For the sinistral slip fault and the reverse fault with its hanging wall moving toward the right side of the cross-focus meridian plane, their Corioli force pulls the two fault walls apart, decreasing frictional resistance on fault plane during the fault movement and releasing elastic energy of the mainshock fully, so the maximum magnitude of aftershocks would be low. For the dextral slip fault, its Corioli force presses the two walls against each other and increases the frictional resistance on fault plane, prohibiting energy release of the mainshock, so the maximum magnitude of aftershocks would be high. b) The fault of the M=8.1 Kunlun Mountain earthquake on Nov. 14, 2001 is essentially a sinistral strike-slip fault, and the Corioli force pulled the two fault walls apart. Magnitude of the induced stress is about 0.06 MPa. After a comparison analysis, we suggest that the aftershock activity level will not be high in the late period of this earthquake sequence, and the maximum magnitude of the whole aftershocks sequence is estimated to be about 6.0.  相似文献   

10.
地壳内岩石的化学组成与地震成因之间关系的探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
本文从岩石的物理化学性质方面讨论了地壳内含量较少的基性、超基性岩对地震孕育的作用,通过理论上的探讨并与实际情况对比,分析了各类岩石的粘度特性,建立了一个确定构造运动粘滑或蠕滑的地面参考指标。  相似文献   

11.
本文应用弹性半无限空间内均匀膨胀的球体对球上介质的作用,作为地幔快速上涌触发构造地震的力学模型。按照地面垂直位移的年变化率,利用这个模型反推出这种虚拟的膨胀球的半径和膨胀强度。並计算出它在地壳中产生的附加应力。尽管此种附加应力比驱动地壳水平运动的力要小得多,但它能在高倾角断层上引起张性的法向应力,而且在隆起区内还有较高的附加剪应力。这些应力比固体潮、地极移动和地球转速变化等因素产生的附加应力都大得多。因此,地幔快速上涌对构造地震的触发作用应该比上述诸因素更大。由于近十余年来我国不少地区的走滑型强震大都发生在地壳上隆区或者在其边缘,而且发震断层都是高倾角断层,因此,本文能够对此作粗浅的解释。  相似文献   

12.
In this paper, we report friction experiments performed on natural fault gouge samples embedded in granitic rock from drilled core by a project entitled "the Longmenshan Fault Shallow Drilling(LMFD)". Compared with other natural fault gouge, this yellow-greenish gouge(YGG)is dominantly chlorite-rich. The maximum content of chlorite reaches 47%in the YGG. To understand the frictional properties of the YGG sample, experiments were performed at constant confining pressure of 130MPa, with constant pore pressure of 50MPa and at different temperatures from 25℃ to 150℃. The experiments aim to address the frictional behavior of the YGG under shallow, upper crustal pressure, and temperature conditions. Compared with previous studies of natural gouge, our results show that the YGG is stronger and shows a steady state friction coefficient of 0.47~0.51. Comparison with previous studies of natural gouge with similar content of clay minerals indicates a sequence of strengths of different clay minerals:chlorite > illite > smectite. At temperatures up to 150℃ hence depths up to~8km in the Longmenshan region, the YGG shows stable velocity-strengthening behavior at shallow crustal conditions. Combined with the fact of strong direct velocity effect, i.e., (a-b)/a>0.5, faults cutting the present clastic lithology up to~8km depth in the Longmenshan fault zone(LFZ)are likely to offer stable sliding resistance, damping co-seismic rupture propagating from below at not-too-high slip rates. However, as the fault gouge generally has low permeability, co-seismic weakening through thermal pressurization may occur at high slip rates(>0.05m/s), leading to additional hazards.  相似文献   

13.
大震后区域静态库仑应力变化直接影响地震活动性速率的变化、主震断层外余震和即将失稳断层的发震概率的变化.利用滑移速率和状态相依赖的摩擦定律,结合2008年3月21日于田地震前后的地震活动性水平,定量计算了2008年于田地震后该地区周边断层发震概率的变化,着重解释了2014年于田地震发震的可能根源.此外,本文还对库仑应力明显变化的周边三条断层进行了发震概率的定量计算.贡嘎错断裂中段、贡嘎错断裂西南段和康西瓦断裂中段分别经历了发震概率先降后升、先升后升和先降后降两个阶段,充分显示了库仑应力的细微变化造成的周边断层的危险性的变化.这三条断裂发生7.0级以上地震的发震概率超越95%均需要500年左右;贡嘎错断裂西南段发生中强地震的可能性较大,而康西瓦断裂中段活跃度较低.  相似文献   

14.
在以前的工作中,考虑直立走滑型断层地震,假设断层面微元破裂强度遵循Weibull概率分布,由细观力学方法推导出断层面的宏观本构关系是一个非线性函数,表现为弹性-软化塑性特征,在此基础上用稳定性理论研究了地震稳定性问题.而实际断层大多是倾斜的,为此,本文首先建立了由围岩和倾斜断层构成的平面地震力学模型,采用宏观的断层载荷-变形的全过程曲线,详细讨论了倾斜断层地震的不稳定性问题.结果表明,远场一旦施加位移,断层也同时错动,这可能与实际情况不符合.为了更好的模拟断层的初始能量累计过程,进一步对断层本构模型进行改进.考虑断层面破裂强度,采用Coulomb破裂准则,则断层表现为刚塑性本构关系,只有当断层面剪应力达到一个临界值时,断层才开始错动.研究表明,对于倾斜断层地震,与直立走滑型断层地震一样,系统刚度比β(围岩切线刚度与断层刚度最大值之比)是决定地震失稳的重要参数,只有当β<1时才会出现地震失稳,且伴随应力突跳和围岩应变能释放.当β≥1时,仅仅是断层无震滑动,不会发生地震.在远场应施以位移形式边界条件,以致地震失稳发生在平衡路径的位移转向点并伴有应力突跳.  相似文献   

15.
16.

The Wenchuan MS8.0 earthquake occurred on the Longmenshan fault which inclines at a dip angle exceeding 60 degrees. Since most thrust earthquakes occur on faults with dip angles of about 30 degrees, it is enigmatic why the Wenchuan earthquake occurred on such a steep fault. In this study we use a simple finite element model to investigate how the stress state in the fault changes with the variation of Poisson's ratio. The results show that, with the Poisson's ratio in the fault increasing, the magnitudes of the principal stresses increase and the maximum shear stress decrease, and, especially, the angle between the maximum principal stress and the fault plane decreases, which will enhance the driving force to overcome the frictional resistance on the fault. The increase of Poisson's ratio in the fault may be an important factor to affect the occurrence of the fault earthquakes with large angles between maximum principal stress and fault plane.

  相似文献   

17.
By means of the hypocenter distribution and focal mechanism of Wuding MS=6.5 earthquake sequence occurred in 1995, the space orientation and activity characteristics of focal fault of Wuding earthquake have been studied from the three-dimensional space-time process. The results indicate that the focal fault of Wuding earthquake is a subsurface, NWW-trending, upright and right-lateral strike slip fault which is consistent with the intensity distribution in the meizoseismal region. Although the large-scale NS-trending Tanglang-Yimen active fault passes through the earthquake region, it is irrelevant to the MS=6.5 Wuding main earthquake. Since the relationship between the strong earthquake and the shallow geological active fault can not be determined, the crustal deep structure should be studied. The method proposed in the paper can be used to distinguish the focal fault in the deep crust.  相似文献   

18.
A conceptually simple process which establishes a steady grain size distribution is envisioned to control the ductile creep properties of fault zones that mainly slip by frictional processes. Fracture during earthquakes and aseismic frictional creep tend to reduce grain size. However, sufficiently small grains tend to dissolve so that larger grains grow at their expense, a process called Ostwald ripening. A dynamic stedy state is reached where grain size reduction by fracture is balanced by grain growth from Ostwald ripening. The ductile creep mechanism within fault zones in hard rock is probably pressure solution where the rate is limited by diffusion along load-bearing grain-grain contacts. The diffusion paths that limit Ostwald repening are to a considerable extent the same as those for pressure solution. Active Ostwald ripening thus implies conditions suitable for ductile creep. An analytic theory allows estimation of the steady-state mean grain size and the viscosity for creep implied by this dynamic steady state from material properties and from the width, shear traction, and long-term slip velocity of the fault zone. Numerical models were formulated to compute the steady state grain size distribution. The results indicate that ductile creep, as suggested in the companion paper, is a plausible mechanism for transiently increasing fluid pressure within mostly sealed fault zones so that frictional failure occurs at relatively low shear tractions, 10 MPa. The relevant material properties are too poorly known, however, for the steady state theory (or its extension to a fault that slips in infrequent large earthquakes) to have much predictive value without additional laboratory experiments and studies of exhumed faults.  相似文献   

19.
简述了最近20年来国内外岩石高速摩擦实验研究领域的进展和动态:岩石高速摩擦实验技术的发展实现了对高滑动速率、大位移的地震过程的实验模拟;其结果揭示了岩石和断层泥在地震滑动速率下的力学性状,深化了对断层滑动弱化机制、临界滑动距离、以及地震发生过程的认识和理解;实验在假玄武玻璃成因方面取得了重要进展,并提出了断层发生地震滑动可能留下的其它地质证据,可望为研究断层滑动性状与地震物理过程提供新的思路和信息.岩石高速摩擦实验今后的发展方向主要包括:发展具有加温系统和孔隙压系统的岩石高速摩擦实验装置,研究水热作用下岩石和断层泥的高速摩擦性状;室内实验和地震资料分析相结合研究断层滑动和地震机制;室内实验和野外地质调查相结合探索断层发生地震错动的地质证据等等.  相似文献   

20.
热水条件下花岗质糜棱岩的摩擦滑动实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了探讨大陆地壳断层深部的力学性质,我们选择了采自红河断裂带的糜棱岩作为实验样品,进行热水条件下的高温高压摩擦滑动实验.实验在一个以气体为介质的高温高压三轴实验系统中进行.实验条件是:有效正应力为200 MPa;孔隙水压为30 MPa(在400 ℃到600 ℃之间为超临界水条件);温度为100 ℃到600 ℃;轴向加载的速率范围从0.04 μm/s到0.2 μm/s再到1 μm/s.实验结果表明:(1)当温度小于300 ℃时,糜棱岩的摩擦强度随着温度的上升而增大;当温度大于300 ℃时,糜棱岩的摩擦强度随着温度的上升而减小.这种趋势和以往花岗岩的摩擦滑动数据基本一致;(2)糜棱岩在200 ℃和400 ℃时表现为速度弱化,其余温度下为速度强化;(3)糜棱岩与已有花岗岩的摩擦滑动数据并不完全一致;(4)花岗质糜棱岩速度弱化向速度强化转变的温度在430 ℃附近,以此我们可以推测:在变形机制为摩擦滑动的深部条件下,地震成核的深度范围可以比以往的估计更深.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号