首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
More than 100 radiocarbon dates of penguin guano and remains, shells and seal skin afford ages for raised beaches adjacent to Terra Nova Bay, Antarctica. These dates permit construction of a new relative sea‐level curve that bears on the timing of deglaciation. Recession of the Ross Sea ice‐sheet grounding line from Terra Nova Bay occurred no earlier than 7200 14C yr (8000 cal. yr) BP. Retreat along the Victoria Land coast may have been rapid, possibly contributing to eustatic sea‐level rise centred at ca. 7600 cal. yr BP. The presence of a significant amount of ice remaining in the Ross Sea Embayment in Holocene time lessens the chance that Antarctica contributed significantly to meltwater pulse 1A several thousand years earlier. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
《Quaternary Science Reviews》2005,24(12-13):1499-1520
The provenance of Late Quaternary Ross Embayment till was investigated by comparing the coarse sand composition of East and West Antarctic source area tills with till samples from across the Ross Sea. The West Antarctic samples from beneath the Whillans (B) and Kamb (C) ice streams are petrologically distinct from samples of lateral moraines flanking several East Antarctic outlet glaciers. The characteristic assemblage of four West Antarctic samples includes felsic intrusive and detrital sedimentary lithic fragments, plagioclase and abundant quartz. In contrast, most of the ten East Antarctic till samples contains abundant mafic intrusive and detrital sedimentary lithic fragments as well as less abundant quartz. The distinctive composition of these source areas can be linked to 33 samples from 20 cores of Last Glacial Maximum (LGM) age till distributed across the Ross Sea. Western Ross Sea till samples exhibit mineralogic and lithological similarities to East Antarctic till samples, although these western Ross Sea tills contain higher percentages of felsic intrusive and extrusive lithic fragments. Eastern Ross Sea till samples are compositionally similar to West Antarctic till, particularly in their abundance of quartz and dearth of mafic and extrusive lithic components. Central Ross Sea till exhibits compositional similarities to both East and West Antarctic source terranes including a mafic lithic component, and marks the confluence of ice draining from East and West Antarctica during the LGM, thus West Antarctic-derived ice streams did not advance into the western Ross Sea. This indicates that even if pre-LGM equivalents of the present Siple Coast ice streams existed, they did not simply expand allowing West Antarctic-derived ice to dominate the LGM Ross Ice Sheet.  相似文献   

3.
Here we present new relative sea-level (RSL) curves developed from Holocene-aged raised beaches along the southern Scott Coast of the western Ross Sea, Antarctica. Fifty-four dates of marine shells, seal skin and elephant seal remains incorporated within raised beaches during storms afford a chronology for these curves. All of the curves show the same pattern and timing of RSL change within a small range of error. The best-dated curve suggests that final unloading of grounded Ross Sea ice from the southern Scott Coast and McMurdo Sound region occurred shortly before 6500 14C yr BP. This age is consistent with glacial geological evidence that places deglaciation between 5730 and 8340 14C yr BP. Our data strongly suggest that grounding-line retreat of the Ross Sea ice sheet southward through the McMurdo Sound region occurred in mid- and late Holocene time. If this is correct, then rising sea level could not have driven ice recession to the present-day grounding line on the Siple Coast, because global deglacial sea-level rise was essentially accomplished by mid-Holocene time. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
《Quaternary Science Reviews》2005,24(14-15):1673-1690
Sedimentary sequences deposited by the decaying marine margin of the British–Irish Ice Sheet (BIIS) record isostatic depression and successive ice sheet retreat towards centres of ice dispersion. Radiocarbon dating by accelerator mass spectrometry (AMS) of in situ marine microfaunas that are commonly associated with these sequences constrain the timing of glacial and sea level fluctuations during the last deglaciation, enabling us to evaluate the dynamics of the BIIS and its response to North Atlantic climate change. Here we use our radiocarbon-dated stratigraphy to define six major glacial and sea level events since the Last Glacial Maximum. (1) Initial deglaciation may have occurred ⩾18.3 kyr 14C BP along the northwestern Irish coast, in agreement with a deglacial age of ∼22 36Cl kyr BP for southwestern Ireland. Ice retreated to inland centres and areas of transverse moraine began to form across the north Irish lowlands. (2) Channels cut into glaciomarine deglacial sediments along the western Irish Sea coast are graded to below present sea level, identifying a fall of relative sea level (RSL) in response to isostatic emergence of the coast. (3) Marine mud that rapidly infilled these channels records an abrupt rise in global sea level of 10–15 m ∼16.7 14C kyr BP that flooded the Irish Sea coast and may have triggered deglaciation of a marine-based margin in Donegal Bay. (4) Intertidal boulder pavements in Dundalk Bay indicate that RSL ∼15.0 14C kyr BP was similar to present. (5) A major readvance of all sectors of the BIIS occurred between 14 and 15 kyr 14C BP which overprinted subglacial transverse moraines and delivered a substantial sediment flux to tidewater ice sheet margins. This event, the Killard Point Stadial, indicates that the BIIS participated in Heinrich event 1. (6) Subsequent deposition of marine muds on drumlins 12.7 14C kyr BP indicates isostatic depression and attendant high RSL resulting from the Killard Point readvance. These events identify a dynamic BIIS during the last deglaciation, as well as significant changes in RSL that reflect a combination of isostatic loading and eustatic changes in global sea level.  相似文献   

5.
We present marine sedimentologic and radiocarbon data for the timing of retreat of the largely marine-based Antarctic Peninsula Ice Sheet since the Last Glacial Maximum (LGM). Our findings indicate minimum estimates of deglaciation between 18,000 and 9000 calibrated years before present (cal yr BP), roughly in phase with the Northern Hemisphere deglaciation and eustatic sea-level rise. Our findings show this retreat occurred progressively from the outer, middle, and inner continental shelf regions, as well as progressively from the north to the south. Retreat initiated on the outer shelf of the northern Peninsula by 18,000 cal yr BP and continued southward by 14,000 cal yr BP on the outer shelf of Marguerite Bay, several thousand years earlier than estimated by numeric models. While individual cores yield estimates of glacial retreat that may vary up to ±1100 years, we note steps in the data occur at 14,000 and possibly 11,000 cal yr BP, coincidental to rapidly rising (eustatic) sea level, including the well documented melt water pulses (MWP 1a and 1b). These data support the hypothesis that rapidly rising sea level is associated with marine ice sheet destabilization, although additional dates are necessary to substantiate this finding. This study highlights problems with radiocarbon dating acid insoluble organic (AIO) matter in proximal Lateglacial sediments as well as the need for more accurate dating techniques.  相似文献   

6.
7.
Brenda L. Hall   《Quaternary Science Reviews》2009,28(21-22):2213-2230
A history of Holocene glaciation in the Antarctic and sub-Antarctic affords insight into questions concerning present and future ice-sheet and mountain-glacier behavior and global climate and sea-level change. Existing records permit broad correlation of Holocene ice fluctuations within the region. In several areas, ice extent was less than at present in mid-Holocene time. An important exception to this is the West Antarctic Ice Sheet, which has undergone continued recession throughout the Holocene, probably in response to internal dynamics. The first Neoglacial ice advances occurred at 5.0 ka, although some sites (e.g., western Ross Sea) lack firm evidence for glacial expansion at that time. Glaciers in all areas underwent renewed growth in the past millennium, and most have subsequently undergone recession in the past 50 years, ranging from near-catastrophic in parts of the Antarctic Peninsula to minor in the western Ross Sea region and sections of East Antarctica. This magnitude difference likely reflects the much greater warming that is taking place in the Antarctic Peninsula region today as compared to East Antarctica.  相似文献   

8.
A reconstruction of deglaciation and associated sea-level changes on northern James Ross Island, Antarctic Peninsula, based on lithostratigraphical and geomorphological studies, shows that the initial deglaciation of presently ice-free areas occurred slightly before 7400 14C yr BP. Sea-level in connection with the deglaciation was around 30 m a.s.l. A glacier readvance in Brandy Bay, of at least 7 km, with the initial 3 km over land, reached a position off the present coast at ca. 4600 yr BP. The culmination of the advance was of short duration, and by 4300 yr BP the coastal lowlands again were ice-free. A distinct marine level at 16–18 m a.s.l. was contemporaneous with or slightly post-dates the Brandy Bay advance, thus indicating the relative sea-level around 4600–4500 yr BP. Our results from James Ross Island confirm that over large areas in this part of Antarctica the last deglaciation occurred late. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
The interplay between the onshore and offshore areas during the Last Glacial Maximum and the deglaciation of the Scandinavian Ice Sheet is poorly known. In this paper we present new results on the glacial morphology, stratigraphy and chronology of Andøya, and the glacial morphology of the nearby continental shelf off Lofoten–Vesterålen. The results were used to develop a new model for the timing and extent of the Scandinavian Ice Sheet in the study area during the local last glacial maximum (LLGM) (26 to 16 cal. ka BP). We subdivided the LLGM in this area into five glacial events: before 24, c. 23 to 22.2, 22.2 to c. 18.6, 18 to 17.5, and 16.9–16.3 cal. ka BP. The extent of the Scandinavian Ice Sheet during these various events was reconstructed for the shelf areas off Lofoten, Vesterålen and Troms. Icecaps survived in coastal areas of Vesterålen–Lofoten after the shelf was deglaciated and off Andøya ice flowed landwards from the shelf. During the LLGM the relative sea level was stable until 18.5 cal. ka BP, and thereafter there was a sea‐level drop on Andøya. Thus, relative sea level (i.e. a sea level rise) does not seem to be a driving mechanism for ice‐margin retreat in this area but the fall in sea level may have had some importance for the grounding episodes on the banks during deglaciation. The positions of the grounding zone wedges (GZWs) in the troughs are related to the morphology as they are often located where the troughs narrow.  相似文献   

10.
Knowledge of the glaciation of central East Iceland between 15 and 9 cal. ka BP is important for the understanding of the extent, retreat and dynamics of the Icelandic Ice Sheet. Crucially, it is not known if the key area of Fljótsdalur‐Úthérað carried a fast‐flowing ice stream during the Last Glacial Maximum; the timing and mode of deglaciation is unclear; and the history and ages of successive lake‐phases in the Lögurinn basin are uncertain. We use the distribution of glacial and fluvioglacial deposits and gradients of former lake shorelines to reconstruct the glaciation and deglaciation history, and to constrain glacio‐isostatic age modelling. We conclude that during the Last Glacial Maximum, Fljótsdalur‐Úthérað was covered by a fast‐flowing ice stream, and that the Lögurinn basin was deglaciated between 14.7 and 13.2 cal. ka BP at the earliest. The Fljótsdalur outlet glacier re‐advanced and reached a temporary maximum extent on two separate occasions, during the Younger Dryas and the Preboreal. In the Younger Dryas, about 12.1 cal. ka BP, the outlet glacier reached the Tjarnarland terminal zone, and filled the Lögurinn basin. During deglaciation, a proglacial lake formed in the Lögurinn basin. Through time, gradients of ice‐lake shorelines increased as a result of continuous but non‐uniform glacio‐isostatic uplift as the Fljótsdalur outlet glacier retreated across the Valþjófsstaður terminal zone. Changes in shoreline gradients are defined as a function of time, expressed with an exponential equation that is used to model ages of individual shorelines. A glaciolacustrine phase of Lake Lögurinn existed between 12.1 and 9.1 cal. ka BP; as the ice retreated from the basin catchment, a wholly lacustrine phase of Lake Lögurinn commenced and lasted until about 4.2 cal. ka BP when neoglacial ice expansion started the current glaciolacustrine phase of the lake.  相似文献   

11.
《Quaternary Science Reviews》2007,26(17-18):2113-2127
We compare numerical predictions of glaciation-induced sea-level change to data from 8 locations around the Antarctic coast in order to test if the available data preclude the possibility of a dominant Antarctic contribution to meltwater pulse IA (mwp-IA). Results based on a subset of 7 spherically symmetric earth viscosity models and 6 different Antarctic deglaciation histories indicate that the sea-level data do not rule out a large Antarctic source for this event. Our preliminary analysis indicates that the Weddell Sea is the most likely source region for a large (∼9 m) Antarctic contribution to mwp-IA. The Ross Sea is also plausible as a significant contributor (∼5 m) from a sea-level perspective, but glacio-geological field observations are not compatible with such a large and rapid melt from this region. Our results suggest that the Lambert Glacier component of the East Antarctic ice sheet experienced significant retreat at the time of mwp-IA, but only contributed ∼0.15 m (eustatic sea-level change). All of the ice models considered under-predicted the isostatic component of the sea-level response in the Antarctic Peninsula and the Sôya Coast region of the East Antarctic ice sheet, indicating that the maximum ice thickness in these regions is underestimated. It is therefore plausible that ice melt from these areas, the Antarctic Peninsula in particular, could have made a significant contribution to mwp-IA.  相似文献   

12.
Key external forcing factors have been proposed to explain the collapse of ice sheets, including atmospheric and ocean temperatures, subglacial topography, relative sea level and tidal amplitudes. For past ice sheets it has not hitherto been possible to separate relative sea level and tidal amplitudes from the other controls to analyse their influence on deglaciation style and rate. Here we isolate the relative sea level and tidal amplitude controls on key ice stream sectors of the last British–Irish and Fennoscandian ice sheets using published glacial isostatic adjustment models, combined with a new and previously published palaeotidal models for the NE Atlantic since the Last Glacial Maximum (22 ka BP). Relative sea level and tidal amplitude data are combined into a sea surface elevation index for each ice stream sector demonstrating that these controls were potentially important drivers of deglaciation in the western British Irish Ice Sheet ice stream sectors. In contrast, the Norwegian Channel Ice Stream was characterized by falling relative sea level and small tidal amplitudes during most of the deglaciation. As these simulations provide a basis for observational field testing we propose a means of identifying the significance of sea level and tidal amplitudes in ice sheet collapse.  相似文献   

13.
This study presents a high-resolution multi-proxy investigation of sediment core MD03-2601 and documents major glacier oscillations and deep water activity during the Holocene in the Adélie Land region, East Antarctica. A comparison with surface ocean conditions reveals synchronous changes of glaciers, sea ice and deep water formation at Milankovitch and sub-Milankovitch time scales. We report (1) a deglaciation of the Adélie Land continental shelf from 11 to 8.5 cal ka BP, which occurred in two phases of effective glacier grounding-line retreat at 10.6 and 9 cal ka BP, associated with active deep water formation; (2) a rapid glacier and sea ice readvance centred around 7.7 cal ka BP; and (3) five rapid expansions of the glacier–sea ice systems, during the Mid to Late Holocene, associated to a long-term increase of deep water formation. At Milankovich time scales, we show that the precessionnal component of insolation at high and low latitudes explains the major trend of the glacier–sea ice–ocean system throughout the Holocene, in the Adélie Land region. In addition, the orbitally-forced seasonality seems to control the coastal deep water formation via the sea ice–ocean coupling, which could lead to opposite patterns between north and south high latitudes during the Mid to Late Holocene. At sub-Milankovitch time scales, there are eight events of glacier–sea ice retreat and expansion that occurred during atmospheric cooling events over East Antarctica. Comparisons of our results with other peri-Antarctic records and model simulations from high southern latitudes may suggest that our interpretation on glacier–sea ice–ocean interactions and their Holocene evolutions reflect a more global Antarctic Holocene pattern.  相似文献   

14.
We constrain a three-dimensional thermomechanical model of Greenland ice sheet (GrIS) evolution from the Last Glacial Maximum (LGM, 21 ka BP) to the present-day using, primarily, observations of relative sea level (RSL) as well as field data on past ice extent. Our new model (Huy2) fits a majority of the observations and is characterised by a number of key features: (i) the ice sheet had an excess volume (relative to present) of 4.1 m ice-equivalent sea level at the LGM, which increased to reach a maximum value of 4.6 m at 16.5 ka BP; (ii) retreat from the continental shelf was not continuous around the entire margin, as there was a Younger Dryas readvance in some areas. The final episode of marine retreat was rapid and relatively late (c. 12 ka BP), leaving the ice sheet land based by 10 ka BP; (iii) in response to the Holocene Thermal Maximum (HTM) the ice margin retreated behind its present-day position by up to 80 km in the southwest, 20 km in the south and 80 km in a small area of the northeast. As a result of this retreat the modelled ice sheet reaches a minimum extent between 5 and 4 ka BP, which corresponds to a deficit volume (relative to present) of 0.17 m ice-equivalent sea level. Our results suggest that remaining discrepancies between the model and the observations are likely associated with non-Greenland ice load, differences between modelled and observed present-day ice elevation around the margin, lateral variations in Earth structure and/or the pattern of ice margin retreat.  相似文献   

15.
The outer coast of Finnmark in northern Norway is where the former Fennoscandian and Barents Sea ice sheets coalesced. This key area for isostatic modelling and deglaciation history of the ice sheets has abundant raised shorelines, but only a few existing radiocarbon dates constrain their chronology. Here we present three Holocene sea level curves based on radiocarbon dated deposits from isolation basins at the outermost coast of Finnmark; located at the islands Sørøya and Rolvsøya and at the Nordkinn peninsula. We analysed animal and plant remains in the basin deposits to identify the transitions between marine and lacustrine sediments. Terrestrial plant fragments from these transitions were then radiocarbon dated. Radiocarbon dated mollusk shells and marine macroalgae from the lowermost deposits in several basins suggest that the first land at the outer coast became ice free around 14,600 cal yr BP. We find that the gradients of the shorelines are much lower than elsewhere along the Norwegian coast because of substantial uplift of the Barents Sea. Also, the anomalously high elevation of the marine limit in the region can be attributed to uplift of the adjacent seafloor. After the Younger Dryas the coast emerged 1.6–1.0 cm per year until about 9500–9000 cal yr BP. Between 9000 and 7000 cal yr BP relative sea level rose 2–4 m and several of the studied lakes became submerged. At the outermost locality Rolvsøya, relative sea level was stable at the transgression highstand for more than 3000 years, between ca 8000 and 5000 cal yr BP. Deposits in five of the studied lakes were disturbed by the Storegga tsunami ca 8200–8100 cal yr BP.  相似文献   

16.
Glacial geological studies in tropical mountain areas of the Southern Hemisphere can be used to address two issues of late Pleistocene climate change: the global synchroneity of deglaciation and the magnitude of temperature reduction in the tropics. Radiocarbon dates from the Cordillera Real and from other areas in Perú and Bolivia suggest that late Pleistocene glaciation culminated between 14 000 and 12 000 yr BP, followed by rapid deglaciation. Because deglaciation was apparently synchronous with that in Northern Hemisphere regions, insolation change at high latitudes may not have been the only factor that produced global deglaciation at this time. Late Pleistocene glaciation in the Cordillera Real culminated when precipitation was 200 mm yr?1 higher and temperatures were 3.5° ±1.6°C lower than today; this produced an equilibrium-line altitude depression of about 300 ± 100 m on the western side of the cordillera. Prior to this, conditions were drier and probably at least as cold. However, the lack of moraines in the Cordillera Real dated to the Last Glacial Maximum (ca. 18000 yr BP) precludes using the equilibrium-line altitude method to quantitatively evaluate the discrepancy between warm sea-surface temperatures and cold terrestrial conditions reconstructed with other proxies for this time period.  相似文献   

17.
Studies of Quaternary glacial stratigraphy and morphology around the Antarctic Peninsula have shown that James Ross Island in the western Weddell Sea probably has the best occurrences of stratigraphic sections with dateable material in the region. The stratigraphy includes sections with indefinite radiocarbon age, and three separate aminozones can be recognized. Except for indications of an early deglaciation around c . 10,000 BP, the field evidence from northern James Ross Island suggests a glacial readvance around 7000 BP. It is concluded that the readvance reflects the combined effects of eustatic sea level rise and Holocene warming, leading to increased precipitation and a positive mass balance. The most recent large-scale deglaciation in the area took place around 6000–5000 BP. This confirms the evidence from lake sediments and moss banks in other parts of the Antarctic Peninsula region, which shows that, in most cases, the initiation of organic deposition took place after c . 6000 BP. The literature on the Holocene glacial and environmental history of the region is reviewed in light of the new field evidence.  相似文献   

18.
The offshore and coastal geomorphology of southwest Greenland records evidence for the advance and decay of the Greenland Ice Sheet during the Last Glacial Maximum. Regional ice flow patterns in the vicinity of Sisimiut show an enlarged ice sheet that extended southwestwards on to the shelf, with an ice stream centred over Holsteinsborg dyb. High level periglacial terrain composed of blockfield and tors is dated to between 101 and 142 ka using 26Al and 10Be cosmogenic exposure ages. These limit the maximum surface elevation of the Last Glacial Maximum ice sheet in this part of southwest Greenland to ca 750–810 m asl, and demonstrate that terrain above this level has been ice free since MIS 6. Last Glacial Maximum ice thickness on the coast of ca 700 m implies that the ice sheet reached the mid to outer continental shelf edge to form the Outer Hellefisk moraines. Exposure dates record ice surface thinning from 21.0 to 9.8 ka, with downwasting rates varying from 0.06 to 0.12 m yr−1. This reflects strong surface ablation associated with increased air temperatures running up to the Bølling Interstadial (GIS1e) at ca 14 ka, and later marine calving under high sea levels. The relatively late retreat of the Itilleq ice stream inland of the present coastline is similar to the pattern observed at Jakobshavn Isbræ, located 250 km north in Disko Bugt, which also retreated from the continental shelf after ca 10 ka. We hypothesise that the ice streams of West Greenland persisted on the inner shelf until the early Holocene because of their considerable ice thickness and greater ice discharge compared with the adjacent ice sheet.  相似文献   

19.
We present relative sea level (RSL) curves in Antarctica derived from glacial isostatic adjustment (GIA)predictions based on the melting scenarios of the Antarctic ice sheet since the Last Glacial Maximum (LGM)given in previous works.Simultaneously,Holocene-age RSL observations obtained at the raised beaches along the coast of Antarctica are shown to be in agreement with the GIA predictions.The differences from previously published ice-loading models regarding the spatial distribution and total mass change of the melted ice are significant.These models were also derived from GIA modelling; the variations can be attributed to the lack of geological and geographical evidence regarding the history of crustal movement due to ice sheet evolution.Next,we summarise the previously published ice load models and demonstrate the RSL curves based on combinations of different ice and earth models.The RSL curves calculated by GIA models indicate that the model dependence of both the ice and earth models is significantly large at several sites where RSL observations were obtained.In particular,GIA predictions based on the thin lithospheric thickness show the spatial distributions that are dependent on the melted ice thickness at each sites.These characteristics result from the short-wavelength deformation of the Earth.However,our predictions strongly suggest that it is possible to find the average ice model despite the use of the different models of lithospheric thickness.By sea level and crustal movement observations,we can deduce the geometry of the post-LGM ice sheets in detail and remove the GIA contribution from the crustal deformation and gravity change observed by space geodetic techniques,such as GPS and GRACE,for the estimation of the Antarctic ice mass change associated with recent global warming.  相似文献   

20.
《Quaternary Science Reviews》2005,24(10-11):1223-1241
The late Quaternary ice sheet/ice shelf extent in the George V Basin (East Antarctica) has been reconstructed through analyses of Chirp sub-bottom profiles, integrated with multi-channel seismic data and sediment cores. Four glacial facies, related to the advance and retreat history of the glaciated margin, have been distinguished: Facies 1 represents outcrop of crystalline and sedimentary rocks along the steep inner shelf and comprises canyons once carved by glaciers; Facies 2 represents moraines and morainal banks and ridges with a depositional origin along the middle-inner shelf; Facies 3 represents glacial flutes along the middle-outer shelf; Facies 4 is related to ice-keel turbation at water depths <500 m along the outer shelf. A sediment drift deposit, located in the NW sector of the study area, partly overlies facies 2 and 3 and its ground-truthing provides clues to understanding their age. We have distinguished: (a) an undisturbed sediment drift deposit at water depth >775 m, with drape/sheet and mound characters and numerous undisturbed sub-bottom sub-parallel reflectors (Facies MD1); (b) a fluted sediment drift deposit at water depth <775 m, showing disrupted reflectors and a hummocky upper surface (Facies MD2). Radiocarbon ages of sediment cores indicate that the glacial advance producing facies MD2 corresponds to the Last Glacial Maximum (LGM) and that during the LGM the ice shelf was floating over the deep sector of the basin, leaving the sediment drift deposit undisturbed at major depths (Facies MD1). This observation further implies that: (a) glacial facies underneath the sediment drift were the result of a grounding event older than the LGM, (b) this sector of the East Antarctic fringe was sensitive to sea-level rise at the end of the LGM; thus potentially contributing to meltwater discharge during the last deglaciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号