首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Neoarchean (ca. 2.75 Ga) Luanga Complex, located in the Carajás Mineral Province in Brazil, is a medium-size layered intrusion consisting, from base to top, of ultramafic cumulates (Ultramafic Zone), interlayered ultramafic and mafic cumulates (Transition Zone) and mafic cumulates (Mafic Zone). Chromitite layers in the Luanga Complex occur in the upper portion of interlayered harzburgite and orthopyroxenite of the Transition Zone and associated with the lowermost norites of the Mafic Zone. The stratigraphic interval that hosts chromitites (∼150 meters thick) consists of several cyclic units interpreted as the result of successive influxes of primitive parental magma. The compositions of chromite in chromitites from the Transition Zone (Lower Group Chromitites) have distinctively higher Cr# (100Cr/(Cr + Al + Fe3+)) compared with chromite in chromitites from the Mafic Zone (Upper Group Chromitites). Chromitites hosted by noritic rocks are preceded by a thin layer of harzburgite located 15–20 cm below each chromitite layer. Lower Cr# in chromitites hosted by noritic rocks are interpreted as the result of increased Al2O3 activity caused by new magma influxes. Electron microprobe analyses on line transverses through 35 chromite crystals indicate that they are rimmed and/or extensively zoned. The composition of chromite in chromitites changes abruptly in the outer rim, becoming enriched in Fe3+ and Fe2+ at the expense of Mg, Cr, Al, thus moving toward the magnetite apex on the spinel prism. This outer rim, characterized by higher reflectance, is probably related to the metamorphic replacement of the primary mineralogy of the Luanga Complex. Zoned chromite crystals indicate an extensive exchange between divalent (Mg, Fe2+) cations and minor to none exchange between trivalent cations (Cr3+, Al3+ and Fe3+). This Mg-Fe zoning is interpreted as the result of subsolidus exchange of Fe2+ and Mg between chromite and coexisting silicates during slow cooling of the intrusion. A remarkable feature of chromitites from Luanga Complex is the occurrence of abundant silicate inclusions within chromite crystals. These inclusions show an adjacent inner rim with higher Cr# and lower Mg# (100 Mg/(Mg + Fe2+)) and Al# (100Al/(Cr + Al + Fe3+)). This compositional shift is possibly due to crystallization from a progressively more fractionated liquid trapped in the chromite crystal. Significant modification of primary cumulus composition of chromite, as indicated in our study for the Luanga Complex, is likely to be common in non-massive chromitites and the rule for disseminated chromites in mafic intrusions.  相似文献   

2.
Karstic bauxite deposits are widespread in Central Guizhou Province, SW China, and high-grade ores are frequently sandwiched with overlying coal and underlying iron-rich layers and form a special “coal–bauxite–iron” structure. The Lindai deposit, which is one of the most representative karstic bauxite deposits in Central Guizhou Province, was selected as a case study. Based on textural features and iron abundances, bauxite ores in the Lindai deposit are divided into three types of ores, i.e., clastic, compact, and high-iron. The bauxite ores primarily comprise diaspore, boehmite, kaolinite, illite, and hematite with minor quartz, smectite, pyrite, zircon, rutile, anatase, and feldspar. The Al2O3 (53–76.8 wt.%) is the main chemical contents of the bauxite ore samples in the Lindai district, followed by SiO2, Fe2O3, TiO2, CaO, MgO, S, and P etc. Our geological data on the Lindai deposit indicated that the ore-bearing rock series and its underlying stratum have similar rare earth elements distribution pattern and similar Y/Ho, Zr/Hf, and Eu/Eu1 values; additionally, all ore-bearing rock samples are rich in MgO (range from 0.16 wt.% to 0.68 wt.%), and the plots of the dolomites and laterites lie almost on or close to the weathering line fit by the Al-bearing rocks in Zr vs. Hf and Nb vs. Ta diagrams; suggesting that the underlying Middle Cambrian Shilengshui Formation dolomite is the parent rock of bauxite resources in the Lindai district.Simulated weathering experiments on the modern laterite from the Shilengshui Formation dolomite in the Lindai bauxite deposit show that hydrogeological conditions are important for karstic bauxite formation: Si is most likely to migrate, its migration rate is several magnitudes higher than those of Al and Fe under natural conditions; the reducing inorganic acid condition is the most conducive to Al enrichment and Si removal; Fe does not migrate easily in groundwater, Al enrichment and Fe removal can occur only in acidic and reducing conditions with the presence of organic matter.The geological and experimental studies show that “coal–bauxite–iron” structure in Lindai deposit is formed under certain hydrogeological conditions, i.e., since lateritic bauxite or Al-rich laterite deposited upon the semi-closed karst depressions, Si can be continuously removed out under neutral/acidic groundwater conditions; the coal/carbonaceous rock overlying the bauxitic materials were easily oxidized to produce acidic (H2S, H2SO4, etc.) and reductant groundwater with organic materials that percolated downward, resulting in enrichment of Al in underlying bauxite; it also reduced Fe3+ to its easily migrating form Fe2+, moving downward to near the basal carbonate culminated in precipitating of ferruginous (FeS2, FeCO3, etc.) strata of the “coal–bauxite–iron” structure. Thus, the bauxitic materials experienced Al enrichment and Si and Fe removal under above certain hydrogeological conditions forming the high-quality bauxite.  相似文献   

3.
The Xiadong Alaskan-type complex shares much in common with typical Alaskan-type complexes worldwide, while showing some unique features in terms of mineral compositions. Olivine from the Xiadong dunites is characterized by extremely high Fo component of 91.7–96.7 and anomalously negative correlation of Fo with NiO, while chromite is featured by high 100 × Fe3+/(Fe3+ + Cr + Al) (>70), high 100 × Fe2+/(Fe2+ + Mg) (>70), high 100 × Cr/(Cr + Al) (>90), low MnO (<0.6 wt%) and TiO2 contents (<0.5 wt%). To investigate these particular features, we conducted petrographic observation and mineral composition analyses for the Xiadong dunite. A number of Fe and/or Ni sulfides and alloys occurring as inclusions in olivine and chromite indicate that base metal mineral segregation took place prior to crystallization of olivine and chromite and probably induced Fe and Ni depletions in olivine. The FeO and MgO variations in profile analyses from chromite to adjacent olivine are compatible with Fe-Mg exchange. The diffusion mechanism of Fe from olivine to chromite and Mg from chromite to olivine may have elevated both Fo of olivine and 100 × Fe2+/(Mg + Fe2+) ratio of chromite and further enhanced the decoupling of Fo and NiO in olivine. We thus suggest that base metal mineral segregation and Fe-Mg exchange play important roles in the extreme compositions of the Xiadong dunite. The Ni depletion of olivine and degree of Fe-Mg exchange between olivine and chromite may be used as indicators of mineralization in mafic-ultramafic intrusions.  相似文献   

4.
A peralkaline, ultrapotassic dyke found at ?ebkovice (T?ebí? district, western Moravia) is a mineralogically extreme member of a dyke swarm occurring along the south-eastern border of the Moldanubian Region of the Bohemian Massif. The dyke shows a simple zoning, with a very fine-grained marginal zone grading into a medium-grained central zone. It has a primary mineral assemblage of microcline and potassic amphiboles, with accessory apatite and altered phlogopite. The microcline exhibits an unusual red luminescence colour and pronounced substitution of Fe3+ for Al, with measured contents of Fe2O3 up to 8.5 wt.% (0.31 apfu Fe3+). Amphiboles have very high K (up to 0.99 apfu) and Si contents; their compositions follow an alkaline fractionation trend from potassic-richterite to potassic-magnesio-arfvedsonite, characterized by an increase of Na/K and a decrease of Ca, Mg, Fe2+ and Ti via heterovalent substitutions [B]Ca + [C](Mg,Fe2+)  [B]Na + [C]Fe3+ and Ti + Mg  2Fe3+. The most evolved apatite is significantly enriched in SrO (up to 9.7 wt.%; 0.49 apfu Sr). The core of the dyke and late veinlets contain unique late- to post-magmatic Ba–Ti–Zr-bearing mineral assemblages of baotite, henrymeyerite, titanite, rutile, benitoite and bazirite. Anhedral baotite fills interstices distributed inhomogeneously in the dyke centre; it is locally replaced by a Ba-bearing titanite + henrymeyerite + rutile + quartz assemblage. Henrymeyerite (the second record in a lamproite) shows variable Fe/Ti ratios and represents a solid solution of the hepta- and hexatitanate components. Euhedral crystals of benitoite and bazirite are enclosed in the late-stage quartz–titanite–apatite veinlets in the fine-grained margin of the intrusion. In terms of a mineralogical–genetic classification, the ?ebkovice dyke can be considered as a new high-silica (~ 57 wt.% SiO2) variety of lamproite (variety ?ebkovice), and represents a unique expression of post-collisional potassic magmatism on the south-eastern border of the Bohemian Massif. The peralkaline dykes from this area show mineralogical and geochemical features similar to those of silica-rich orogenic lamproites emplaced at destructive plate margins. In terms of the modern classification of lamproites, the ?ebkovice dyke is the first lamproite recognised in the Variscan orogenic belt.  相似文献   

5.
The Mombi bauxite deposit is located in 165 km northwest of Dehdasht city, southwestern Iran. The deposit is situated in the Zagros Simply Fold Belt and developed as discontinuous stratified layers in Upper Cretaceous carbonates (Sarvak Formation). Outcrops of the bauxitic horizons occur in NW-SE trending Bangestan anticline and are situated between the marine neritic limestones of the Ilam and Sarvak Formations. From the bottom to top, the deposit is generally consisting of brown, gray, pink, pisolitic, red, and yellow bauxite horizons. Boehmite, diaspore, kaolinite, and hematite are the major mineral components, while gibbsite, goethite, anatase, rutile, pyrite, chlorite, quartz, as well as feldspar occur to a lesser extent. The Eh–pH conditions during bauxitization in the Mombi bauxite deposit show oxidizing to reducing conditions during the Upper Cretaceous. This feature seems to be general and had a significant effect on the mineral composition of Cretaceous bauxite deposits in the Zagros fold belt. Geochemical data show that Al2O3, SiO2, Fe2O3 and TiO2 are the main components in the bauxite ores at Mombi and immobile elements like Al, Ti, Nb, Zr, Hf, Cr, Ta, Y, and Th were enriched while Rb, Ba, K, Sr, and P were depleted during the bauxitization process. Chondrite-normalized REE pattern in the bauxite ores indicate REE enrichment (ΣREE = 162.8–755.28 ppm, ave. ∼399.36 ppm) relative to argillic limestone (ΣREE = 76.26–84.03 ppm, ave. ∼80.145 ppm) and Sarvak Formation (ΣREE = 40.15 ppm). The REE patterns also reflect enrichment in LREE relative to HREE. Both positive and negative Ce anomalies (0.48–2.0) are observed in the Mombi bauxite horizons. These anomalies are related to the change of oxidation state of Ce (from Ce3+ to Ce4+), ionic potential, and complexation of Ce4+ with carbonate compounds in the studied horizons. It seems that the variations in the chemistry of ore-forming solutions (e.g., Eh and pH), function of carbonate host rock as a geochemical barrier, and leaching degree of lanthanide-bearing minerals are the most important controlling factors in the distribution and concentration of REEs. Several lines of evidences such as Zr/Hf and Nb/Ta ratios as well as similarity in REE patterns indicate that the underlying marly limestone (Sarvak Formation) could be considered as the source of bauxite horizons. Based on mineralogical and geochemical data, it could be inferred that the Mombi deposit has been formed in a karstic environment during karstification and weathering of the Sarvak limy Formation.  相似文献   

6.
Pure-iron end-member hibbingite, Fe2(OH)3Cl(s), may be important to geological repositories in salt formations, as it may be a dominant corrosion product of steel waste canisters in an anoxic environment in Na–Cl- and Na–Mg–Cl-dominated brines. In this study, the solubility of Fe2(OH)3Cl(s), the pure-iron end-member of hibbingite (FeII, Mg)2(OH)3Cl(s), and Fe(OH)2(s) in 0.04 m to 6 m NaCl brines has been determined. For the reactionFe2(OH)3Cl(s) + 3H+ ? 3 H2O + 2 Fe2+ + Cl?,the solubility constant of Fe2(OH)3Cl(s) at infinite dilution and 25 °C has been found to be log10 K = 17.12 ± 0.15 (95% confidence interval using F statistics for 36 data points and 3 parameters). For the reactionFe(OH)2(s) + 2H+ ? 2 H2O + Fe2+,the solubility constant of Fe(OH)2 at infinite dilution and 25 °C has been found to be log10 K = 12.95 ± 0.13 (95 % confidence interval using F statistics for 36 data points and 3 parameters). For the combined set of solubility data for Fe2(OH)3Cl(s) and Fe(OH)2(s), the Na+–Fe2+ pair Pitzer interaction parameter θNa+/Fe2+ has been found to be 0.08 ± 0.03 (95% confidence interval using F statistics for 36 data points and 3 parameters). In nearly saturated NaCl brine we observed evidence for the conversion of Fe(OH)2(s) to Fe2(OH)3Cl(s). Additionally, when Fe2(OH)3Cl(s) was added to sodium sulfate brines, the formation of green rust(II) sulfate was observed, along with the generation of hydrogen gas. The results presented here provide insight into understanding and modeling the geochemistry and performance assessment of nuclear waste repositories in salt formations.  相似文献   

7.
In this paper I present results of IR spectroscopic measurements of water solubility in Al-bearing periclase and ferropericlase (Mg# = 88) synthesized at 25 GPa and 1400–2000 °C. The IR spectra of their crystals show narrow absorption peaks at 3299, 3308, and 3474 cm?1. The calculated H2O contents are 11–25 ppm in periclase (Al2O3 = 0.9–1.2 wt.%) and 14–79 ppm in ferropericlase (Al2O3 = 0.9–2.9 wt.%). Ferropericlase contains more H2O and Al2O3 than periclase at 1800–2000 °C. I suggest that addition of Al2O3 does not influence the solubility of water in ferropericlase but can favor the additional incorporation of Fe2O3 into the structure. The incorporation of Fe3+ into ferropericlase increases water solubility as a result of iron reduction to Fe2+. It is shown that water has limited solubility in ferropericlase from mantle peridotite; therefore, ferropericlase cannot be considered an important hydrogen-bearing mineral in the lower mantle.  相似文献   

8.
Permian karstic bauxite and its Quaternary derivative, in western Guangxi, southwestern, South China Block, possess a total tonnage greater than 0.5 billion tons. The primary late Permian karstic bauxite formed in reduced environment in the background of Tethyan accretionary orogenesis. And as one consequence of Cenozoic convergence of the Indian and Eurasia continents, the primary orebody was uplifted, eroded and re-sedimented within Quaternary laterite. The geochemical variation and its controls during the ore transformation from Permian to Quaternary remain poorly understood. Quaternary ore blocks comprise an inner zone of fresh ore, and then it gradually transited through a middle zone to a margin with extensive weathering. One such bauxite block was selected and further subdivided into twenty-three samples for geochemical and mineralogical analysis. The inner and middle zones contain similar mineralogical compositions, dominated by diaspore and amesite, with minor illite, anatase, goethite, pyrite, zircon, and rutile. The margin is composed of diaspore, with small amounts of amesite, boehmite, illite, goethite, anatase, kaolinite, zircon, rutile, and barite. Bauxite in all three zones is composed of mainly Al, Si, Fe, and Ti, and high contents of Zr, Cr, Li, F, S, Zn, V, Sr, Nb, Ba, and REE. Variations in Fe2+ and Fe3+ between the three zones were observed. The elements Si, Al, Fe2+, Mg, Ba, Cr, F, Li, Ni, Zn, and REE decrease from the core of the ore block outwards, corresponding to an increase in S and Fe3+. Depletions in Si, Al, Fe2+, Mg, Ba, and Cr were caused by the dissolution of amesite. Most of the Al and Si in amesite were lost during the weathering, and minor retained to form kaolinite. Depletions in Li, Ni, and Zn resulted from changes in the depositional environment between the late Permian and Quaternary. Dissolution of REE-bearing fluorocarbonates resulted in depletions of REE and F. The enrichment of Fe3+ and S was related to the precipitation of goethite, hematite, and barite in an oxidizing environment, while local enrichment of Ce resulted from the redox change of Ce3+  Ce4+ under the same condition. This shows that the chemical composition of laterite enwrapping the bauxite also took part in Quaternary bauxite transformation. This study shows that the elements migrations during bauxite transformation were influenced by multiple independent factors except for the elemental attributes.  相似文献   

9.
The Shergol ophiolitic peridotites along ISZ, Ladakh Himalaya are serpentinized to various degrees and are harzburgite in composition. Electron microprobe analyses of spinels from Shergol Serpentinized Peridotites (SSPs) were carried out in order to evaluate their compositional variation with alteration. Chemical discontinuity was observed from core to rim in analyzed spinel grains with Cr-rich cores rimmed by Cr-poor compositions. From unaltered cores to rims it was observed that Cr3+# and Fe3+# increases while Mg2+# decreases due to Mg2+ − Fe2+ and Al3+ (Cr3+) − Fe3+ exchange with surrounding silicates during alteration. These peridotites contain Al-rich spinels forming subhedral to anhedral grains with lobate and corroded grain boundaries; altered to ferritchromite or magnetite along cracks and boundaries by later metamorphism episode. The unaltered Cr-spinel cores are identified as Al-rich and are characterized by lower values of Cr3+# (0.34–0.40), high Al3+# (0.58–0.68) and Mg2+# (0.52–0.70). Mineral chemistry of these Al-rich Cr-spinels suggest that host peridotites have an affinity to abyssal and alpine-type peridotites. High TiO2 concentration of magmatic Cr-spinel cores are in agreement with MORB melt-residual peridotite interaction. Presence of unaltered magmatic Cr-spinel cores suggest that they do not have re-equilibrated completely with metamorphic spinel rims and surrounding silicates. Cr-spinel core compositions of SSPs suggest an ophiolitic origin derivation by low degrees of melting of a less-moderate depleted peridotite in a mid-ocean ridge tectonic setting. Based on textural and chemical observations the alteration conditions of studied spinel-group minerals match those of transitional greenschist-amphibolite facies metamorphism consistent with estimated metamorphic equilibration temperature of  500–600 °C.  相似文献   

10.
In this study, we investigated Fe and Li isotope fractionation between mineral separates of olivine pheno- and xenocrysts (including one clinopyroxyene phenocryst) and their basaltic hosts. Samples were collected from the Canary Islands (Teneriffa, La Palma) and some German volcanic regions (Vogelsberg, Westerwald and Hegau). All investigated bulk samples fall in a tight range of Li and Fe isotope compositions (δ56Fewr = 0.06–0.17‰ and δ7Lima = 2.5–5.2‰, assuming δ7Li of the olivine-free matrix is virtually identical to that of the bulk sample for mass balance reasons). In contrast, olivine phenocrysts display highly variable, but generally light Fe and mostly light Li isotope compositions compared to their respective olivine-free basaltic matrix, which was considered to represent the melt (with δ56Feol = ? 0.24 to 0.14‰ and δ7Liol = ? 10.5 to + 6.5‰, respectively). Single olivine crystals from one sample display even a larger range of δ56Feol between ? 0.7 and + 0.1‰. One single clinopyroxene phenocryst displays the lightest Li isotope composition (δ7Licpx = ? 17.7‰), but no Fe isotope fractionation relative to melt. The olivine phenocrysts show variable Mg# and Ni (correlated in most cases) that range between 0.89 and 0.74 and between 300 and 3000 μg/g, respectively. These olivines likely grew by fractional crystallization in an evolving magma. One sample from the Vogelsberg volcano contained olivine xenocrysts (Mg# > 0.89 and Ni > 3000 μg/g), in addition to olivine phenocrysts. This sample displays the highest Li- and the second highest Fe-isotope fractionation between olivine and melt (Δ7Liol-melt = ? 13; Δ56Feol-melt = ? 0.29).Our data, i.e. the variable olivine- at constant whole rock and matrix isotope compositions, strongly indicate disequilibrium, i.e. kinetic Fe and Li isotope fractionation between olivine and melt (for Li also between cpx and melt) during fractional crystallization. Δ7Liol-melt is correlated with the Li partitioning between olivine and melt (i.e. with Liol/Limelt), indicating Li isotope fractionation due to preferential (faster) diffusion of 6Li into olivine during fractional crystallization. Olivine with low Δ7Liol-melt, also have low Δ56Feol-melt, indicating that Fe isotope fractionation is also driven by diffusion of isotopically light Fe into olivine, potentially, as Fe–Mg inter-diffusion. The lowest Δ56Feol-melt (? 0.40) was observed in a sample from Westerwald (Germany) with abundant magnetite, indicating relatively oxidizing conditions during magma differentiation. This may have enhanced equilibrium Fe isotope fractionation between olivine and melt or fine dispersed magnetite in the basalt matrix may have shifted its Fe isotope composition towards higher δ56Fe. The decoupling of Li- and Fe isotope fractionation in cpx is likely due to faster diffusion of Li relative to Fe in cpx, implying that the large investigated cpx phenocryst resided in the magma for only a short period of time which was sufficient for Li- but not for Fe diffusion. The absence of any equilibrium Fe isotope fractionation between the investigated cpx phenocryst and its basaltic host may be related to the similar Fe3 +/Fe2 + of cpx and melt. In contrast to cpx, the generally light Fe isotope composition of all investigated olivine separates implies the existence of equilibrium- (in addition to diffusion-driven) isotope fractionation between olivine and melt, on the order of 0.1‰.  相似文献   

11.
The Neoproterozoic peridotite-chromitite complexes in the Central Eastern Desert of Egypt, being a part of the Arabian-Nubian Shield, are outcropped along the E–W trend from Wadi Sayfayn, Wadi Bardah, and Jabal Al-Faliq to Wadi Al-Barramiyah, from east to west. Their peridotites are completely serpentinized, and the abundance of bastite after orthopyroxene suggests harzburgite protoliths with subordinate dunites, confirmed by low contents of Al2O3, CaO and clinopyroxene (< 3 vol%) in bulk peridotites. The primary olivine is Fo89.3–Fo92.6, and the residual clinopyroxene (Cpx) in serpentinites contains, on average, 1.1 wt% Al2O3, 0.7 wt% Cr2O3, and 0.2 wt% Na2O, similar in chemistry to that in Izu-Bonin-Marian forearc peridotites. The wide range of spinel Cr-number [Cr/(Cr + Al)], 0.41–0.80, with low TiO2 (0.03 wt%), MnO (0. 3 wt%) and YFe [(Fe3 +/(Cr + Al + Fe3 +) = 0.03 on average)] for the investigated harzburgites-dunites is similar to spinel compositions for arc-related peridotites. The partial melting degrees of Bardah and Sayfayn harzburgites range mainly from 20 to 25% and 25 to 30% melting, respectively; this is confirmed by whole-rock chemistry and Cpx HREE modelling (~ 20% melting). The Barramiyah peridotite protoliths are refractory residues after a wide range of partial melting, 25–40%, where more hydrous fluids are available from the subducting slab. The Neoproterozoic mantle heterogeneity is possibly ascribed mainly to the wide variations of partial melting degrees in small-scale areas, slab-derived inputs and primordial mantle compositions. The Sayfayn chromitites were possibly crystallized from island-arc basaltic melts, followed by crystallization of Barramiyah chromitites from boninitic melt in the late stage of subduction. The residual Cpx with a spoon-shape REE pattern is rich in both LREE and fluid-mobile elements (e.g., Pb, B, Li, Ba, Sr), but poor in HFSE (e.g., Ta, Nb, Zr, Th), similar to Cpx in supra-subduction zone (SSZ) settings, where slab-fluid metasomatism is a prevalent agent. The studied chromitites and their host peridotites represent a fragment of sub-arc mantle, and originated in an arc-related setting. The systematic increase in the volume of chromitite pods with the increasing of their host-peridotite thickness from Northern to Southern Eastern Desert suggests that the thickness of wall rocks is one factor controlling the chromitite size. The factors controlling the size of Neoproterozoic chromitite pods are the thickness, beside the composition, of the host refractory peridotites, compositions and volumes of the supplied magmas, the amount of slab-derived fluids, and possibly the partial melting degree of the host peridotites.  相似文献   

12.
Physical, physicochemical, and mineralogical-petrographic methods have been applied to samples of ophiolite-hosted chromite ore from different deposits and occurrences in the Urals. Temperature dependences of dielectric loss obtained for nine chromite ore samples consisting of 95–98% Cr spinel show prominent peaks indicating a relaxation origin of the loss. The analyzed samples have the loss peaks at different temperatures depending mainly on H = (FeO/Fe2O3)? : (FeO/Fe2O3)??, where (FeO/Fe2O3)? and (FeO/Fe2O3)?? are, respectively, the ferrous/ferric oxide ratios in the samples before and after heating to 800 °C, and H is thus the heating-induced relative change in the FeO/Fe2O3 ratio. These peak temperatures vary from 550 °C (sample 1, high-Cr chromium spinel with more than 52% Cr2O3) to 750 °C (sample 2, aluminous and magnesian spinel with less than 30% Cr2O3), and H ranges correspondingly from 1.61 to 5.49. The temperature of the loss peaks is related with H as H = 34.30 ? 11.52N + 1.20N2, with an error of σ = 0.19 (N = T · 10?2, T is temperature in °C).  相似文献   

13.
The Neoproterozoic (593–532 Ma) Dahongliutan banded iron formation (BIF), located in the Tianshuihai terrane (Western Kunlun orogenic belt), is hosted in the Tianshuihai Group, a dominantly submarine siliciclastic and carbonate sedimentary succession that generally has been metamorphosed to greenschist facies. Iron oxide (hematite), carbonate (siderite, ankerite, dolomite and calcite) and silicate (muscovite) facies are all present within the iron-rich layers. There are three distinctive sedimentary facies BIFs, the oxide, silicate–carbonate–oxide and carbonate (being subdivided into ankerite and siderite facies BIFs) in the Dahongliutan BIF. They demonstrate lateral and vertical zonation from south to north and from bottom to top: the carbonate facies BIF through a majority of the oxide facies BIF into the silicate–carbonate–oxide facies BIF and a small proportion of the oxide facies BIF.The positive correlations between Al2O3 and TiO2, Sc, V, Cr, Rb, Cs, Th and ∑REE (total rare earth element) for various facies of BIFs indicate these chemical sediments incorporate terrigenous detrital components. Low contents of Al2O3 (<3 wt%), TiO2 (<0.15 wt%), ∑REE (5.06–39.6 ppm) and incompatible HFSEs (high field strength elements, e.g., Zr, Hf, Th and Sc) (<10 ppm), and high Fe/Ti ratios (254–4115) for a majority of the oxide and carbonate facies BIFs suggest a small clastic input (<20% clastic materials) admixtured with their original chemical precipitates. The higher abundances of Al2O3 (>3 wt%), TiO2, Zr, Th, Cs, Sc, Cr and ∑REE (31.2–62.9 ppm), and low Fe/Ti ratios (95.2–236) of the silicate–carbonate–oxide facies BIF are consistent with incorporation of higher amounts of clastic components (20%–40% clastic materials). The HREE (heavy rare earth element) enrichment pattern in PAAS-normalized REE diagrams exhibited by a majority of the oxide and carbonate facies BIFs shows a modern seawater REE signature overprinted by high-T (temperature) hydrothermal fluids marked by strong positive Eu anomalies (Eu/Eu1PAAS = 2.37–5.23). The low Eu/Sm ratios, small positive Eu anomaly (Eu/Eu1PAAS = 1.10–1.58) and slightly MREE (middle rare earth element) enrichment relative to HREE in the silicate–carbonate–oxide facies BIF and some oxide and carbonate facies BIFs indicate higher contributions from low-T hydrothermal sources. The absence of negative Ce anomalies and the high Fe3+/(Fe3+/Fe2+) ratios (0.98–1.00) for the oxide and silicate–carbonate–oxide BIFs do not support ocean anoxia. The δ13CV-PDB (−4.0‰ to −6.6‰) and δ18OV-PDB (−14.0‰ to −11.5‰) values for siderite and ankerite in the carbonate facies BIF are, on average, ∼6‰ and ∼5‰ lower than those (δ13CV-PDB = −0.8‰ to + 3.1‰ and δ18OV-PDB = −8.2‰ to −6.3‰) of Ca–Mg carbonates from the silicate–carbonate–oxide facies BIF. This feature, coupled with the negative correlations between FeO, Eu/Eu1PAAS and δ13CV-PDB, imply that a water column stratified with regard to the isotopic omposition of total dissolved CO2, with the deeper water, from which the carbonate facies BIF formed, depleted in δ13C that may have been derive from hydrothermal activity.Integration of petrographic, geochemical, and isotopic data indicates that the silicate–carbonate–oxide facies BIF and part of the oxide facies BIF precipitated in a near-shore, oxic and shallow water environment, whereas a majority of the oxide and carbonate facies BIFs deposited in anoxic but Fe2+-rich deeper waters, closer to submarine hydrothermal vents. High-T hydrothermal solutions, with infusions of some low-T hydrothermal fluids, brought Fe and Si onto a shallow marine, variably mixed with detrital components from seawaters and fresh waters carrying continental landmass and finally led to the alternating deposition of the Dahongliutan BIF during regression–transgression cycles.The Dahongliutan BIF is more akin to Superior-type rather than Algoma-type and Rapitan-type BIF, and constitutes an additional line of evidence for the widespread return of BIFs in the Cryogenian and Ediacaran reflecting the recurrence of anoxic ferruginous deep sea and anoxia/reoxygenation cycles in the Neoproterozoic. In combination with previous studies on other Fe deposits in the Tianshuihai terrane, we propose that a Fe2+-rich anoxic basin or deep sea probably existed from the Neoproterozoic to the Early Cambrian in this area.  相似文献   

14.
Conventional diamond exploration seldom searches directly for diamonds in rock and soil samples. Instead, it focuses on the search for indicator minerals like chrome spinel, which can be used to evaluate diamond potential. Chrome spinels are preserved as pristine minerals in the early Paleozoic (∼465 Ma), hydrothermally altered, Group I No. 30 pipe kimberlite that intruded the Neoproterozoic Qingbaikou strata in Wafangdian, North China Craton (NCC). The characteristics of the chrome spinels were investigated by petrographic observation (BSE imaging), quantitative chemical analysis (EPMA), and Raman spectral analysis. The results show that the chrome spinels are mostly sub-rounded with extremely few grains being subhedral, and these spinels are macrocrystic, more than 500 µm in size. The chrome spinels also have compositional zones: the cores are classified as magnesiochromite as they have distinctly chromium-rich (Cr2O3 up to 66.56 wt%) and titanium-poor (TiO2 < 1 wt%) compositions; and the rims are classified as magnetite as they have chromium-poor and iron-rich composition. In the cores of chrome spinels, compositional variations are controlled by Al3+-Cr3+ isomorphism, which results in a strong Raman spectra peak (A1g mode) varying from 690 cm−1 to 702.9 cm−1. In the rims of chrome spinel, compositional variations result in the A1g peak varying from 660 cm−1 to 672 cm−1. The morphology and chemical compositions indicate that the chrome spinels are mantle xenocrysts. The cores of the spinel are remnants of primary mantle xenocrysts that have been resorbed, and the rims were formed during kimberlite magmatism. The compositions of the cores are used to evaluate the diamond potential of this kimberlite through comparison with the compositions of chrome spinels from the Changmazhuang and No. 50 pipe kimberlites in the NCC. In MgO, Al2O3 and TiO2 versus Cr2O3 plots, the chrome spinels from the Changmazhuang and No. 50 pipe kimberlites are mostly located in the diamond stability field. However, only a small proportion of chrome spinels from No. 30 pipe kimberlite have same behavior, which indicates that the diamond potential of the former two kimberlites is greater than that of the No. 30 pipe kimberlite. This is also supported by compositional zones in the spinel grains: there is with an increase in Fe3+ in the rims, which suggests that the chrome spinels experienced highly oxidizing conditions. Oxidizing conditions may have been imparted by fluids/melts that have a great influence on diamond destruction. Here, we suggest that chrome spinel compositions can be a useful tool for identifying the target for diamond potential in the North China Craton.  相似文献   

15.
The compositional variation of clinopyroxene and the partitioning of major elements between clinopyroxene and melt are estimated as a function of the cooling rate. Clinopyroxenes were crystallized under variable cooling regimes (15, 9.4, 3, 2.1, and 0.5 °C/min from 1250 down to 1000 °C) and at isothermal conditions of 1000 °C from a basaltic composition at a pressure of 500 MPa under anhydrous and hydrous (H2O = 1.3 wt.%) conditions. The clinopyroxene chemistry shows that, as the cooling rate increases, crystals are progressively depleted in Ca, Mg, Fe2+ and Si and enriched in Na, Fe3+, Al (mainly AlIV), and Ti. Di and Hd versus CaTs and CaFeTs form a continuous binary solid solution characterized by higher amounts of tschermakitic components with increasing cooling rate. Two parameters (DH = Di + Hd and TE = CaTs + CaFeTs + En) are calculated to describe the effect of cooling rate on the clinopyroxene composition. The variation of DH/TE with increasing cooling rate evidences the kinetic process induced by rapid cooling in basic rocks under hydrous and anhydrous conditions.Dynamic crystallization conditions affect the partitioning of major elements between clinopyroxene and melt; with increasing cooling rate, the value of crystal–melt partition coefficient departs from that obtained at the isothermal condition. However, in spite of these variations, the values of cpx–meltKdFe–Mg remain almost constant. Therefore, the Fe2–Mg exchange between clinopyroxene and melt is not suitable to prove the (dis)equilibrium conditions in basaltic cooling magmas, giving rise to possible mismatches in the application of thermobarometers. The results of our study are consistent with that observed at the margin of dikes or in the exterior portions of lavas, where the cooling rate is maximized and disequilibrium compositions of clinopyroxene have been found.  相似文献   

16.
Tidal inundation is a new technique for remediating coastal acid sulfate soils (CASS). Here, we examine the effects of this technique on the geochemical zonation and cycling of Fe across a tidally inundated CASS toposequence, by investigating toposequence hydrology, in situ porewater geochemistry, solid-phase Fe fractions and Fe mineralogy. Interactions between topography and tides exerted a fundamental hydrological control on the geochemical zonation, redistribution and subsequent mineralogical transformations of Fe within the landscape. Reductive dissolution of Fe(III) minerals, including jarosite (KFe3(SO4)2(OH)6), resulted in elevated concentrations of porewater Fe2+ (> 30 mmol L?1) in former sulfuric horizons in the upper-intertidal zone. Tidal forcing generated oscillating hydraulic gradients, driving upward advection of this Fe2+-enriched porewater along the intertidal slope. Subsequent oxidation of Fe2+ led to substantial accumulation of reactive Fe(III) fractions (up to 8000 μmol g?1) in redox-interfacial, tidal zone sediments. These Fe(III)-precipitates were poorly crystalline and displayed a distinct mineralisation sequence related to tidal zonation. Schwertmannite (Fe8O8(OH)6SO4) was the dominant Fe mineral phase in the upper-intertidal zone at mainly low pH (3–4). This was followed by increasing lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) at circumneutral pH within lower-intertidal and subtidal zones. Relationships were evident between Fe fractions and topography. There was increasing precipitation of Fe-sulfide minerals and non-sulfidic solid-phase Fe(II) in the lower intertidal and subtidal zones. Precipitation of Fe-sulfide minerals was spatially co-incident with decreases in porewater Fe2+. A conceptual model is presented to explain the observed landscape-scale patterns of Fe mineralisation and hydro-geochemical zonation. This study provides valuable insights into the hydro-geochemical processes caused by saline tidal inundation of low lying CASS landscapes, regardless of whether inundation is an intentional strategy or due to sea-level rise.  相似文献   

17.
An experimental study on the origin of ferric and ferrous carbonate-silicate melts, which can be considered as the potential metasomatic oxidizing agents and diamond forming media, was performed in the (Ca,Mg)CO3-SiO2-Al2O3-(Mg,Fe)(Cr,Fe,Ti)O3 system, at 6.3 GPa and 1350–1650 °C. At 1350–1450 °C and ?O2 of FMQ + 2 log units, carbonate–silicate melt, coexisting with Fe3 +-bearing ilmenite, pyrope-almandine and rutile, contained up to 13 wt.% of Fe2O3. An increase in the degree of partial melting was accompanied by decarbonation and melt enrichment with CO2, up to 21 wt.%. At 1550–1650 °C excess CO2 segregated as a separate fluid phase. The restricted solubility of CO2 in the melt indicated that investigated system did not achieve the second critical point at 6.3 GPa. At 1350–1450 °C and ?O2 close to CCO buffer, Fe2 +-bearing carbonate–silicate melt was formed in association with pyrope-almandine and Fe3 +-bearing rutile. It was experimentally shown that CO2-rich ferrous carbonate-silicate melt can be an effective waterless medium for the diamond crystallization. It provides relatively high diamond growth rates (3–5 μm/h) at P,T-conditions, corresponding to the formation of most natural diamonds.  相似文献   

18.
Tooeleite, nominally Fe63+(As3+O3)4(SO4)(OH)4·4H2O, is a relatively uncommon mineral of some acid-mine drainage systems. Yet, if it does occur, it does so in large quantities, indicating that some specific conditions favor the formation of this mineral in the system Fe-As-S-O-H. In this contribution, we report the thermodynamic properties of synthetic tooeleite. The sample was characterized by powder X-ray diffraction, scanning electron microscopy, extended X-ray absorption fine-structure spectroscopy, and Mössbauer spectroscopy. These methods confirmed that the sample is pure, devoid of amorphous impurities of iron oxides, and that the oxidation state of arsenic is 3+. Using acid-solution calorimetry, the enthalpy of formation of this mineral from the elements at the standard conditions was determined as −6196.6 ± 8.6 kJ mol−1. The entropy of tooeleite, calculated from low-temperature heat capacity data measured by relaxation calorimetry, is 899.0 ± 10.8 J mol−1 K−1. The calculated standard Gibbs free energy of formation is −5396.3 ± 9.3 kJ mol−1. The log Ksp value, calculated for the reaction Fe6(AsO3)4(SO4)(OH)4·4H2O + 16H+ = 6Fe3+ + 4H3AsO3 + SO42− + 8H2O, is −17.25 ± 1.80. Tooeleite has stability field only at very high activities of aqueous sulfate and arsenate. As such, it does not appear to be a good candidate for arsenic immobilization at polluted sites. An inspection of speciation diagrams shows that the predominance field of Fe3+ and As3+ overlap only at strongly basic conditions. The formation of tooeleite, therefore, requires strictly selective oxidation of Fe2+ to Fe3+ and, at the same time, firm conservation of the trivalent oxidation state of arsenic. Such conditions can be realized only by biological systems (microorganisms) which can selectively oxidize one redox-active element but leave the other ones untouched. Hence, tooeleite is the first example of an “obligatory” biomineral under the conditions prevailing at or near the Earth's surface because its formation under these conditions necessitates the action of microorganisms.  相似文献   

19.
The magnetic fractions of ilmenite from the beach placer deposit of Chavara, southwest India have been studied for mineralogical and chemical composition to assess the range of their physical and chemical variations with weathering. Chavara deposit represents a highly weathered and relatively homogenous concentration. Significant variation in composition has been documented with alteration. The most magnetic of the fractions of ilmenite, separated at 0.15 Å, and with a susceptibility of 3.2 × 10?6 m3 kg?1, indicates the presence of haematite–ilmenite intergrowth. An iron-poor, titanium-rich component of the ilmenite ore has been identified from among the magnetic fractions of the Chavara ilmenite albeit with an undesirably high Nb2O5 (0.28%), Cr2O3 (0.23%) and Th (149 ppm) contents. The ilmenite from Chavara is compared with that from the nearby Manavalakurichi deposit of similar geological setting and provenance. The lower ferrous iron oxide (2.32–14.22%) and higher TiO2 (56.31–66.45%) contents highlight the advanced state of alteration of Chavara. This is also evidenced by the relatively higher Fe3+/Fe2+ ratio compared to Manavalakurichi ilmenite. In fact, the ilmenite has significantly been converted to pseudorutile/leucoxene.  相似文献   

20.
《Gondwana Research》2011,19(4):632-637
In South China, the Datangpo black shales (663 Ma–654.5 Ma) were deposited during the Cryognian interglacial time between the Sturtian and Marinoan glaciations. Multi-geochemical proxies, including different iron speciation and relevant ratios (FeHR/FeT, FeP/FeHR and FeT/Al ratios) and molybdenum concentrations, were used to reconstruct the paleo-depositional environment of this black shale horizon. The ratios of different iron species (FeHR/FeT > 0.38 and FeP/FeHR < 0.80) suggest an overall anoxic conditions (ferruginous) over the deposition of the black shales, although intermittent euxinic (FeHR/FeT > 0.38 and FeP/FeHR  0.80) and oxic (FeHR/FeT < 0.38) intervals could have occurred. Furthermore, FeT/Al ratios (FeT/Al  0.51) confirm that water column may not be persistent euxinia during the deposition of the Datangpo black shales. Meanwhile, molybdenum concentrations show a decreasing trend towards the top of the black shales, reconciling the gradual oxygenating trend during this period as stated above. Compared to δ34SPy values in the Mesoproterozoic deep ocean, more positive δ34SPy values of this study may result from a small size of sulfate reservoir. The small-size sulfate reservoir and concurrent enrichment of molybdenum indicate that the ocean chemistry in the Cryogenian Period is similar to that in the Archean Eon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号