首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is a State/Federal partnership created to reduce tsunami hazards along U.S. coastlines. Established in 1996, NTHMP coordinates the efforts of five Pacific States: Alaska, California, Hawaii, Oregon, and Washington with the three Federal agencies responsible for tsunami hazard mitigation: the National Oceanic and Atmospheric Administration (NOAA), the Federal Emergency Management Agency (FEMA), and the U.S. Geological Survey (USGS). In the 7 years of the program it has, 1. established a tsunami forecasting capability for the two tsunami warning centers through the combined use of deep ocean tsunami data and numerical models; 2. upgraded the seismic network enabling the tsunami warning centers to locate and size earthquakes faster and more accurately; 3. produced 22 tsunami inundation maps covering 113 coastal communities with a population at risk of over a million people; 4. initiated a program to develop tsunami-resilient communities through awareness, education, warning dissemination, mitigation incentives, coastal planning, and construction guidelines; 5. conducted surveys that indicate a positive impact of the programs activities in raising tsunami awareness. A 17-member Steering Group consisting of representatives from the five Pacific States, NOAA, FEMA, USGS, and the National Science Foundation (NSF) guides NTHMP. The success of the program has been the result of a personal commitment by steering group members that has leveraged the total Federal funding by contributions from the States and Federal Agencies at a ratio of over six matching dollars to every NTHMP dollar. Twice yearly meetings of the steering group promote communication between scientists and emergency managers, and among the State and Federal agencies. From its initiation NTHMP has been based on the needs of coastal communities and emergency managers and has been results driven because of the cycle of year-to-year funding for the first 5 years. A major impact of the program occurred on 17 November 2003, when an Alaskan tsunami warning was canceled because real-time, deep ocean tsunami data indicated the tsunami would be non-damaging. Canceling this warning averted an evacuation in Hawaii, avoiding a loss in productivity valued at $68M.  相似文献   

2.
The National Tsunami Hazard Mitigation Program (NTHMP) Steering Committee consists of representatives from the National Oceanic and Atmospheric Administration (NOAA), the Federal Emergency Management Agency (FEMA), the U.S. Geological Survey (USGS), and the states of Alaska, California, Hawaii, Oregon, and Washington. The program addresses three major components: hazard assessment, warning guidance, and mitigation. The first two components, hazard assessment and warning guidance, are led by physical scientists who, using research and modeling methods, develop products that allow communities to identify their tsunami hazard areas and receive more accurate and timely warning information. The third component, mitigation, is led by the emergency managers who use their experience and networks to translate science and technology into user-friendly planning and education products. Mitigation activities focus on assisting federal, state, and local officials who must plan for and respond to disasters, and for the public that is deeply affected by the impacts of both the disaster and the pre-event planning efforts. The division between the three components softened as NTHMP scientists and emergency managers worked together to develop the best possible products for the users given the best available science, technology, and planning methods using available funds.  相似文献   

3.
Tsunami education activities, materials, and programs are recognized by the National Tsunami Hazard Mitigation Program (NTHMP) as the essential tool for near-source tsunami mitigation. Prior to the NTHMP, there were no state tsunami education programs outside of Hawaii and few earthquake education materials included tsunami hazards. In the first year of the NTHMP, a Strategic Plan was developed providing the framework for mitigation projects in the program. The Strategic Plan identifies education as the first of five mitigation strategic planning areas and targets a number of user groups, including schools, businesses, tourists, seasonal workers, planners, government officials, and the general public. In the 6 years of the NTHMP tsunami education programs have been developed in all five Pacific States and include print, electronic and video/film products, curriculum, signage, fairs and workshops, and public service announcements. Multi-state education projects supported by the NTHMP include TsuInfo, a bi-monthly newsletter, and Surviving a Tsunami, a booklet illustrating lessons from the 1960 Chilean tsunami. An additional education component is provided by the Public Affairs Working Group (PAWG) that promotes media coverage of tsunamis and the NTHMP. Assessment surveys conducted in Oregon, Washington, and Northern California show an increase in tsunami awareness and recognition of tsunami hazards among the general population since the NTHMP inception.  相似文献   

4.
The first 7 years of the National Tsunami Hazard Mitigation Program (NTHMP) have had a significant positive impact on operations of the Richard H. Hagemeyer Pacific Tsunami Warning Center (PTWC). As a result of its seismic project, the amount and quality of real-time seismic data flowing into PTWC has increased dramatically, enabling more rapid, accurate, and detailed analyses of seismic events with tsunamigenic potential. Its tsunameter project is now providing real-time tsunameter data from seven strategic locations in the deep ocean to more accurately measure tsunami waves as they propagate from likely source regions toward shorelines at risk. These data have already been used operationally to help evaluate potential tsunami threats. A new type of tsunami run-up gauge has been deployed in Hawaii to more rapidly assess local tsunamis. Lastly, numerical modeling of tsunamis done with support from the NTHMP is beginning to provide tools for real-time tsunami forecasting that should reduce the incidence of unnecessary warnings and provide more accurate forecasts for destructive tsunamis.  相似文献   

5.
A tsunameter (soo-NAHM-etter) network has been established in the Pacific by the National Oceanic and Atmospheric Administration. Named by analogy with seismometers, the NOAA tsunameters provide early detection and real-time measurements of deep-ocean tsunamis as they propagate toward coastal communities, enabling the rapid assessment of their destructive potential. Development and maintenance of this network supports a State-driven, high-priority goal of the U.S. National Tsunami Hazard Mitigation Program to improve the speed and reliability of tsunami warnings. The network is now operational, with excellent reliability and data quality, and has proven its worth to warning center decision-makers during potentially tsunamigenic earthquake events; the data have helped avoid issuance of a tsunami warning or have led to cancellation of a tsunami warning, thus averting potentially costly and hazardous evacuations. Optimizing the operational value of the network requires implementation of real-time tsunami forecasting capabilities that integrate tsunameter data with numerical modeling technology. Expansion to a global tsunameter network is needed to accelerate advances in tsunami research and hazard mitigation, and will require a cooperative and coordinated international effort.  相似文献   

6.
Local Tsunami Warning in the Pacific Coastal United States   总被引:2,自引:1,他引:1  
Coastal areas are warned of a tsunami by natural phenomena and man-made warning systems. Earthquake shaking and/or unusual water conditions, such as rapid changes in water level, are natural phenomena that warn coastal areas of a local tsunami that will arrive in minutes. Unusual water conditions are the natural warning for a distant tsunami. Man-made warning systems include sirens, telephones, weather radios, and the Emergency Alert System. Man-made warning systems are normally used for distant tsunamis, but can be used to reinforce the natural phenomena if the systems can survive earthquake shaking. The tsunami warning bulletins provided by the West Coast/Alaska and Pacific Tsunami Warning Centers and the flow of tsunami warning from warning centers to the locals are critical steps in the warning process. Public knowledge of natural phenomena coupled with robust, redundant, and widespread man-made warning systems will ensure that all residents and tourists in the inundation zone are warned in an effective and timely manner.  相似文献   

7.
Use of tsunami waveforms for earthquake source study   总被引:1,自引:0,他引:1  
Tsunami waveforms recorded on tide gauges, like seismic waves recorded on seismograms, can be used to study earthquake source processes. The tsunami propagation can be accurately evaluated, since bathymetry is much better known than seismic velocity structure in the Earth. Using waveform inversion techniques, we can estimate the spatial distribution of coseismic slip on the fault plane from tsunami waveforms. This method has been applied to several earthquakes around Japan. Two recent earthquakes, the 1968 Tokachi-oki and 1983 Japan Sea earthquakes, are examined for calibration purposes. Both events show nonuniform slip distributions very similar to those obtained from seismic wave analyses. The use of tsunami waveforms is more useful for the study of unusual or old earthquakes. The 1984 Torishima earthquake caused unusually large tsunamis for its earthquake size. Waveform modeling of this event shows that part of the abnormal size of this tsunami is due to the propagation effect along the shallow ridge system. For old earthquakes, many tide gauge records exist with quality comparable to modern records, while there are only a few good quality seismic records. The 1944 Tonankai and 1946 Nankaido earthquakes are examined as examples of old events, and slip distributions are obtained. Such estimates are possible only using tsunami records. Since tide-gauge records are available as far back as the 1850s, use of them will provide unique and important information on long-term global seismicity.  相似文献   

8.
The major earthquake measuring 8.1 on the Richter scale which struck the west coast of Mexico on Thursday 19 September 1985, generated a small tsunami. A major aftershock on 21 September, with a magnitude of 7.5 also produced a small tsunami. Both tsunamis propagated across the Pacific and were recorded by several tide stations in Central America, Colombia, Ecuador, French Polynesia, Samoa, and Hawaii. No reports of damage were received from any of the stations, and only minor damage due to the first tsunami was reported from the source region.A survey was made by the International Tsunami Information Center (ITIC) of the coastal area affected, from Manzanillo to Zihuatanejo. Tsunami runup measurements were taken and interviews with local residents in the coastal areas were conducted.A source mechanism study of the tsunamis was undertaken using seismic and geologic data and empirical relationships. Earthquake and tsunami energies were estimated and the tsunami genertion areas defined.The earthquake energies were estimated to be 5.61 × 1024 erg for the 19 September event and 9.9 × 1023 erg for the 21 September event. Tsunami energies were estimated to be 0.7 × 1020 erg for the first event and 0.56 × 1020 erg for the second event. The source area of the first tsunami was determined to be approximately one-half of the earthquake source area, or approximately 7500 km2, while the source area of the second tsunami was estimated to be equal to the earthquake area.The relatively small tsunamis generated by these large earthquakes are attributed to the shallow angle of subduction of the Cocos plate underneath the North American plate for this particular region, and to the small vertical component of crustal displacements. However, the angle of subduction increases further south and local earthquakes from that area have the potential of producing large tsunamis on the west coast of Mexico.This paper was presented at the 4th International Symposium on Natural and Man-made Coastal Hazards held in Ensenada, Mexico, August 1988.  相似文献   

9.
海啸作为五大海洋自然灾害之一,严重威胁着人类生命财产安全。近些年来,国内外学者对地震海啸进行了大量研究,主要针对海啸的生成、传播、爬高和淹没的数值模拟,以及古海啸沉积物进行研究,但是对于海啸地震震源机制的研究还比较欠缺,尤其是缺乏对震级小于6.5的海啸地震的研究。针对我国的地震海啸研究现状,强调震级小于6.5地震引发海啸的问题不容忽视。本文归纳整理了全球766次地震海啸,利用三角图分类基本法则对海啸地震震源机制解进行分类,并对其中341个发生在1976年后的海啸地震进行震源机制解分析,对其中633次海啸浪高进行统计学方法分析研究。本文认为逆冲型、正断型、走滑型和奇异型机制地震均能引发海啸,逆冲型地震引发的海啸占比最大,震级小于6.5级地震引发的海啸的浪高也有高达10 m的情况,也能产生巨大破坏性。逆冲型、正断型、奇异型地震可直接引起海底地形垂向变化,进而引发海啸,而走滑型地震引发海啸则可能有两种原因,一种是走滑型地震并非纯走滑型而是带有正断或逆冲分量从而引发海啸,另外一种是走滑型地震引发海底滑坡导致海底地形变化进而产生海啸。从海啸地震震源深度分析,能产生海啸的地震震源深度97%以上都是浅源地震,主要集中在30 km深度以内,但是也有中深源地震海啸。本文综合海啸地震的震源特点、我国地理位置以及以往海啸发生的情况,认为未来我国沿海地区威胁性的地震海啸主要集中在马尼拉海沟和台湾海峡区域,在今后海啸预警方面需要格外重视这些区域,通过建立完善海啸预警系统来减少损失。  相似文献   

10.
The Washington State/Local Tsunami Work Group adopted the NOAA Weather Radio All-Hazards Warning System to warn citizens quickly and effectively of not only tsunami hazards but also other natural or man-made hazards. In concert with an array of deep ocean tsunami detectors, land-based seismic sensors, and warning messages issued by the tsunami warning centers, NWR provides a means to expeditiously get critical decision-making information to emergency managers, elected officials, and first responders. To implement the NWR strategy effectively, a partnership was developed to add a repeater to the NWR system to provide complete coverage to the coast of Washington and to shipping lanes off the coast. The Work Group also recognized the need to disseminate time critical hazard information on tsunamis to the public on beaches and in high traffic areas, so it developed a new notification system, with the first prototype installed on 2 July 2003 in Ocean Shores, Washington. A public education program also was developed to improve the impacted communities understanding of the tsunami hazard, the warning system, and actions they should take if a tsunami occurs.  相似文献   

11.
The National Tsunami Hazard Mitigation Program is a multi-faceted approach that encompasses tsunami identification, alert and warning systems and a comprehensive approach to tsunami risk reduction. This paper describes efforts to promote land use planning and development practices that reduce tsunami risk by local elected government and administrative officials. Seven Principles of Tsunami Risk Reduction are presented that range from risk assessment to site planning criteria.Regional Administrator, California Governors Office of Emergency Services and Manager, California Integrated Seismic Network, Earthquake and Tsunami Program  相似文献   

12.
Since 1964, the Geophysical Laboratory in Tahiti has been charged with the responsibility of issuing tsunami warnings. But this research laboratory is also designed to conduct other missions. One of them is to study an oversee seismicity and volcanism in the South Central Pacific. For this activity the Geophysical Laboratory, which is also the French Polynesia Tsunami Warning Center (Centre Polynésien de Prévention des Tsunamis — CPPT), processes the data recorded by the Polynesian Seismic Network which includes 21 short-period stations, 4 broad-band three-component long period stations, and 2 tide gauge stations. These stations are, for the most, telemetered to CPPT in Tahiti which is equipped wilh data processing capabilities.At CPPT, Tsunami Warning is based on the measurement of the Seismic Moment through the mantle magnitudeM m and the proportionality of observed tsunami height to this seismic moment.The new mantle magnitude scale,M m, uses the measurement of the mantle of Rayleigh and Love wave energy in the 50–300 s period range and is directly related to the seismic moment throughM m = logM o – 20. Knowledge of the seismic moment allows an estimation of a range of high seas amplitudes for the expectable tsunami.The relation that estimates the tsunami height according to the seismic moment is based on the normal mode tsunami theory but also fits a dataset of 17 tsunamis recorded at Papeete (PPT) since 1958. This procedure is fully automatic: a computer detects, locates and estimates the seismic moment through theM m magnitude and, in terms of moment, gives an amplitude window for the expected tsunami. These-several operations are executed in real time. In addition, the operator can use historical references and, if necessary, acoustic T waves.This automatic procedure, which has been operating at the CPPT since 1986, is certainly transposable and applicable to other tsunami warning centers that issue warnings for earthquakes detected more than 1000 km away, and has significant potential in the regional field.  相似文献   

13.
Seismic parameters controlling far-field tsunami amplitudes: A review   总被引:3,自引:1,他引:3  
We present a review of the influence of various parameters of the sources of major oceanic earthquakes on the amplitude of tsunamis at transoceanic distances. We base our computations on the normal mode formalism, applied to realistic Earth models, but interpret our principal results in the simpler framework of Haskell theory in the case of a water layer over a Poisson half-space. Our results show that source depth and focal geometry play only a limited role in controlling the amplitude of the tsunami; their combined influence reaches at most 1 order of magnitude down to a depth of 150 km into the hard rock. More important are the effects of directivity due to rupture propagation along the fault, which for large earthquakes can result in a ten-fold decrease in tsunami amplitude by destructive interference, and the possibility of enhanced tsunami excitation in material with weaker elastic properties, such as sedimentary layers. Modelling of the so-called tsunami earthquakes suggests that an event for which 10% of the moment release takes place in sediments generates a tsunami 10 times larger than its seismic moment would suggest. We also investigate the properties of non-double couple sources and find that their relative excitation of tsunamis and Rayleigh waves is in general comparable to that of regular seismic sources. In particular, landslides involving weak sediments could result in very large tsunamis. Finally, we emphasize that the final amplitude at a receiving shore can be strongly affected by focusing and defocusing effects, due to variations in bathymetry along the path of the tsunami.  相似文献   

14.
This paper explores the size and arrival of tsunamis in Oregon and Washington from the most likely partial ruptures of the Cascadia subduction zone (CSZ) in order to determine (1) how quickly tsunami height declines away from sources, (2) evacuation time before significant inundation, and (3) extent of felt shaking that would trigger evacuation. According to interpretations of offshore turbidite deposits, the most frequent partial ruptures are of the southern CSZ. Combined recurrence of ruptures extending ~490 km from Cape Mendocino, California, to Waldport, Oregon (segment C) and ~320 km from Cape Mendocino to Cape Blanco, Oregon (segment D), is ~530 years. This recurrence is similar to frequency of full-margin ruptures on the CSZ inferred from paleoseismic data and to frequency of the largest distant tsunami sources threatening Washington and Oregon, ~M w 9.2 earthquakes from the Gulf of Alaska. Simulated segment C and D ruptures produce relatively low-amplitude tsunamis north of source areas, even for extreme (20 m) peak slip on segment C. More than ~70 km north of segments C and D, the first tsunami arrival at the 10-m water depth has an amplitude of <1.9 m. The largest waves are trapped edge waves with amplitude ≤4.2 m that arrive ≥2 h after the earthquake. MM V–VI shaking could trigger evacuation of educated populaces as far north as Newport, Oregon for segment D events and Grays Harbor, Washington for segment C events. The NOAA and local warning systems will be the only warning at greater distances from sources.  相似文献   

15.
The earthquakes and tsunami on November 15, 2006 and January 13, 2007, near Simushir Island are described. Long-term and short-term precursors of the phenomena are discussed. A joint analysis of the seismological and geodetic data provided reliable interpretation of the source mechanisms of the earthquakes. The actions of the tsunami warning personnel are analyzed. Extensive experimental data on the tsunami occurrence at different sites of the Pacific Ocean are presented. The tsunami of November 15, 2006, was numerically modeled using coseismic vertical displacements of the ocean bottom calculated from GPS data. The observed and calculated data on the maximal tsunami run up are compared.  相似文献   

16.
Tsunami deposits are the primary source of information on (past) large tsunami events and thereby are crucial for accurate hazard assessments. Tsunami deposits studies have developed over the last three decades, but this is still a young geoscience discipline. Following the 5th International Tsunami Field Symposium in 2017 an opportunity arose to publish a Special Issue focusing on present knowledge and future research challenges. This paper aims to briefly review current state-of-the-art research, summarizing major findings and gathering relevant works that describe the progress achieved over the last three decades. In this paper the relevance of tsunami deposits, their peculiar sedimentary characteristics and their differentiation from other high energy events are presented. Especially over the last decade an incredibly high number of studies have been published on tsunami deposits, many of which are of a high quality and provide detailed literature reviews. Some of these studies represent the current progress discussed here. Challenges are also introduced, to spur a discussion on future scientific questions that can and should be addressed by tsunami geoscientists. Coupling onshore–offshore records is an area where tsunami geoscience faces some of its major challenges. Moreover, the application of non-destructive high-resolution techniques to study the internal structure and composition of tsunami deposits can also provide an opportunity to further examine deposits, and from this derive physical parameters of the forcing mechanism. Another topic is better understanding of the erosional signature of tsunami events and a continuation of the effort to better incorporate age-estimation methods by developing more accurate dating methodology. Finally, there is also the need for the improvement of empirical, forward and regressive numerical models to better contribute to the characterization of tsunami events.  相似文献   

17.
The sandy deposits produced by tsunamis and liquefaction share many sedimentary features, and distinctions between the two are important in seismically active coastal zones. Both types of deposits are present in the wetlands bordering Puget Sound, where one or more earthquakes about 1100 years ago caused both tsunami flooding and sediment venting. This co‐occurrence allows an examination of the resulting deposits and a comparison with tsunami and liquefaction features of modern events. Vented sediments occur at four of five wetland field localities and tsunami deposits at two. In comparison with tsunami deposits, vented sediments in this study and from other studies tend to be thicker (although they can be thin). Vented sediments also have more variable thickness at both outcrop and map scale, are associated with injected dykes and contain clasts derived from underlying deposits. Further, vented sediments tend to contain a greater variety of sedimentary structures, and these structures vary laterally over metres. Tsunami deposits compared with vented sediments are commonly thinner, fine and thin landward more consistently, have more uniform thickness on outcrop and map scales, and have the potential of containing coarser clasts, up to boulders. For both tsunami deposits and vented sediments, the availability and grain size of source material condition the characteristics of the deposit. In the cases presented in this paper, both foraminifera and diatom assemblages within tsunami deposits and vented sediments consisted of brackish and marine species, and no distinction between processes could be made based on microfossils. In summary, this study indicates a need for more careful analysis and mapping of coastal sediments associated with earthquakes to avoid misidentification of processes and misevaluation of hazards.  相似文献   

18.
Tsunami deposits have been found at more than 60 sites along the Cascadia margin of Western North America, and here we review and synthesize their distribution and sedimentary characteristics based on the published record. Cascadia tsunami deposits are best preserved, and most easily identified, in low-energy coastal environments such as tidal marshes, back-barrier marshes and coastal lakes where they occur as anomalous layers of sand within peat and mud. They extend up to a kilometer inland in open coastal settings and several kilometers up river valleys. They are distinguished from other sediments by a combination of sedimentary character and stratigraphic context. Recurrence intervals range from 300–1000 years with an average of 500–600 years. The tsunami deposits have been used to help evaluate and mitigate tsunami hazards in Cascadia. They show that the Cascadia subduction zone is prone to great earthquakes that generate large tsunamis. The inclusion of tsunami deposits on inundation maps, used in conjunction with results from inundation models, allows a more accurate assessment of areas subject to tsunami inundation. The application of sediment transport models can help estimate tsunami flow velocity and wave height, parameters which are necessary to help establish evacuation routes and plan development in tsunami prone areas.  相似文献   

19.
The major earthquake-induced tsunamis reliable known to have occurred in and near Greece since antiquity are considered in the light of the recently obtained reliable data on the mechanisms and focal depths of the earthquakes occurring here. (The earthquake data concern the major shocks of the period 1962–1986.) First, concise information is given on the most devastating tsunamis. Then the relation between the (estimated) maximum tsunami intensity and the earthquake parameters (mechanism and focal depth) is examined. It is revealed that the most devastating tsunamis took place in areas (such as the western part of the Corinthiakos Gulf, the Maliakos Gulf, and the southern Aegean Sea) where earthquakes are due to shallow normal faulting. Other major tsunamis were nucleated along the convex side of the Hellenic arc, characterized by shallow thrust earthquakes. It is probably somewhere there (most likely south of Crete) that the region's largest known tsunami occurred in AD 365, claiming many lives and causing extensive devastation in the entire eastern Mediterranean. Such big tsunamis seem to have a return period of well over 1000 years and can be generated by large shallow earthquakes associated with thrust faulting beneath the Hellenic trench, where the African plate subduces under the Euroasian plate. Lesser tsunamis are known in the northernmost part of the Aegean Sea and in the Sea of Marmara, where strike-slip faulting is observed. Finally, an attempt is made to combine the tsunami and earthquake data into a map of the region's main tsunamigenic zones (areas of the sea bed believed responsible for past tsunamis and expected to nucleate tsunamis in the future).  相似文献   

20.
The Portuguese coast has been affected several times in the past by strong earthquakes that generated tsunamis severely damaging the city of Lisbon.
The most significant event known was the Lisbon earthquake of 1 November 1755. It is generally assumed that the location of this event was the Gorringe Bank region in the North Atlantic. This ridge, located 200 km south-west of the Portuguese shore, was also the location of the 28 February 1969 magnitude Ms= 7.9 earthquake (Fukao, 1973), that generated a tsunami of small amplitude clearly recorded at the tidal stations of the Portuguese south and south-west coasts.
The need to reduce the social and economic impact of an event of this type, greatly amplified by the urban concentration of coastal areas, led to the research project 'Destructive Earthquakes and Tsunami Warning System in SW Portugal'. This project, sponsored by the European Economic Community and the public Portuguese research funding agencies, has been conducted by the Geophysical Centre of the University of Lisbon, since April 1988.
The main targets of the project are:•the installation of a pilot warning system against tsunamis, based on two ocean bottom stations, comprising a 3 component seismometer and a bottom mounted pressure sensor, linked by cable to a surface buoy. This buoy is equipped with a data acquisition and data transmission system. Seismic and water level data will be collected on an almost real-time basis and will be transmitted to Lisbon via satellite;
•the refinement of existing geological models, in order to clarify the genesis of the bank and the seismic activity in this area;
•the installation of an adequate network of seismic monitoring stations in order to better locate off shore earthquakes (Fig. 1);
•the evaluation of seismic and tsunami risk around the Iberian Peninsula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号