首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 960 毫秒
1.
Nuclear magnetic resonance (NMR) logging provides a new means of estimating the hydraulic conductivity (K) of unconsolidated aquifers. The estimation of K from the measured NMR parameters can be performed using the Schlumberger‐Doll Research (SDR) equation, which is based on the Kozeny–Carman equation and initially developed for obtaining permeability from NMR logging in petroleum reservoirs. The SDR equation includes empirically determined constants. Decades of research for petroleum applications have resulted in standard values for these constants that can provide accurate estimates of permeability in consolidated formations. The question we asked: Can standard values for the constants be defined for hydrogeologic applications that would yield accurate estimates of K in unconsolidated aquifers? Working at 10 locations at three field sites in Kansas and Washington, USA, we acquired NMR and K data using direct‐push methods over a 10‐ to 20‐m depth interval in the shallow subsurface. Analysis of pairs of NMR and K data revealed that we could dramatically improve K estimates by replacing the standard petroleum constants with new constants, optimal for estimating K in the unconsolidated materials at the field sites. Most significant was the finding that there was little change in the SDR constants between sites. This suggests that we can define a new set of constants that can be used to obtain high resolution, cost‐effective estimates of K from NMR logging in unconsolidated aquifers. This significant result has the potential to change dramatically the approach to determining K for hydrogeologic applications.  相似文献   

2.
Characterization of hydraulic conductivity (K) in aquifers is critical for evaluation, management, and remediation of groundwater resources. While estimates of K have been traditionally obtained using hydraulic tests over discrete intervals in wells, geophysical measurements are emerging as an alternative way to estimate this parameter. Nuclear magnetic resonance (NMR) logging, a technology once largely applied to characterization of deep consolidated rock petroleum reservoirs, is beginning to see use in near‐surface unconsolidated aquifers. Using a well‐known rock physics relationship—the Schlumberger Doll Research (SDR) equation—K and porosity can be estimated from NMR water content and relaxation time. Calibration of SDR parameters is necessary for this transformation because NMR relaxation properties are, in part, a function of magnetic mineralization and pore space geometry, which are locally variable quantities. Here, we present a statistically based method for calibrating SDR parameters that establishes a range for the estimated parameters and simultaneously estimates the uncertainty of the resulting K values. We used co‐located logging NMR and direct K measurements in an unconsolidated fluvial aquifer in Lawrence, Kansas, USA to demonstrate that K can be estimated using logging NMR to a similar level of uncertainty as with traditional direct hydraulic measurements in unconsolidated sediments under field conditions. Results of this study provide a benchmark for future calibrations of NMR to obtain K in unconsolidated sediments and suggest a method for evaluating uncertainty in both K and SDR parameter values.  相似文献   

3.
In granite aquifers, fractures can provide both storage volume and conduits for groundwater. Characterization of fracture hydraulic conductivity (K) in such aquifers is important for predicting flow rate and calibrating models. Nuclear magnetic resonance (NMR) well logging is a method to quickly obtain near-borehole hydraulic conductivity (i.e., KNMR) at high-vertical resolution. On the other hand, FLUTe flexible liner technology can produce a K profile at comparable resolution but requires a fluid driving force between borehole and formation. For three boreholes completed in a fractured granite, we jointly interpreted logging NMR data and FLUTe K estimates to calibrate an empirical equation for translating borehole NMR data to K estimates. For over 90% of the depth intervals investigated from these boreholes, the estimated KNMR are within one order of magnitude of KFLUTe. The empirical parameters obtained from calibrating the NMR data suggest that “intermediate diffusion” and/or “slow diffusion” during the NMR relaxation time may occur in the flowing fractures when hydraulic aperture are sufficiently large. For each borehole, “intermediate diffusion” dominates the relaxation time, therefore assuming “fast diffusion” in the interpretation of NMR data from fractured rock may lead to inaccurate KNMR estimates. We also compare calibrations using inexpensive slug tests that suggest reliable KNMR estimates for fractured rock may be achieved using limited calibration against borehole hydraulic measurements.  相似文献   

4.
Glacial aquifers are an important source of groundwater in the United States and require accurate characterization to make informed management decisions. One parameter that is crucial for understanding the movement of groundwater is hydraulic conductivity, K. Nuclear magnetic resonance (NMR) logging measures the NMR response associated with the water in geological materials. By utilizing an external magnetic field to manipulate the nuclear spins associated with 1H, the time-varying decay of the nuclear magnetization is measured. This logging method could provide an effective way to estimate K at submeter vertical resolution, but the models that relate NMR measurements to K require calibration. At two field sites in a glacial aquifer in central Wisconsin, we collected a total of four NMR logs and obtained measurements of K in their immediate vicinity with a direct-push permeameter (DPP). Using a bootstrap algorithm to calibrate the Schlumberger-Doll Research (SDR) NMR-K model, we estimated K to within a factor of 5 of the DPP measurements. The lowest levels of accuracy occurred in the lower-K (K < 10−4 m/s) intervals. We also evaluated the applicability of prior SDR model calibrations. We found the NMR calibration parameters varied with K, suggesting the SDR model does not incorporate all the properties of the pore space that control K. Thus, the expected range of K in an aquifer may need to be considered during calibration of NMR-K models. This study is the first step toward establishing NMR logging as an effective method for estimating K in glacial aquifers.  相似文献   

5.
Volume measurements for magnesiowüstite (Mg0.6Fe0.4)O, were carried out up to pressures of 10.1 GPa in the temperature range 300–1273 K, using energy-dispersive synchrotron X-ray diffraction. These data allow reliable determination of the temperature dependence of the bulk modulus and good constraint on the thermal expansitivity at ambient pressure which was previously not known for magnesiowüstite. From these data, thermal and elastic parameters were derived from various approaches based on the Birch–Murnaghan equation of state (EOS) and on the relevant thermodynamic relations. The results from three different equations of state are remarkably consistent. With (∂KT/∂P)T fixed at 4, we obtained K0=158(2) GPa, (∂KT/∂T)P=−0.029(3) GPa K−1, (∂KT/∂T)V=−3.9(±2.3)×10−3 GPa K−1, and αT=3.45(18)×10−5+1.14(28)×10−8T. The K0, (∂KT/∂T)P, and (∂KT/∂T)V values are in agreement with those of Fei et al. (1992) and are similar to previously determined values for MgO. The zero pressure thermal expansitivity of (Mg0.6Fe0.4)O is found to be similar to that for MgO (Suzuki, 1975). These results indicate that, for the compositional range x=0–0.4 in (Mg1−xFex)O, the thermal and elastic properties of magnesiowüstite exhibit a dependence on the iron content that is negligibly small, within uncertainties of the experiments. They are consequently insensitive to the Fe–Mg partitioning between (Mg, Fe)SiO3 perovskite and magnesiowüstite when applied to compositional models of the lower mantle. With the assumption that (Mg0.6Fe0.4)O is a Debye-like solid, a modified equation of heat capacity at constant pressure is proposed and thermodynamic properties of geophysically importance are calculated and tabulated at high temperatures.  相似文献   

6.
Direct push injection logging (DPIL) has become one of the most widely used approaches for obtaining vertical profiles of hydraulic conductivity (K) in environmental site investigations. Despite its widespread use, however, there has been no rigorous analysis of the underlying physical processes that take place during DPIL or how the approach would perform under different hydrogeological and operating conditions. We address these issues through a series of numerical simulations. Results show that the ratio of DPIL injection rate over pressure can be used for direct determination of K when K is >10−6 m/s. When K is <10−6 m/s and specific storage (Ss) is >10−3/m, the ratio becomes increasingly sensitive to Ss; in that case, additional information on Ss is needed for reliable K estimation. For unconsolidated formations of moderate K or higher, the ratio of injection rate over pressure should provide a reasonable K estimate when Ss is <10−3/m. Although water injection at previous depths during continuous DPIL has only a small impact on the pressure response measured at the current injection depth, probe advancement can have a significant impact when K and Ss are small. Consequently, in fine-grained materials, the advancement-generated pore water pressure increase can comprise a large portion of the measured pressure response. To diminish the impact of probe advancement in such materials, advancement speed should be kept as low as possible (e.g., 0.5 cm/s).  相似文献   

7.
Although the bulk moduli (KT0) of silicate melts have a relatively narrow range of values, the pressure derivatives of the isothermal bulk modulus (KT0) can assume a broad range of values and have an important influence on the compositional dependence of the melt compressibility at high pressure. Based on the melt density data from sink/float experiments at high pressures in the literature, we calculate KT0 using an isothermal equation of state (EOS) (e.g., Birch–Murnaghan EOS and Vinet EOS) with the previously determined values of room-pressure density (ρ0) and room-pressure bulk modulus (KT0). The results show that best estimates of KT0 vary considerably from ~ 3 to ~ 7 for different compositions. KT0 is nearly independent of Mg # (molar Mg/(Mg + Fe)), but decreases with SiO2 content. Hydrous melts have anomalously small KT0 leading to a high degree of compression at high pressures. For anhydrous melts, KT0 is ~ 7 for peridotitic melts, ~ 6 for picritic melts, ~ 5 for komatiitic melts, and ~ 4 for basaltic melts.  相似文献   

8.
Laboratory experiments to determine the maximum size of sediment transported in shallow, rain-impacted flow were conducted in a recirculating flume 4·80 m long and 0·50 m wide. Rainfall intensities were varied between 51 and 138 mm h−1, flow was introduced from a header tank into the flume at rates ranging from 0 to 0·64 l s−1, and experiments were conducted on gradients between 3·5 and 10°. The following equation was developed: ML = (REFE)1·6363 in which M is particle mass, L is distance moved in unit time (cm min−1), RE is rainfall energy (J m−2 s−1) and FE is flow energy (J m−2 s−1). This equation can be used to predict sediment-transport competence of interrill overland flow. The equation is limited in its utility insofar as it has been developed using quartz grains and takes no account of variations in absorption of rain energy by natural ground surfaces. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Sustainable water management in semi-arid agriculture practices requires quantitative knowledge of water fluxes within the soil-vegetation-atmosphere system. Therefore, we used stable-isotope approaches to evaluate evaporation (Ea), transpiration (Ta), and groundwater recharge (R) at sites in Senegal's Groundnut basin and Ferlo Valley pasture region during the pre-monsoon, monsoon, and post-monsoon seasons of 2021. The approaches were based upon (i) the isothermal evaporation model (for quantifying Ea); (ii) water and isotope mass balances (to partition Ea and Ta for groundnut and pasture); and (iii) the piston displacement method (for estimating R). Ea losses derived from the isothermal evaporation model corresponded primarily to Stage II evaporation, and ranged from 0.02 to 0.09 mm d−1 in the Groundnut basin, versus 0.02–0.11 mm d−1 in Ferlo. At the groundnut site, Ea rates ranged from 0.01 to 0.69 mm d−1; Ta was in the range 0.55–2.29 mm d−1; and the Ta/ETa ratio was 74%–90%. At the pasture site, the ranges were 0.02–0.39 mm d−1 for Ea; 0.9–1.69 mm d−1 for Ta; and 62–90% for Ta/ETa. The ETa value derived for the groundnut site via the isotope approach was similar to those from eddy covariance measurements, and also to the results from the previous validated HYDRUS-1D model. However, the HYDRUS-1D model gave a lower Ta/ETa ratio (23.2%). The computed groundwater recharge for the groundnut site amounted to less than 2% of the local annual precipitation. Recommendations are made regarding protocols for preventing changes to isotopic compositions of water in samples that are collected in remote arid regions, but must be analysed days later. The article ends with suggestions for studies to follow up on evidence that local aquifers are being recharged via preferential pathways.  相似文献   

10.
Despite uncertainties and errors in measurement, observed peak discharges are the best estimate of the true peak discharge from a catchment. However, in ungauged catchments, the catchment response time is a fundamental input to all methods of estimating peak discharges; hence, errors in estimated catchment response time directly impact on estimated peak discharges. In South Africa, this is particularly the case in ungauged medium to large catchments where practitioners are limited to use empirical methods that were calibrated on small catchments not located in South Africa. The time to peak (TP), time of concentration (TC) and lag time (TL) are internationally the most frequently used catchment response time parameters and are normally estimated using either hydraulic or empirical methods. Almost 95% of all the time parameter estimation methods developed internationally are empirically based. This paper presents the derivation and verification of empirical TP equations in a pilot scale study using 74 catchments located in four climatologically different regions of South Africa, with catchment areas ranging from 20 km2 to 35 000 km2. The objective is to develop unique relationships between observed TP values and key climatological and geomorphological catchment predictor variables in order to estimate catchment TP values at ungauged catchments. The results show that the derived empirical TP equation(s) meet the requirement of consistency and ease of application. Independent verification tests confirmed the consistency, while the statistically significant independent predictor variables included in the regressions provide a good estimation of catchment response times and are also easy to determine by practitioners when required for future applications in ungauged catchments. It is recommended that the methodology used in this study should be expanded to other catchments to enable the development of a regional approach to improve estimation of time parameters on a national‐scale. However, such a national‐scale application would not only increase the confidence in using the suggested methodology and equation(s) in South Africa, but also highlights that a similar approach could be adopted internationally. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The accurate estimation of evapotranspiration (ET) is essential for assessing water availability and requirements of regional-scale terrestrial ecosystems, and for understanding the hydrological cycle in alpine ecosystems. In this study, two large-scale weighing lysimeters were employed to estimate the magnitude and dynamics of actual evapotranspiration in a humid alpine Kobresia meadow from January 2018 to December 2019 on the northeastern Qinghai-Tibetan Plateau (QTP). The results showed that daily ETa averaged 2.24 ± 0.10 mm day −1 throughout the study period, with values of 3.89 ± 0.14 and 0.81 ± 0.06 mm day−1 during the growing season and non-growing season, respectively. The cumulative ETa during the study period was 937.39 mm, exceeding precipitation (684.20 mm) received at the site during the same period by 37%, suggesting that almost all precipitation in the lysimeters was returned to the atmosphere by evapotranspiration. Furthermore, the cumulative ETa (805.04 mm) was almost equal to the maximum potential evapotranspiration estimated by the FAO-56 reference evapotranspiration (ET0) (801.94 mm) during the growing season, but the cumulative ETa (132.25 mm) was 113.72% less than the minimum equilibrium ETeq) (282.86 mm) during the non-growing season due to the limited surface moisture in frozen soil. The crop coefficient (Kc) also showed a distinct seasonal pattern, with a monthly average of 1.01 during the growing season. Structural equation model (SEM) and boosted regression tree (BRT) show that net radiation and air temperature were the most important factors affecting daily ETa during the whole study period and growing season, but that non-growing season ETa was dominated by soil water content and net radiation. The daily Kc was dominated by net radiation. Furthermore, both ETa and Kc were also affected by aboveground biomass.  相似文献   

12.
We have developed a thermodynamic model for the determination of the closure temperature (TC) at which the minerals defining an internal isochron in RbSr, or similar, geochronological system were set with a geochronological clock. It is shown that the equilibrium fractionation of87Rb and87Sr between a pair of minerals at TC [KD(87Rb87Sr)C] is given by the ratio of the quantity (87Rb/86Sr) in the two minerals as measured at the present time. KD(87Rb-87Sr), which equals the element distribution coefficient KD(RbSr) under equilibrium condition, can be calibrated as a function of temperature, and compared with the retrieved value of KD(87Rb87Sr)C in a natural pair to obtain TC. The various mineral pairs defining an internal isochron will yield concordant or discordant values of TC depending on whether or not they closed simultaneously with respect to the diffusion of Rb and Sr. Both types of results are expected, and are important in the analyses of the evolutionary history of the host rocks. Preliminary analyses of the published data in the RbSr system suggest a fairly wide range of TC even for the same mineral pair, reflecting differences in the cooling rates and physico-chemical environments of the host rocks.  相似文献   

13.
The self-diffusion of water and hexadecane in medium and coarse sands from glacial sand deposits in central Germany were investigated by pulsed field gradient nuclear magnetic resonance (PFG NMR). Due to the restriction of the diffusion path at the pore/grain interface, the measured apparent self-diffusion coefficients (D(Δ)) in the pore space depend on the observation time (Δ) in the PFG NMR experiment. Although the bulk self-diffusion coefficients of water and hexadecane differ by about one order of magnitude, the apparent self-diffusion coefficients in the pore space obey the same characteristic time-behaviour, which depends only on geometrical properties of the pore system. Using the “short-time diffusion” model, surface-to-volume (S/V) ratios and inherent self-diffusion coefficients (D0) of the pore fluids were extracted from these diffusion measurements. The S/V ratios obtained are independent of the pore fluid used and agree with known geometrical properties of the sand grains. Moreover, the D0 values are consistent with the corresponding bulk self-diffusion coefficients measured separately. In contrast to these results of PFG NMR, simultaneous investigations of longitudinal (T1) nuclear magnetic relaxation reveal that the relaxation time of the pore fluid is a less suitable parameter for a quantitative estimation of geometrical properties of the pore/grain interface in these unconsolidated sediments since it depends on chemical properties of the fluid/grain interface.  相似文献   

14.
Water and nutrient fluxes were studied during a 12-month period in an alerce (Fitzroya cupressoides) forest, located in a remote site at the Cordillera de la Costa (40°05′S) in southern Chile. Measurements of precipitation, throughfall, stemflow, effective precipitation, soil infiltration and stream flow were carried out in an experimental, small watershed. Simultaneously, monthly water samples were collected to determine the concentrations and transport of organic-N, NO3-N, total-P, K+, Ca2+, Na+ and Mg2+ in all levels of forest. Concentration of organic-N, NO3-N, total-P and K+ showed a clear pattern of enrichment in the throughfall, stemflow, effective precipitation and soil infiltration. For Ca2+ and Mg2+, enrichment was observed in the effective precipitation, soil infiltration and stream flow. Annual transport of K+, Na+, Ca2+ and Mg2+ showed that the amounts exported from the forest via stream flow (K+=0·95, Na+=32·44, Ca2+=8·76 and Mg2+=7·16 kg ha−1 yr−1) are less than the inputs via precipitation (K+=6·39, Na+=40·99, Ca2+=15·13 and Mg2+=7·61 kg ha−1 yr−1). The amounts of organic-N and NO3-N exported via stream flow (organic-N=1·04 and No3-N=3·06 kg ha−1 yr−1) were relatively small; however, they represented greater amounts than the inputs via precipitation (organic-N=0·74 and NO3-N=0·97 kg ha−1 yr−1), because of the great contribution of this element in the superficial soil horizon, where the processes of decomposition of organic material, mineralization and immobilization of the nutrients occurs. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
Analyses (n = 525) of chloride (Cl), bromide (Br), nitrate as nitrogen (NO3-N), sodium (Na+), calcium (Ca2+) and potassium (K+) in stream water, tile-drain water and groundwater were conducted in an urban-agricultural watershed (10% urban/impervious, 87% agriculture) to explore potential differences in the signature of Cl originating from an urban source as compared with an agricultural source. Only during winter recharge events did measured Cl concentrations exceed the 230 mg/L chronic threshold. At base flow, nearly all surface water and tile water samples had Cl concentrations above the calculated background threshold of 18 mg/L. Mann–Whitney U tests revealed ratios of Cl to Br (p = .045), to NO3-N (p < .0001), to Ca2+ (p < .0001), and to Na+ (p < .0001) to be significantly different between urban and agricultural waters. While Cl ratios indicate that road salt was the dominant source of Cl in the watershed, potassium chloride fertilizer contributed as an important secondary source. Deicing in watersheds where urban land use is minimal had a profound impact on Cl dynamics; however, agricultural practices contributed Cl year-round, elevating stream base flow Cl concentrations above the background level.  相似文献   

16.
Bankfull discharge was identified in some 30 gravel-bed rivers representing in total c. 40 gauging stations. The catchment sizes cary from 4km2 to nearly 2700km2. Bankfull discharge value increases with basin size. In the case of gravel-bed rivers developed on an impermeable substratum, the following equation emerges: Qb=0·087 A1·044. Bankfull discharge recurrence interval was determined by fitting maximum annual floods (Ta) into Gumbel's distribution and then using the partial duration series (Tp) in this same distribution. Recurrence interval is below 0·7 years (Tp) for small pebble-bed rivers developed on an impermeable substratum; it reaches 1·1 to 1·5 years when the catchment size of these rivers exceeds 250km2. Rivers incised in the soft schists of the Famenne show larger channel capacity at bankfull stage, a small width/depth ratio and thus higher recurrence intervals (1·4–5·3 years with Ta and 1–4·4 years with Tp). Baseflow-dominated gravel-bed streams and sandy or silty rivers experience less frequent bankfull discharges, with a recurrence interval higher than 2 or even 3 years (Tp). © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
Wang  Chunlin  Yu  Guirui  Zhou  Guoyi  Yan  Junhua  Zhang  Leiming  Wang  Xu  Tang  Xuli  Sun  Xiaomin 《中国科学:地球科学(英文版)》2006,49(2):127-138

The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0 μmol−1·m−2·s−1) flux data during windy conditions (u* > 0.2 m·s−1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem C02 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol−1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m−2·s−1. Indistinctive seasonal variation of α or Amax was consistent with weak seasonal dynamics of leaf area index (LAf) in such a lower subtropical evergreen mixed forest, (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m−2mon−1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated WEE was estimated as −43.2±29.6 gC·m−2·mon−1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as −563.0 and −441.2 gC·m−2·a−1 respectively, accounting for about 32% of GPP.

  相似文献   

18.
Pressure–volume–temperature relations have been measured to 32 GPa and 2073 K for natural magnesite (Mg0.975Fe0.015Mn0.006Ca0.004CO3) using synchrotron X-ray diffraction with a multianvil apparatus at the SPring-8 facility. A least-squares fit of the room-temperature compression data to a third-order Birch–Murnaghan equation of state (EOS) yielded K0 = 97.1 ± 0.5 GPa and K′ = 5.44 ± 0.07, with fixed V0 = 279.55 ± 0.02 Å3. Further analysis of the high-temperature compression data yielded the temperature derivative of the bulk modulus (∂KT/∂T)P = −0.013 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.03 (7) × 10−5 K−1 and a1 = 0.49 (10) × 10−8 K−2. The Anderson–Grüneisen parameter is estimated to be δT = 3.3. The analysis of axial compressibility and thermal expansivity indicates that the c-axis is over three times more compressible (KTc = 47 ± 1 GPa) than the a-axis (KTc = 157 ± 1 GPa), whereas the thermal expansion of the c-axis (a0 = 6.8 (2) × 10−5 K−1 and a1 = 2.2 (4) × 10−8 K−2) is greater than that of the a-axis (a0 = 2.7 (4) × 10−5 K−1 and a1 = −0.2 (2) × 10−8 K−2). The present thermal EOS enables us to accurately calculate the density of magnesite to the deep mantle conditions. Decarbonation of a subducting oceanic crust containing 2 wt.% magnesite would result in a 0.6% density reduction at 30 GPa and 1273 K. Using the new EOS parameters we performed thermodynamic calculations for magnesite decarbonation reactions at pressures to 20 GPa. We also estimated stability of magnesite-bearing assemblages in the lower mantle.  相似文献   

19.
Hydrological connectivity inside the soil is related to the spatial patterns inside the soil (i.e., the structural connectivity). This, in turn, is directly associated with the physical and the chemical processes at a molecular level (i.e., the functional connectivity). Nuclear magnetic resonance (NMR) relaxometry can be successfully applied to reveal both structural and functional components of soil hydrological connectivity. In the present study, the low field NMR relaxometry was applied on water suspended soils sampled at the upstream‐ and downstream‐end of three different length plots. Also the sediments collected from the storage tanks at the end of each plot were water suspended and monitored by NMR relaxometry. The results from the NMR investigations were elaborated by using a mathematical approach in order to quantify both the functional and structural connectivity components. In particular, following integration of the T1 distribution curve, an S‐shaped curve was obtained. It revealed two plateaus corresponding to the shortest (low component) and the longest (high component) intervals of relaxation times, respectively. According to relaxometry theory, the two T1 intervals, associated to the different plateaus, were attributed to micro and macro soil pores, respectively. The two T1 intervals were used to define a functional connectivity index, while the central part of the S‐shaped distribution was used to define a structural connectivity index. Here we provide the physical meaning of the our mathematical approach, thereby revealing that functional connectivity index increases with plot length, as a result of a selective eroded particle transport. Moreover, the relationship structural connectivity index versus plot length resulted quasi‐independent of grainsize distribution, whereas the values of the structural connectivity index for the sediment samples resulted lower than those obtained for the corresponding soils.  相似文献   

20.
The estimation of evapotranspiration (E) in forested areas is required for various practical purposes (e.g. evaluation of drought risks) in Japan. This study developed a model that estimates monthly forest E in Japan with the input of monthly temperature (T). The model is based on the assumptions that E equals the equilibrium evaporation rate (Eeq) and that Eeq is approximated by a function of T. The model formulates E as E (mm month−1) = 3·48 T ( °C) + 32·3. The accuracy of the model was examined using monthly E data derived using short‐term water balance (WB) and micrometeorological (M) methods for 15 forest sites in Japan. The model estimated monthly E more accurately than did the Thornthwaite and Hamon equations according to regression analysis of the estimated E and E derived using the WB and M methods. Although the model tended to overestimate monthly E, the overestimation could be reduced by considering the effect of precipitation on E. As T data are commonly available all over Japan, the model would be a useful tool to estimate forest E in Japan. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号