首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lake‐water quality is highly dependent on the landscape characteristics in its respective watershed. In this study, we investigated the relationships between lake‐water quality and landscape composition and configuration within the watershed in the Yangtze River basin of China. Water quality variables, including pH, electrical conductivity (EC), dissolved oxygen (DO), Secchi depth (SD), NO2?, NO3?, NH4+, TN, TP, chemical oxygen demand (CODMn), chlorophyll‐a (Chl‐a), and trophic state index (TSI), were collected from 16 lakes during the period of 2001–2003. Landscape composition (i.e. the percentage of vegetation, agriculture, water, urban, and bare land) and landscape configuration metrics, including number of patches (NP), patch density (PD), largest patch index (LPI), edge density (ED), mean patch area (MPA), mean shape index (MSI), contagion (CONTAG), patch cohesion index (COHESION), Shannon's diversity index (SHDI), and aggregation index (AI), were calculated for each lake's watershed. Results revealed that the percentage of agriculture was negatively related to NO2?, TN, TP, Chl‐a concentrations, and TSI, while the percentage of urban was significantly correlated with EC, NH4+, and CODMn concentrations. Among landscape‐level configuration metrics, only ED showed significant relationships with TN, TP concentrations, and TSI. However, at the class level, the PD, LPI, ED, and AI of agriculture and urban land uses were significantly correlated with two or more water quality variables. This study suggests that, for a given total area, large and clustered agricultural or urban patches in the watershed may have a greater impact on lake‐water quality than small and scattered ones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Lithological and hydrological influence on fluvial physical and chemical erosion was studied in a glacierized sedimentary basin with high evaporite presence. Suspended particulate matter (SPM), total dissolved solids (TDS) and major ion concentrations were analysed for 2 years of different hydrologic condition: (i) 2009–2010, Q = 100% average; and (ii) 2010–2011, Q = 60% average. Annual hydrograph was simple regime‐type with one peak in summer related to snow melting. The intra‐annual SPM and TDS variations were directly and inversely associated to Q, respectively. Snow chemistry showed continental influence (Na+/Ca2+ = 0.17), and atmospheric input of TDS was <1% of the total exported flux. River water was highly concentrated in Ca2+ and SO42− (~4 mmol l−1) and in Na+ and Cl (~3 mmol l−1). Ca2+/SO42− and Na+/Cl molar ratios were ~1 and related to Q, directly and inversely, respectively. Major ion relationships suggest that river chemistry is controlled by evaporite (gypsum and halite) dissolution having a summer input from sulfide oxidation and carbonate dissolution, and a winter input from subsurface flow loaded with silicate weathering products. This variation pattern resulted in nearly chemostatic behaviour for Ca+, Mg2+ and SO42−, whereas Na+, Cl and SiO2 concentrations showed to be controlled by dilution/concentration processes. During the 2009–2010 hydrological year, the fluxes of water, SPM and TDS registered in the snow melting–high Q season were, respectively, 71%, 92% and 67% of the annual total, whereas for equal period in 2010–2011, 56% of water, 86% of SPM and 54% of TDS annual fluxes were registered. The SPM fluxes for 2009–2010 and 2010–2011 were 1.19 × 106 and 0.79 × 106 t year−1, whereas TDS fluxes were 0.68 × 106 and 0.55 × 106 t year−1, respectively. Export rates for 2009–2010 were 484 t km2 year−1 for SPM and 275 t km2 year−1 for TDS. These rates are higher than those observed in glacierized granite basins and in non‐glacierized evaporite basins, suggesting a synergistic effect of lithology and glaciers on physical and chemical erosion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
土地利用结构与景观格局对鄱阳湖流域赣江水质的影响   总被引:4,自引:0,他引:4  
徐启渝  王鹏  王涛  舒旺  张华  齐述华 《湖泊科学》2020,32(4):1008-1019
于2015年1月和7月采集赣江干流及支流34个采样点水样,测定电导率、水化学离子、无机氮等水质指标.利用赣江流域2014年30 m分辨率的土地利用数据,以流域景观类型占比表征土地利用结构,景观指数表征景观格局;采用Pearson相关分析、Bioenv分析、Mantle检验与方差分解等方法分析流域土地利用结构与景观格局对赣江水质的影响.结果表明:上游Cl~-、Na~+浓度最高,中游电导率、Cl~-、Na~+、K~+、Ca~(2+)等水质指标最低,下游电导率、HCO_3~-、SO_4~(2-)、Mg~(2+)、Ca~(2+)、NO_3~--N等水质指标最高.居民建设用地是对水质影响最显著的单一土地利用类型.林地、水田与居民建设用地是对水质影响最显著的土地利用类型组合.平均最近邻体指数是对水质影响最显著的单一景观指数,斑块个数、斑块聚集度指数、平均最近邻体指数是对水质影响最显著的景观指数组合.枯水期土地利用结构和景观格局对水质的贡献率分别为41.1%和17.2%,景观格局对水质的贡献率(17.2%)均为和土地利用结构的交互作用,无独立贡献部分;丰水期二者对水质贡献率分别为51%、53%,交互作用部分为37%.以上结果表明,土地利用结构与景观格局都对赣江水质有较大影响,二者的交互作用在该影响中占有重要地位,且枯水期景观格局对水质的影响涵盖在与土地利用结构的交互作用中.  相似文献   

4.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   

5.
Current land-use classifications used to assess urbanization effects on stream water quality date back to the 1980s when limited information was available to characterize watershed attributes that mediate non-point source pollution. With high resolution remote sensing and widely used GIS tools, there has been a vast increase in the availability and precision of geospatial data of built environments. In this study, we leverage geospatial data to expand the characterization of developed landscapes and create a typology that allows us to better understand the impact of complex developed landscapes across the rural to urban gradient. We assess the ability of the developed landscape typology to reveal patterns in stream water chemistry previously undetected by traditional land-cover based classification. We examine the distribution of land-cover, infrastructure, topography and geology across 3876 National Hydrography Dataset Plus catchments in the Piedmont region of North Carolina, USA. From this dataset, we generate metrics to evaluate the abundance, density and position of landscape features relative to streams, catchment outlets and topographic wetness metrics. While impervious surfaces are a key distinguishing feature of the urban landscape, sanitary infrastructure, population density and geology are better predictors of baseflow stream water chemistry. Unsupervised clustering was used to generate a distinct developed landscape typology based on the expanded, high-resolution landscape feature information. Using stream chemistry data from 37 developed headwater catchments, we compared the baseflow water chemistry grouped by traditional land-cover based classes of urbanization (rural, low, medium and high density) to our composition and structure-based classification (a nine-class typology). The typology based on 22 metrics of developed landscape composition and structure explained over 50% of the variation in NO3-N, TDN, DOC, Cl, and Br concentration, while the ISC-based classification only significantly explained 23% of the variation in TDN. These results demonstrate the importance of infrastructure, population and geology in defining developed landscapes and improving discrete classes for water management.  相似文献   

6.
Long-term ecosystem studies are valuable for understanding integrated ecosystem response to global changes in atmospheric deposition and climate. We examined trends for a 35-year period (1982/83–2017/18) in concentrations of a range of solutes in precipitation and stream water from nine headwater catchments spanning elevation and surficial geology gradients at the Turkey Lakes watershed (TLW) in northeastern Ontario, Canada. Average annual water year (WY, October to September) concentrations in precipitation significantly declined over the period for sulphate (SO42−), nitrate (NO3) and chloride (Cl), while calcium (Ca2+) and potassium (K+) concentrations increased, resulting in a significant pH increase from 4.2 to 5.7. Trends in stream chemistry through time are generally consistent with expectations associated with acidification recovery. Concentration of many stream water solutes (SO42−, Cl, calcium [Ca2+], magnesium [Mg2+] and NH4+ generally decreased, while others (silica [SiO2] and dissolved organic carbon [DOC]) generally increased. Increases were also observed for alkalinity (six of nine catchments), acid neutralizing capacity ([ANC]; six of nine catchments) and pH (eight of nine catchments), while conductivity declined (six of nine catchments). Variability in trends among catchments are associated with differences in surficial geology and wetland cover. While absolute solute concentrations were generally lower at bedrock dominated high-elevation catchments compared to till dominated lower elevation catchments, the rate of change of concentration was often greater for high elevation catchments. This study confirms continued, but non-linear stream chemistry recovery from acidification, particularly at the less buffered high and moderate elevation sites. The heterogeneity of responses among catchments highlights our incomplete understanding of the relative importance of different mechanisms influencing stream chemistry and the consequences for downstream ecosystems.  相似文献   

7.
Xiaohu Wen  Meina Diao  De Wang  Meng Gao 《水文研究》2012,26(15):2322-2332
Groundwater salinization has become a crucial environmental problem worldwide and is considered the most widespread form of groundwater contamination in the coastal zone. In this study, a hydrochemical investigation was conducted in the eastern coastal shallow aquifer of Laizhou Bay to identify the hydrochemical characteristics and the salinity of groundwater using ionic ratios, deficit or excess of each ions, saturation indices and factor analysis. The results indicate that groundwater in the study area showed wide ranges and high standard deviations for most of hydrochemical parameters and can be classified into two hydrochemical facies, Ca2+‐Mg2+‐Cl facies and Na+‐Cl facies. The ionic ratio, deficit or excess of each ions and SI were applied to evaluate hydrochemical processes. The results obtained indicate that the salinization processes in the coastal zones were inverse cation exchange, dissolution of calcite and dolomite, and intensive agricultural practices. Factor analysis shows that three factors were determined (Factor 1: TDS, EC, Cl, Mg2+, Na+, K+, Ca2+ and SO42‐; Factor 2: HCO3 and pH; Factor 3: NO3 and pH), representing the signature of seawater intrusion in the coastal zone, weathering of water–soil/rock interaction, and nitrate contamination, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
水资源恶化、水体富营养化严重威胁生态环境健康,农业活动所产生的氮是造成水污染的主要原因之一.本研究以句容水库农业流域为研究对象,基于实地监测数据验证了SWAT模型模拟当地氮污染的适用性,并分析了氮素负荷的时空分布特征及其关键源.结果 表明:硝态氮(NO3-N)和总氮(TN)的年均入库量分别为9.98和27.22 t.时...  相似文献   

9.
Wildfires are landscape scale disturbances that can significantly affect hydrologic processes such as runoff generation and sediment and nutrient transport to streams. In Fall 2016, multiple large drought-related wildfires burned forests across the southern Appalachian Mountains. Immediately after the fires, we identified and instrumented eight 28.4–344 ha watersheds (four burned and four unburned) to measure vegetation, soil, water quantity, and water quality responses over the following two years. Within burned watersheds, plots varied in burn severity with up to 100% tree mortality and soil O-horizon loss. Watershed scale high burn severity extent ranged from 5% to 65% of total watershed area. Water quantity and quality responses among burned watersheds were closely related to the high burn severity extent. Total water yield (Q) was up to 39% greater in burned watersheds than unburned reference watersheds. Total suspended solids (TSS) concentration during storm events were up to 168 times greater in samples collected from the most severely burned watershed than from a corresponding unburned reference watershed, suggesting that there was elevated risk of localized erosion and sedimentation of streams. NO3-N concentration, export, and concentration dependence on streamflow were greater in burned watersheds and increased with increasing high burn severity extent. Mean NO3-N concentration in the most severely burned watershed increased from 0.087 mg L−1 in the first year to 0.363 mg L−1 (+317%) in the second year. These results suggest that the 2016 wildfires degraded forest condition, increased Q, and had negative effects on water quality particularly during storm events.  相似文献   

10.
不同水生植物对富营养化水体无机氮吸收动力学特征   总被引:3,自引:2,他引:1  
采用浓度梯度法,研究了鸢尾(Iris louisiana)、狐尾藻(Myriophyllum verticillatum)、茭白(Zizania latifolia)和水芹(Oenanthe clecumbens)对硝态氮(NO3--N)和铵态氮(NH4+-N)吸收动力学特征.结果表明:4种水生植物对水体NO3--N和NH4+-N吸收可用Michaelis-Menten酶动力学方程描述,随溶液NO3--N和NH4+-N浓度增加,植物吸收NO3--N和NH4+-N速率增加,当溶液NO3--N和NH4+-N浓度接近于2.0 mmol/L时,吸收速率增加趋缓;4种水生植物对NO3--N和NH4+-N的Vmax值大小为水芹 >茭白 >鸢尾 >狐尾藻,对NO3--N的Km值大小为水芹 >鸢尾=茭白=狐尾藻,对NH4+-N的Km值大小为水芹 >狐尾藻 >茭白=鸢尾.根据吸收动力学参数(Vmax,Km)判断水芹适宜于净化NO3--N和NH4+-N浓度较高的水体,茭白、鸢尾和狐尾藻适合净化NO3--N和NH4+-N浓度较低水体;4种水生植物对NO3--N、NH4+-N表现出不同的吸收偏好性,鸢尾吸收NO3--N的潜力大于吸收NH4+-N的,但对NH4+-N的亲和力大于NO3--N,表明能在NO3--N浓度较高环境中优先吸收NH4+-N.狐尾藻和水芹对NO3--N和NH4+-N能均衡吸收.茭白对NH4+-N具有较高的吸收潜力与亲和力.  相似文献   

11.
The impact assessment of molasses‐based distillery‐effluent irrigation on groundwater quality around village Gajraula in the district of Jyotiba Phule Nagar, Uttar Pradesh, India was studied by sampling groundwater on monthly intervals consecutively for summer, winter and monsoon seasons during 2006–2007 and water quality parameters, viz. pH, electrical conductivity (EC), chloride (Cl?), sulphate (SO), nitrate (NO), chemical oxygen demand (COD), total solids (TS), total dissolved solids (TDS), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), zinc (Zn2+), iron (Fe3+), and total coliforms (TC) were monitored. Results depicted that the values of all parameters decreased with increasing depth of water table. Sulphate, nitrate and potassium contents were maximal in agricultural site during monsoon while EC, Cl?, TS, TDS, Na+, Ca2+, Mg2+, Zn, and Fe were maximal in industrial sites during summer. Groundwater samples of residential site harboured maximum coliforms especially during monsoon, highlighting threat to groundwater. Significant positive correlation matrix between coliforms with nitrate, sulphate and potassium ions explained their survival on these nutrients. To overcome this, important measures emphasizing improvement in effluent treatment technology matching site‐specific characteristics are recommended for eco‐friendly ferti‐irrigation.  相似文献   

12.
城市污染河道沉积物可提取态氮的提取方式比较   总被引:4,自引:0,他引:4  
许宽  刘波  王国祥  周锋  凌芬  杜旭 《湖泊科学》2012,24(4):541-545
以城市污染河道——南京仙林大学城九乡河表层沉积物为研究对象,探讨沉积物常用提取剂(1 mol/L KCl、2 mol/L KCl、4 mol/L KCl和0.01 mol/L CaCl2)在不同液土比(5∶1、10∶1、50∶1和100∶1)条件下,对城市污染河道沉积物可提取态氮(NH4+-N、NO3--N)测定的影响.结果表明:KCl的提取效果要优于CaCl2,二者NH4+-N提取量分别为312.17~479.23、177.52~339.31 mg/kg,NO3--N提取量分别为4.49~21.56、4.25~8.53 mg/kg;可提取态氮提取量随液土比增高而增大,其中1 mol/L KCl组,液土比100∶1时NH4+-N和NO3--N提取量分别比液土比5∶1时增加41.97%和187.08%;NH4+-N提取量随提取剂浓度增高而增大,NO3--N随提取剂浓度增高而降低;采用1 mol/L KCl提取剂、液土比100∶1的组合联合提取城市污染河道沉积物中的NH4+-N、NO3--N,提取效果较好.  相似文献   

13.
Groundwater quality in Ma’an area was evaluated for its suitability for drinking and agricultural uses by determining the main physical and chemical properties during a 1 year survey study (August 2009 to August 2010). Several samples were collected from ten different wells and analysed for temperature, pH, conductivity, total dissolved solids, total hardness, major cations (Ca2+, Mg2+, Na+ and K+), major anions (HCO3 ?, Cl?, NO3 ?, SO4 2?, F? and Br?) and trace metals (Fe2+, Al3+, Mn2+, Cu2+, Zn2+, Pb2+ and Cd2+). The general chemistry of water samples was typically of alkaline earth waters with prevailing bicarbonate chloride. The results showed great variations among the analyzed samples with respect to their physical and chemical parameters. However, most values were below the maximum permissible levels recommended by Jordanian and WHO drinking water standards. The quality assessment shows that in general, the GW in the study area is not entirely fit for direct drinking with respect to EC, and Pb2+. According to the residual sodium carbonate and sodium adsorption ratio, the water in the studied wells can be used for irrigational purposes.  相似文献   

14.
Peatlands provide a setting that is well suited for cranberry agriculture in the Northeastern United States. However, misconceptions exist about the amounts and forms of nitrogen (N) and phosphorus (P) export from cranberry farms. In this study, we report inorganic and organic forms of N and P export from five peatlands cultivated for cranberry production in southeastern, Massachusetts, United States. We then compare N loading rates among cranberry farms in southeastern Massachusetts, row crop farms in the Midwestern United States, and uncultivated peatlands in the United States and United Kingdom. Based on a fluvial mass balance analysis, we find that nonriparian cranberry farms export 2.56 kg of P ha−1 year−1of total P and 12.1 kg of N ha−1 year−1of total N. Total N export from riparian or “flow through” farms is two times higher than nonriparian farms due to less retention of N fertilizer in the vadose zone of riparian farms. Gross total N export from riparian and nonriparian cranberry farms consists of 35% particulate organic N, 26% dissolved organic N, 31% ammonium (NH4+), and 8% nitrate (NO3). The low proportions of NO3 export (13% of total dissolved N [TDN]) for cranberry farms differ from NO3 export for row crop farms (75% of TDN; p < .001) but not for uncultivated peatlands (17% of TDN; p = .61). Despite being highly modified by fertilizers and artificial drainage, low NO3 export (2.2 kg of N ha−1 year−1) from cranberry farms is consistent with field measurements of rapid N turnover in uncultivated peatlands. This finding suggests that state-funded wetland restoration efforts to restore denitrification in retired cranberry farms may be limited by NO3 rather than soil moisture or organic matter.  相似文献   

15.
Baseflow has become an important source of nitrate nonpoint source pollution in many intensive agricultural watersheds. Uncertainties in baseflow nutrient load separation are caused by the effects of hydrometeorological factors on both baseflow recession and baseflow nutrient load recession. These uncertainties have not been addressed well in the existing separating algorithms, which are based on simple baseflow rate–load relationships. In the present study, a recursive tracing source algorithm (RTSA) was developed based on a nonlinear reservoir algorithm and hydrometeorology-corrected baseflow nutrient load recession parameter. This approach was used to reduce the uncertainty of baseflow nitrate load estimation caused by variations in different load recessions under varying climate conditions. RTSA validation in a typical rainy agricultural watershed yielded Nash–Sutcliffe efficiency, root mean square error-observation standard deviation ratio, and R2 values of 0.91, 0.30, and 0.91, respectively. The baseflow nitrate–nitrogen (N─NO3) loads from 2003 to 2012 in the Changle River watershed of eastern China were estimated with the RTSA. The results indicated that baseflow nitrate export accounted for 62.0% of the mean total annual N─NO3 loads (18.0 kg/ha). The total baseflow N─NO3 export was highest in spring (3.6 kg/ha), followed by summer (3.2 kg/ha), winter (2.3 kg/ha), and autumn (2.1 kg/ha). The contribution of baseflow to total nitrate in the stream decreased in the order of winter (69.88%) >spring (66.59%) >autumn (60.36%) >summer (54.04%). The monthly baseflow N─NO3 loads and flow-weighted concentrations greatly increased during the research period (Mann–Kendall test, Zs > 2.56, p < .01). Without proper countermeasures, baseflow nitrate may represent a serious long-term risk for water surfaces in the future.  相似文献   

16.
Shi Qi  Wei Liu  Heping Shu  Fei Liu  Jinzhu Ma 《水文研究》2020,34(20):3941-3954
The sources and storage of soil NO3 in the western Tengger Desert, Northwest China, were explored using water chemistry analysis and stable isotope techniques. In line with the expansion and development of oases, part of the desert has been transformed into cultivated land and artificial forest land. The mean soil NO3 contents found in areas of cultivated land and artificial forest were 123.06 mg kg−1 and 1.26 mg kg−1, far higher and slightly lower than the background desert soil values, respectively. The δ15N-NO3 and δ18O-NO3 values in cultivated soils ranged from 1.00 to 11.81 ‰, and from −1.85 to 8.99 ‰, respectively, and the mean mNO3/Cl value in cultivated soils was 2.3. These figures would appear to demonstrate that the rapid increase in the nitrate content in soils is principally due to the use of nitrogen fertilizer. Such increases in soil NO3 storage is likely to promote the leaching of nitrogen into the groundwater where coarsely textured soils exist, the pollution of water sources used for irrigation water, and extreme precipitation events. The δ15N-NO3 and δ18O-NO3 values in groundwater ranged from 3.72 to 6.54 ‰, and from −0.19 to 12.06 ‰, respectively, mainly reflecting the nitrification of soil nitrogen. These values appeared similar to those measured in the soil water in adjacent areas of cultivated land and vegetated desert, indicating that the groundwater has been affected by both natural and artificial NO3. Artificial afforestation of desert regions would therefore seem to be a useful way of reducing the threat posed by anthropogenic sources to the circulation of NO3-N within arid regions, as well as promoting wind sheltering and sand fixation. This study explored the NO3 storage and groundwater quality responses to oasis development in arid areas in an attempt to provide effective information for local agricultural organizations and agricultural nitrogen management models.  相似文献   

17.
三峡大坝上下游水质时空变化特征   总被引:6,自引:2,他引:4  
为探索三峡大坝上下游(坝上99.9 km、坝下63.0 km、全长162.9 km)水质时空变化特征,运用主成分分析和方差分析对2016年近坝段水质时空变化特征进行了分析.主成分分析表明,水文因子流量(Q)、气温(T)、水位(Z)和水质因子(水温(WT)、pH、电导率(EC)、溶解氧(DO)、悬浮物(SS)、高锰酸盐指数(CODMn)、硫酸盐(SO42-)、氟化物(F-)、总硬度(T-Hard)、硝态氮(NO3--N)、总氮(TN)和硒(Se))的变化主导着研究区域水质变化;各采样点主成分得分和双因素方差分析结果显示研究区域水质因子时间变化主要呈现出季节和不同水库运行时期的差异.消落期(2-5月),T-Hard、F-、SO42-和EC是影响河流水质变化的主导因子;汛期(7-8月),Q、SS、CODMn、NO3--N、TN和Se是影响河流水质变化的主导因子;T和WT主导着汛末(9月)河流水质变化,并引起了DO等理化特性的变化;高水位运行期(12月),Cl-是影响河流水质变化的主导因子.现阶段,DO、有机污染物(CODMn)、无机盐(SO42-和F-)、营养盐类(NO3--N和TN)、类金属元素(Se)和水体的矿化程度(T-Hard)的变化主导着区域水质的变化,是三峡大坝近坝段水域水质的控制因子.方差分析表明,河流的理化特性(DO、pH和SS)、营养盐组分构成(NH3-N和NO3--N)、无机盐类(EC和Cl-)、石油类有机污染物及粪大肠菌群(FC)等指标在坝上与坝下断面存在显著性差异.气温、水温、降雨、含沙量的季节性影响因素和水库调度运行模式是影响近坝段水质时间差异的主要因子;空间差异主要受城区污染排放和三峡水库调度引起的坝上和坝下水文和水动力学条件差异影响.因此控制研究区域因人类活动等造成的外源性污染,并针对不同类污染物质的季节变化特征实施合理的水库运行方式是近坝段水质提升的关键.  相似文献   

18.
Inorganic ions and nutrients were measured at different depths of the Xiangxi and Daninghe Rivers to explore the mixing processes of representative bays in the Three Gorges Reservoir (TGR). HCO3 and Ca2+ are the dominant ions. Carbonate weathering is the most important mechanism controlling the ion water chemistry; however, important differences exist between the main channel and its tributaries. Major ion levels in the TGR bays depend on hydrological mixing. Results show that the major ions of Ca2+, Mg2+, Na+, K+, Sr2+, SO42− and Cl show chemically conservative behaviour during transit through the bays of the TGR. This means the ions can be used as tracers in the same way that salinity is used in estuaries to explore behaviour of other non‐conservative elements and to indicate specific source waters. In contrast, nutrients are not conserved in the mixing zone. The mixing of the main channel and tributaries and biological utilization in backwater reaches were the key factor controlling nutrient distributions in Xiangxi and Daninghe Bays. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Acid‐neutralizing capacity (ANC) is an important index for streamwater acidification caused by external factors (i.e. chronic acid deposition) and internal factors such as soil acidification due to nitrification. In this study, the influence of forest clear‐cutting and subsequent regrowth on internal acidification was investigated in central Japan, where stream pH (near 7·0) and ANC (above 0·1 meq L?1) are high. pH, the concentrations of major cations (Na+, K+, Mg2+ and Ca2+), major anions (NO3?, Cl? and SO42?) and dissolved silica (Si), and ANC were measured in 33 watersheds of various stand ages, during 2002 to 2004. Only NO3? concentration decreased with stand age, whereas pH, ANC, and concentrations of the sum of base cations (BC) and Si were negatively correlated with the minimum elevation of the watershed. The correlation between the BC/Si ratio and minimum elevation suggested that factors contributing to acid neutralization changed at 1100 m above sea level. In watersheds at lower elevations (?1100 m), the relatively high contribution of soil water with longer soil contact times should result in higher ANC, and cation exchange reactions should be the dominant process for acid neutralization due to deposition of colluvial soils on the lower slope. In contrast, in higher‐elevation watersheds (≥1100 m), weathered residual soils are thin and the small contribution of deeper groundwater results in lower ANC. These results suggest that the local acid sensitivity is determined by the hydrological and geomorphologic factors generated by steep topography. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The groundwater of the Korba plain represents major water resources in Tunisia. The Plio‐Quaternary unconfined aquifer of the Cap‐Bon (north‐east Tunisia) is subject to the intensive agricultural activities and high groundwater pumping rates due to the increasing of the groundwater extraction. The degradation of the groundwater quality is characterized by the salinization phenomena. Groundwater were sampled and analysed for physic‐chemical parameters: Ca2+, Mg2+, Na+, K+, Cl, SO42‐, HCO3, NO3, pH, electrical conductivity (EC), and the temperature (T°). The hydrochemical analysis is coupled with the calculation of the saturation indexes (SI gypsum, SI halite, SI calcite and SI dolomite), ionic derivation and with the ion correlations compared to chloride concentrations: Na+/ Cl, Ca2+/ Cl and Mg2+/ Cl ratios. Seawater fractions in the groundwater were calculated using the chloride concentration. Those processes can be used as indicators of seawater intrusion progression. EC methods were also conducted to obtain new informations on the spatial scales and dynamics of the fresh water–seawater interface of coastal groundwater exchange. The mixing zone between freshwater and saltwater was clearly observed from the EC profile in the investigated area where a strong increase in EC with depth was observed, corresponding to the freshwater and saltwater interface. Results of hydrochemical study revealed the presence of direct cation exchange linked to seawater intrusion and dissolution processes associated with cations exchange. These results, together with EC investigation, indicated that the groundwater is affected by seawater intrusion and is still major actor as a source of salinization of the groundwater in Korba coastal plain. Further isotopic and hydrological investigations will be necessary to identify and more understood the underlying mechanisms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号