首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 790 毫秒
1.
K2 is a steep-sided kimberlite pipe with a complex internal geology. Geological mapping, logging of drillcore and petrographic studies indicate that it comprises layered breccias and pyroclastic rocks of various grain sizes, lithic contents and internal structures. The pipe comprises two geologically distinct parts: K2 West is a layered sequence of juvenile- and lithic-rich breccias, which dip 20–45° inwards, and K2 East consists of a steep-sided pipe-like body filled with massive volcaniclastic kimberlite nested within the K2 pipe. The layered sequence in K2 West is present to > 900 m below present surface and is interpreted as a sequence of pyroclastic rocks generated by explosive eruptions and mass-wasting breccias generated by rock fall and sector collapse of the pipe walls: both processes occurred in tandem during the infill of the pipe. Several breccia lobes extend across the pipe and are truncated by the steep contact with K2 East. Dense pyroclastic rocks within the layered sequence are interpreted as welded deposits. K2 East represents a conduit that was blasted through the layered breccia sequence at a late stage in the eruption. This phase may have involved fluidisation of trapped pyroclasts, with loss of fine particles and comminution of coarse clasts. We conclude that the K2 kimberlite pipe was emplaced in several distinct stages that consisted of an initial explosive enlargement, followed by alternating phases of accumulation and ejection.  相似文献   

2.
A study of the REE behaviour in alteration zones of the Buena Esperanza subvolcanic CuAg deposit, located in the Coastal Range of northern Chile, reveals that the elements are mobile in the rocks during alteration. The ore-forming process developed in three different stages of alteration-mineralization.

The hydrothermal alteration of the early and middle stages affected basaltic fragments of a breccia pipe. La and Ce were leached from the rock fragments located at the bottom and at the middle part of the breccia pipe and partly redeposited at the top during alteration. Sm, Eu and Tb were released selectively and the heavy REE behaved as relatively immobile elements. Sericite is the most important alteration mineral for fixing the REE during this stage. The incoming fluids had low REE contents.

The late stage of hydrothermal alteration happened simultaneously with the intrusion of a gabbroic volcanic neck, affecting mainly these subvolcanic rocks. REE patterns of samples from the top and bottom of the alteration zone exhibit roughly parallel trends, but are systematically enriched in REE in comparison to unaltered samples. This enrichment seems to be more intensive at the top of the altered area coinciding with the enrichment of Rb, K and Cu in these rocks. Epidote plays the most important role for fixing this hydrothermal input of REE during the latest stage of alteration.  相似文献   


3.
Abstract This paper describes the results of petrographical and meso- to microstructural observations of brittle fault rocks in cores obtained by drilling through the Nojima Fault at a drilling depth of 389.52 m. The zonation of deformation and alteration in the central zone of the fault is clearly seen in cores of granite from the hanging wall, in the following order: (i) host rock, which is characterized by some intragranular microcracks and in situ alteration of mafic minerals and feldspars; (ii) weakly deformed and altered rocks, which are characterized by transgranular cracks and the dissolution of mafic minerals, and by the precipitation of zeolites and iron hydroxide materials; (iii) random fabric fault breccia, which is characterized by fragmentation, by anastomosing networks of transgranular cracks, and by the precipitation of zeolites and iron hydroxide materials; and (iv) fault gouge, which is characterized by the precipitation of smectite and localized cataclastic flow. This zonation implies that the fault has been weakened gradually by fluid-related fracturing over time. In the footwall, a gouge layer measuring only 15 mm thick is present just below the surface of the Nojima Fault. These observations are the basis for a model of fluid behavior along the Nojima Fault. The model invokes the percolation of meteoric fluids through cracks in the hanging wall fault zone during interseismic periods, resulting in chemical reactions in the fault gouge layer to form smectite. The low permeability clay-rich gouge layer sealed the footwall. The fault gouge was brecciated during coseismic or postseismic periods, breaking the seal and allowing fluids to readily flow into the footwall, thus causing a slight alteration. Chemical reactions between fluids and the fault breccia and gouge generated new fault gouge, which resealed the footwall, resulting in a low fluid condition in the footwall during interseismic periods.  相似文献   

4.
Thermal expansion during the first heating cycle at atmospheric pressure was measured in several directions in seven igneous rocks between 25° and 400°C at slow heating rates. The coefficient of thermal expansion measured under these conditions increases more rapidly as temperature is increased than the average thermal expansion coefficient of the constituent minerals. The “extra” expansion is attributed to the formation of cracks by differential expansion of mineral grains. The presence of such cracks in the rocks during the cooling part of the cycle and during any subsequent heating and cooling cycles will result in a substantial decrease in the coefficient of thermal expansion as compared to that measured during the first heating cycles. The effect of cracks initially present in a rock was studied by measuring the full tensor of the coefficient of thermal expansion on two rocks with anisotropic crack distributions. In these two rocks the coefficient of thermal expansion is least in the direction perpendicular to the plane of greatest crack concentration. The implication of our data is that thermal expansion depends greatly on the fracture state of the rock. Both the fractures in the rock and the boundary conditions on the rock are significant for the interpretation of thermal expansion measurements and for their application to other problems.  相似文献   

5.
岩石内部成分和结构反映其形成过程的环境条件。本文利用高分辨率X射线微观层析成像(微观CT)技术,对珠江三角洲地区断层构造岩(以断层角砾岩、碎裂岩为主)进行三维成像观测和定量分析,尝试从微观角度给出该地区断裂活动特征的解释。研究珠三角地区8个断层构造岩的样品,除一个样品中仅以孔隙状态呈现外,样品中均可见明显裂隙;样品孔隙度范围在1.4%到13.4%;大量样品中可见代表高密度矿物成分的白色影像,其体积占比范围从0.7%到15.6%;裂隙和白色影像具有很好的相关性。对裂缝大小、延伸方向和延伸尺度等参数进行定量分析,并提取了裂隙体积和裂隙长度的分形维数。样品内部,不同尺度的微裂隙的优势方向具有很好的一致性;定向样品还表明,微米CT样品中裂缝的优势方位与宏观断裂的主要活动方位具有一致性。背散射电子成像及能谱分析表明,断层角砾岩的基质以石英为主,白色影像为铁氧化物,可能是流体在孔隙、裂隙中流动所逐步沉淀形成。断层角砾岩的微观结构显示其形成的力学属性为拉张环境,至少经历了岩石破碎、流水作用形成含铁矿物沉淀、胶结,以及后期的进一步破碎三个发展阶段。   相似文献   

6.
7.
中国华北地区壳内低速高导层(体)成因模式的探讨   总被引:5,自引:0,他引:5  
高平 《中国地震》1997,13(3):223-231
依据高温高压下华北地区地壳主要岩石的物理性质-波速,电性测定的结果,提出了华北地区低速高导层可能的成因模式以及不同模式的适应范围。认为;碳酸盐岩在深部一定温度,压力和氧逸度条件下碳的析出会导致高导层体的出现;深部韧性剪切带组成矿物的定向排列,可使岩石的波速,电生产生各向异性行为,导致低速高导层的产生;绿片岩相和角闪岩相石中含水矿物的脱水作用会导致上,中地壳岩石物理力学性质的突变,这可能是该地区低速  相似文献   

8.
Diamantiferous diatremes usually occur in the old platforms and shields where deep fractures are «blind»,i.e., these fractures do not come out to the earth surface. Alkaline-ultrabasic magma ascending along these fractures and encountering an impervious cap of sedimentary and/or volcanic rocks had formed, between the cap and the basemnet rocks, intermediate chambers in which the crystallization of diamonds took place. Under the influence of the increasing pressures in these chambers, the roofs were destroyed and diamantiferous diatremes, dykes and veins of kimberlite have been formed. These diatremes are filled with a typical eruptive breccia in which the fragmental material, formed by the destructive explosion of the magma chamber roof, is cemented by a porphyritic, alkaline-ultrabasic rock known under the name of kimberlite.  相似文献   

9.
程卫  巴晶  马汝鹏  张琳 《地球物理学报》1954,63(12):4517-4527
地质成因和构造/热应力导致地壳岩石中的孔隙结构(裂隙和粒间孔)的变化.影响岩石黏弹性的因素包括压力、孔隙度、孔隙中包含的流体和孔隙几何形状等.相对于岩石中的硬孔隙,岩石黏弹性(衰减和频散)受软孔隙(裂隙)的影响更大.本文选取三块白云岩样本,进行了不同围压和流体条件下的超声波实验测量.利用CPEM(Cracks and Pores Effective Medium,裂隙和孔隙有效介质)模型获得了岩石高、低频极限的弹性模量,并通过Zener体(标准线性体)模型将CPEM模型拓展到全频带而得到CPEM-Zener模型,用该模型拟合岩石松弛和非松弛状态下的实验数据,本文得到平均裂隙纵横比和裂隙孔隙度以及纵波速度和品质因子随频率的变化关系.结果表明,饱水岩石的平均裂隙纵横比和裂隙孔隙度均高于饱油岩石,随着压差(围压和孔隙压力的差值)的增加,饱油岩石中的裂隙首先闭合.并且压差在70 MPa以内时,随着压差增大,岩石的平均裂隙纵横比和裂隙孔隙度在饱水和饱油时的差值增大,此时流体类型对于岩石裂隙的影响越来越显著,此外,对饱水岩石,平均裂隙纵横比随压差增加而增大,这可能是由于岩石中纵横比较小的裂隙会随压差增大而逐渐趋于闭合.在饱水和饱油岩石中,裂隙孔隙度和裂隙密度都随着压差增加而减小.通过对裂隙密度和压差的关系进行指数拟合,本文获得压差趋于0时的裂隙密度,且裂隙密度随孔隙度增大而增大,增大速率随压差增加而降低.针对饱水和饱油的白云岩样本,CPEM-Zener模型预测的纵波频散随压差增大而减小,此变化趋势和实验测得的逆品质因子随压差的变化关系基本一致,由此进一步验证了模型的实用性.本研究对岩石的孔隙结构和黏弹性分析以及声波测井、地震勘探的现场应用有指导意义.  相似文献   

10.
A number of lead-zinc sulphide deposits have been discovered in recent years in dolo- mitic rocks of the Upper Sinian Dengying Formation in the Dadu River valley region, Sichuan Province, China. The lead-zinc mineralization is closely associated with a black siliceous exhalite that has been traced over 50 km of strike. This makes Dadu River valley the most extensive stratiform non-ferrous sulphide horizon having been discovered to date in China. In a previous study by the first author (LIN), these deposits were recognised as belonging to the broad spectrum of lead-zinc sedimentary exhala- tive (SEDEX) deposits. In this paper, seismites and seismogenetic structures occurring in close association with the Dadu River valley mineralized zone are described. The close spatial and temporal relationship between the seismites and mineralization provides strong evidence for the hypothesis that the lead-zinc SEDEX deposits formed in direct response to earthquake activities around the Sinian-Cambrian boundary. The earthquakes are postulated to be an effective dynamic mechanism for triggering the upward migration of deep circulating ore fluids along synsedimentary growth faults and their exhalation onto the sea-floor to form the extensive deposits of stratiform lead-zinc sulphide ore.  相似文献   

11.
 Pipe G3b is part of the Upper Cretaceous carbonatitic Gross Brukkaros Volcanic Field in southern Namibia. The pipe represents the root zone of a diatreme and is located 2800 m west of the rim of Gross Brukkaros, a downsag caldera. The pipe is exposed approximately 550 m below the original Upper Cretaceous land surface. It cuts down into its own feeder dyke, 0.3 m thick. The pipe coalesced from two small pipes and in plan view is 19 m long and 12 m wide. It consists of fragmented Cambrian Nama quartzites and shales of the Fish River subgroup. Despite intensive brecciation, the stratigraphic sequence of the country rocks is almost preserved in the pipe. In addition, the feeder dyke became fragmented too and can be traced in a 2- to 3-m-wide zone full of carbonatite blocks along the southern margin of the pipe. The void space of the breccia is 30–50% in volume. Finally, after the disruption of country rocks and feeder dyke, a little carbonatite magma intruded some of the void space. The breccia of pipe G3b is considered to represent a root zone at the transition from the feeder dyke into a diatreme above. Formation of the breccia required a shock wave thought to have been associated with a last explosion of the diatreme immediately above the present level of exposure. The explosion can be shown to have been phreatomagmatic in origin. Received: 11 October 1996 / Accepted: 6 March 1997  相似文献   

12.
The deep well MV5A, drilled in the western part of the Larderello geothermal field, crossed a 20-cm-thick hydraulic fracture breccia unit at a depth of 1090 m below ground level (b.g.l.). This breccia occurs in a fine-grained Triassic metasandstone and consists of angular to subangular clasts of up to some centimeters in size. Pervasive alteration has affected the breccia clasts and wall rock around the breccia, with the formation of Mg–Fe chlorite. After such alteration, hydrothermal circulation caused the precipitation of two generations of calcite cement. Then, ankerite partially replaced these two calcite generations. Ankerite also precipitated in late veinlets with chlorite. Late hydrothermal activity led to the crystallization of albite, quartz and finally, anhydrite. The calcite contains vapor-rich inclusions and two populations of liquid-rich (L1 and L2) inclusions. L1 inclusions are characterized by homogenization temperatures between 304 and 361°C and salinities from 7.4 to 11.6 wt.% NaCl equivalent; L2 inclusions revealed homogenization temperatures in the range of 189–245°C and salinities from 2.6 to 6.3 wt.% NaCl equivalent. The fluids contained in L2 inclusions were probably trapped coevally with some vapor-rich inclusions under boiling conditions after the L1 inclusions formed. Some of the abundant vapor-rich inclusions in calcite may also represent early, low-temperature inclusions affected by decrepitation and/or stretching and/or leaking during L1 trapping. The liquid-rich (L) inclusions trapped at later stages in ankerite, albite and anhydrite display, respectively, homogenization temperature ranges of 189–198°C, 132–145°C, and 139–171°C, and salinities ranging from 1.6 to 1.7 wt.% NaCl equivalent, 1.4 to 2.1 wt.% NaCl equivalent and 3.7 to 6.2 wt.% NaCl equivalent. The inclusions studied record the evolution, over time, of the fluids flowing in the breccia level: L1 inclusions capture high-temperature fluid (about 300 to 350°C) of high salinity (around 10 wt.% NaCl equivalent) at above-hydrostatic pressures (up to about 150 bar). The L2 inclusions in calcite and liquid-rich inclusions in ankerite and albite represent subsequent hydrothermal fluid evolution toward lower temperatures (about 250 to 130°C), pressures (45 to a few bar) and salinities (6.3 to 1.4 wt.% NaCl equivalent). During this stage, boiling processes and infiltration of meteoric waters probably occurred. Finally, moderately saline fluids (around 5 wt.% NaCl equivalent) at a temperature (about 160°C) close to that of present-day in-hole measurements was trapped in the anhydrite inclusions. The liquids trapped in liquid-rich inclusions circulated at 41,000 years (maximum age of calcite) or later. This age represents an upper limit for the development of vapor-dominated condition, in this part of the geothermal system. The fluids circulating at the breccia level were probably meteoric and/or connate waters. These fluids may have interacted with the anhydrite and carbonate bearing formations present in the Larderello area. The occurrence of the hot and saline fluids, trapped in L1 inclusions at above-hydrostatic pressure, suggests that similar fluids but with higher pressure (≥167 bar) and temperature (≥360°C) may have been responsible for rock fracturing.  相似文献   

13.
The gold deposits in the Jiaodong Peninsula constitute the largest gold mineralized province in China. The mineralization shows common characteristics in their tectonic setting, ore-forming fluid and metallogenic system. Sulfidation and fluid immiscibility are two important mechanisms controlling gold precipitation, both of which consume sulfur in the oreforming fluids. The escape of H_2S from the main ore-forming fluids and the decrease of total sulfur concentration not only lead to the efficient precipitation of gold, but also result in the crystallization of reducing minerals such as pyrrhotite and oxidizing minerals such as magnetite. Quartz solubility shows strong dependence on temperature, pressure, and CO_2 content. The dependence of quartz solubility on pressure is weak at low temperatures, and progressively stronger at higher temperatures.Similarly, the temperature dependence of quartz solubility is relatively low at low pressures, but becomes gradually stronger at high pressures. The results of solubility modeling can constrain the dissolution and reprecipitation behavior of quartz in the oreforming veins and the formation mechanism of different types of quartz veins. The multi-stage mineralization fluid activity resulted in the complex dissolution structure of quartz in the Jiaodong gold veins. Pyrite in the main metallogenic period in the Jiaodong gold deposits shows complex microstructure characteristics at single crystal scale. The trace elements(mainly the coupling of As-and Au-rich belt) and sulfur isotope composition also display a certain regularity. The As-rich fluids might have formed by the initial pulse of ore-forming fluids through As-rich metasedimentary strata, while the As-Au oscillation zone at the margin of pyrite grains is related to the pressure fluctuation caused by fault activity and the local phase separation of fluids. There is a temporal and spatial evolution of gold fineness in the Jiaodong gold deposits. Water/rock reaction(sulfidation) was the main ore-forming mechanism of early gold mineralization, forming relatively high fineness gold, while significant pressure drop in the shallow part accompanied by fluid phase separation promoted the late gold mineralization, forming low fineness gold. Under cratonic destruction setting, dehydration of the amphibolite and granulite facies metamorphic lower-crust resulted in the formation of Au-CO_2-rich ore-forming fluids, which rose along the deep fault and secondary structure, and formed the largescale fault-controlled gold deposits in Jiaodong.  相似文献   

14.
15.
岩石中裂纹对弹性波速度的影响   总被引:13,自引:2,他引:13  
本文在常温常压下,对岩石中的层理,裂纹或裂缝引起的弹性波速变化特征进行了实验研究,并通过简化的人工裂缝模型,研究了裂缝密度和相对位置的变化对波速的影响取得了一些有意义的结果。  相似文献   

16.
The Circum-Pacific subduction zone is a famous gold metallogenic domain in the world, with two important gold metallogenic provinces, the North China Craton and Nevada, which are related to the destruction of the North China Craton and the Wyoming Craton, respectively. Their ore-forming fluids were possibly derived from the stagnant slab in the mantle transition zone. The oceanic lithospheric mantle usually contains serpentine layers up to thousands of meters thick. During plate subduction, serpentine is dehydrated at depths of 200 km and transformed into high-pressure hydrous minerals, known as Phases A to E, which carries water to the depth of 300 km. The overlying big mantle wedge is hydrated during the breakdown of these hydrous facies in the mantle transition zone. The dehydration of the subducted slab in the big mantle wedge releases sulfur-rich fluid, which extracts gold and other chalcophile elements in the surrounding rocks, forming gold-rich fluid. Because the cratonic geotherm is lower than the water-saturated solidus line of lherzolite, the fluid cannot trigger partial melting. Instead, it induces metasomatism and forms pargasite and other water-bearing minerals when it migrates upward to depths of less than 100 km in the cratonic lithospheric mantle, resulting in a water-and gold-rich weak layer. During the destruction of craton, the weak layer is destabilized, releasing gold-bearing fluids that accelerate the destruction. The ore-forming fluids migrate along the shallow weak zone and are accumulated at shallow depths, and subsequently escape along deep faults during major tectonic events, leading to explosive gold mineralization. The ore-forming fluids are rich in ferrous iron, which releases hydrogen at low pressure through iron hydrolysis. Therefore, decratonic gold deposits are often reduced deposits.  相似文献   

17.
 On King George Island during latest Oligocene/earliest Miocene time, submarine eruptions resulted in the emplacement of a small (ca. 500 m estimated original diameter) basalt lava dome at Low Head. The dome contains a central mass of columnar rock enveloped by fractured basalt and basalt breccia. The breccia is crystalline and is a joint-block deposit (lithic orthobreccia) interpreted as an unusually thick dome carapace breccia cogenetic with the columnar rock. It was formed in situ by a combination of intense dilation, fracturing and shattering caused by natural hydrofracturing during initial dome effusion and subsequent endogenous emplacement of further basalt melt, now preserved as the columnar rock. Muddy matrix with dispersed hyaloclastite and microfossils fills fractures and diffuse patches in part of the fractured basalt and breccia lithofacies. The sparse glass-rich clasts formed by cooling-contraction granulation during interaction between chilled basalt crust and surrounding water. Together with muddy sediment, they were injected into the dome by hydrofracturing, local steam fluidisation and likely explosive bulk interaction. The basalt lava was highly crystallised and degassed prior to extrusion. Together with a low effusion temperature and rapid convective heat loss in a submarine setting, these properties significantly affected the magma rheology (increased the viscosity and shear strength) and influenced the final dome-like form of the extrusion. Conversely, high heat retention was favoured by the degassed state of the magma (minimal undercooling), a thick breccia carapace and viscous shear heating, which helped to sustain magmatic (eruption) temperatures and enhanced the mobility of the flow. Received: 1 August 1996 / Accepted: 15 September 1997  相似文献   

18.
水饱和裂纹对地壳岩样中地震波速及各向异性的影响   总被引:11,自引:3,他引:8       下载免费PDF全文
选择4种地壳岩石样品,经干燥或水饱和处理后在不同围压条件下测量了在其中传播的纵、横波的速度及其各向异性.在大气压条件下低孔隙度(<1%岩样中,水饱和样品中的纵波速度明显地比干燥样品中的高,但横波速度的差别不大.因为在低孔隙度岩样中纵波速度对孔隙流体的反应比横波速度敏感,可以用泊松比的变化来反映随着围压的增加晶粒间流体对弹性波传播特性的影响.根据实验数据,按O’Connell模型分别计算了干燥和水饱和岩样中的裂纹密度,与通过实测体应变曲线得到的裂纹孔隙度十分吻合.利用横波的速度和偏振特性可以推断岩样中定向排列微裂纹的空间取向情况.研究表明,同时测量在岩样中传播的纵、横波的速度,通过Vp/Vs比值可以给出有关颗粒边界流体的证据,也可以估计岩样中的裂纹密度.  相似文献   

19.
中地壳的水和水岩相互作用实验及其地球物理涵义   总被引:2,自引:0,他引:2       下载免费PDF全文
本文重点报道了高温高压下流体与流体-岩石相互作用实验结果,提供了中地壳条件下流体性质和水岩反应速率数据.这些数据有助于理解中地壳的一些地球物理现象.作者进行了25℃~435℃和22~39 MPa条件下水-岩相互作用反应动力学实验.同时,研究水在近临界区至超临界区的性质.一般地说,中地壳大致位于10(15)至25 km的深度范围.各地的地壳厚度不同,但是中地壳高导-低速层的深度范围十分相似.中地壳的顶界温度处于300℃,底界大致为450℃范围,压力高达200 MPa以上.流体-岩石相互作用实验表明:硅酸盐矿物和岩石的硅最大溶解速率出现在300℃~400℃.此时,硅酸盐矿物格架解体.通常,地壳里普遍存在水、流体.地壳构造活动导致断裂空隙、减压、流体流动.这时,有可能导致中地壳处于300℃~450℃流体的压力减低,由超临界区进入临界态、亚临界态.这会引发强烈流动的水与岩石相互作用.溶解反应导致岩层的硅淋失,硅的强烈淋失又会导致硅酸盐矿物格架解体,岩石崩塌.同时,进一步促进流体的流动.实验表明300℃~400℃下的强烈水岩相互作用促进了岩石破坏,并有可能影响岩层的地球物理性质,如高导层出现.另外,实验和理论研究表明处于300℃~400℃流体具有高电导率性质.这些水岩相互作用会使中地壳出现高导-低速层.  相似文献   

20.
The subduction channel is defined as a planar to wedge-like area of variable size,internal structure and composition,which forms between the upper and lower plates during slab subduction into the mantle.The materials in the channel may experience complex pressure,temperature,stress and strain evolution,as well as strong fluid and melt activity.A certain amount of these materials may subduct to and later exhume from100 km depth,forming high to ultra-high pressure rocks on the surface as widely discovered in nature.Rock deformation in the channel is strongly assisted by metamorphic fluids activities,which change composition and mechanical properties of rocks and thus affect their subduction and exhumation histories.In this study,we investigate the detailed structure and dynamics of both oceanic and continental subduction channels,by conducting highresolution petrological-thermomechanical numerical simulations taking into account fluid and melt activities.The numerical results demonstrate that subduction channels are composed of a tectonic rock melange formed by crustal rocks detached from the subducting slab and the hydrated mantle rocks scratched from the overriding plate.These rocks may either extrude sub-vertically upward through the mantle wedge to the crust of the upper plate,or exhume along the subduction channel to the surface near the suture zone.Based on our numerical results,we first analyze similarities and differences between oceanic and continental subduction channels.We further compare numerical models with and without fluid and melt activity and demonstrate that this activity results in strong weakening and deformation of overriding lithosphere.Finally,we show that fast convergence of orogens subjected to fluid and melt activity leads to strong deformation of the overriding lithosphere and the topography builds up mainly on the overriding plate.In contrast,slow convergence of such orogens leads to very limited deformation of the overriding lithosphere and the mountain building mainly occurs on the subducting plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号