首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrological risk analysis is essential and provides useful information for dam safety management and decision-making. This study presents the application of bivariate flood frequency analysis to risk analysis of dam overtopping for Geheyan Reservoir in China. The dependence between the flood peak and volume is modelled with the copula function. A Monte Carlo procedure is conducted to generate 100,000 random flood peak-volume pairs, which are subsequently transformed to corresponding design flood hydrographs (DFHs) by amplifying the selected annual maximum flood hydrographs (AMFHs). These synthetic DFHs are routed through the reservoir to obtain the frequency curve of maximum water level and assess the risk of dam overtopping. Sensitive analysis is performed to investigate the influence of different AMFH shapes and correlation coefficients of flood peak and volume on estimated overtopping risks. The results show that synthetic DFH with AMFH shape characterized by a delayed time to peak results in higher risk, and therefore highlight the importance of including a range of possible AMFH shapes in the dam risk analysis. It is also demonstrated that the overtopping risk is increased as the correlation coefficient of flood peak and volume increases and underestimated in the independence case (i.e. traditional univariate approach), while overestimated in the full dependence case. The bivariate statistical approach based on copulas can effectively capture the actual dependence between flood peak and volume, which should be preferred in the dam risk analysis practice.  相似文献   

2.
Abstract

The estimation and review of discharge flow rates in hydraulic works is a fundamental problem in water management. In the case of dams with large regulating capacity, in order to estimate return periods of discharge flow rates from the spillways, it becomes necessary to consider both peak flow and volume of the incoming floods. In this paper, the results of the validation for several methods of assessing design floods for spillways of dams with a large flood control capacity are presented; the validation is performed by comparing the maximum outflows (or the maximum levels reached in the reservoir) obtained from the routing of the design floods with those obtained from the routing of the historical annual maximum floods. The basin of Malpaso Dam, Mexico, is used as the case study.

Editor D. Koutsoyiannis

Citation Domínguez, M.R. and Arganis, J.M.L., 2012. Validation of methods to estimate design discharge flow rates for dam spillways with large regulating capacity. Hydrological Sciences Journal, 57 (3), 460–478.  相似文献   

3.
Numerous dams have been constructed in the midstream and downstream regions of Lancang River, which form a complex cascade reservoirs system. The safety of dams is critical for water resource management of the whole system. To check the safety of dams, this study used the MIKE 11 model to simulate flood routing along the Lancang River from Xiaowan dam to Jinghong dam under extreme situations of 100-, 500-, 1000-, 5000-, and 10,000-year design floods throughout the whole cascade reservoirs system. The design flood events used as the input for the MIKE 11 model contains the design flood hydrograph of the upstream reservoirs and corresponding flood hydrographs of the intermediate areas. The design flood hydrograph of the upstream reservoirs was obtained using the Equal Frequency Factor Method, and the corresponding flood hydrograph of the intermediate areas was obtained using the Equivalent Frequency Regional Composition Method. The results show that all dams are safe for the 100-, 500-, 1000-, and 5000-year design flood situations throughout the whole cascade reservoirs system, whereas the Manwan and Jinghong dams have a risk of overtopping under a 10,000-year design flood. The curves showing the relationship between the highest water level and return period for the dams are also presented.  相似文献   

4.
Development of design flood hydrographs using probability density functions   总被引:1,自引:0,他引:1  
Probability density functions (PDFs) are used to fit the shape of hydrographs and have been popularly used for the development of synthetic unit hydrographs by many hydrologists. Nevertheless, modelling the shapes of continuous stream flow hydrographs, which are probabilistic in nature, is rare. In the present study, a novel approach was followed to model the shape of stream flow hydrographs using PDF and subsequently to develop design flood hydrographs for various return periods. Four continuous PDFs, namely, two parameter Beta, Weibull, Gamma and Lognormal, were employed to fit the shape of the hydrographs of 22 years at a site of Brahmani River in eastern India. The shapes of the observed and PDF fitted hydrographs were compared and root mean square errors, error of peak discharge (EQP) and error of time to peak (ETP) were computed. The best‐fitted shape and scale parameters of all PDFs were subjected to frequency analysis and the quartiles corresponding to 20‐, 50‐, 100‐ and 200‐year were estimated. The estimated parameters of each return period were used to develop the flood hydrographs for 20‐, 50‐, 100‐ and 200‐year return periods. The peak discharges of the developed design flood hydrographs were compared with the design discharges estimated from the frequency analysis of 22 years of annual peak discharges at that site. Lognormal‐produced peak discharge was very close to the estimated design discharge in case of 20‐year flood hydrograph. On the other hand, peak discharge obtained using the Weibull PDF had close agreement with the estimated design discharge obtained from frequency analysis in case of 50‐, 100‐ and 200‐year return periods. The ranking of the PDFs based on estimation of peak of design flood hydrograph for 50‐, 100‐ and 200‐year return periods was found to have the following order: Weibull > Beta > Lognormal > Gamma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The estimation of sub‐daily flows from daily flood flows is important for many hydrological and hydraulic applications. Flows during flood events often vary significantly within sub‐daily time‐scales, and failure to capture the sub‐daily flood characteristic can result in an underestimation of the instantaneous flood peaks, with possible risk of design failure. It is more common to find a longer record of daily flow series (observed or modelled using daily rainfall series) than sub‐daily flow data. This paper describes a novel approach, known as the steepness index unit volume flood hydrograph approach, for disaggregating daily flood flows into sub‐daily flows that takes advantage of the strong relationship between the standardized instantaneous flood peak and the standardized daily flood hydrograph rising‐limb steepness index. The strength of this relationship, which is considerably stronger than the relationship between the standardized flood peak and the event flood volume, is shown using data from six rivers flowing into the Gippsland Lakes in southeast Australia. The results indicate that the steepness index unit volume flood hydrograph approach can be used to disaggregate modelled daily flood flows satisfactorily, but its reliability is dependent on a model's ability to simulate the standardized daily flood hydrograph rising‐limb steepness index and the event flood volume. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Climatically driven changes in streamflow and hillslope sediment supply could potentially alter stream surface grain size distribution patterns and thereby impact habitat for a number of threatened and endangered in‐stream fish species. Relatively little is known about hydrograph (shape, peak flow) influence or the relative importance of chronic and episodic hillslope inputs on channel conditions. To better understand these external drivers, we calculated sediment routing through a gravel‐bedded river network using a one‐dimensional (1D) bedload transport model. We calculated changes in grain sizes and estimated Chinook salmon habitat suitability caused by a dry year and an extreme flood hydrograph, and chronic (diffusive, overland flow) or pulse (landslide, debris flow) hillslope sediment supplies. To obtain accurate channel conditions, a relatively high reference Shields stress, representative of steep mountain streams, was needed. An extreme event flood without any hillslope sediment inputs caused widespread bed coarsening and a decrease in aquatic habitat. Chronic sediment input combined with this hydrograph eliminated any changes in grain size and habitat, although when combined with a dry year flow, caused systematic bed fining. The influence of a given hydrograph therefore highly depends on the hillslope sediment supply. Regardless of the flow hydrograph or sediment pulse timing, grain size distribution or location, pulse sediment inputs did not cause widespread grain size changes despite being 100 times the total chronic input volume. Widespread and continuous hillslope sediment inputs may influence channel grain sizes and aquatic habitat more than a single discrete sediment pulse. Depending on the magnitudes of flow hydrograph and sediment supply alterations, climate change may induce no differences in grain sizes or very dramatic changes with significant consequences for long‐term sustainability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This paper establishes a numerical detention pond volume model based on the hydrological continuity equation and the Runge-Kutta numerical method. Experiments for the conditions of both steady and unsteady flow have been used to verify the model. In unsteady flow cases, the outflow hydrograph by numerical simulation are fairly consistent with experimental value. Both experimental and numerical results indicate that wider rectangular sharp-crested weirs or larger rectangular slot tend to induce greater outflow discharges, which undesirably cut down the detention volume. Experiments show that the necessary detention volume of rectangular slot is smaller than that of the rectangular sharp-crested weir for a constant flood peak reduction. That is, the rectangular slot is the recommended outflow device when flood peak reduction is the design criteria. The study also shows that necessary detention volume of the short rainfall duration is less than that of the long rainfall duration under constant allowable maximum discharge.  相似文献   

8.
The reliability of a procedure for investigation of flooding into an ungauged river reach close to an urban area is investigated. The approach is based on the application of a semi‐distributed rainfall–runoff model for a gauged basin, including the flood‐prone area, and that furnishes the inlet flow conditions for a two‐dimensional hydraulic model, whose computational domain is the urban area. The flood event, which occurred in October 1998 in the Upper Tiber river basin and caused significant damage in the town of Pieve S. Stefano, was used to test the approach. The built‐up area, often inundated, is included in the gauged basin of the Montedoglio dam (275 km2), for which the rainfall–runoff model was adapted and calibrated through three flood events without over‐bank flow. With the selected set of parameters, the hydrological model was found reasonably accurate in simulating the discharge hydrograph of the three events, whereas the flood event of October 1998 was simulated poorly, with an error in peak discharge and time to peak of −58% and 20%, respectively. This discrepancy was ascribed to the combined effect of the rainfall spatial variability and a partial obstruction of the bridge located in Pieve S. Stefano. In fact, taking account of the last hypothesis, the hydraulic model reproduced with a fair accuracy the observed flooded urban area. Moreover, incorporating into the hydrological model the flow resulting from a sudden cleaning of the obstruction, which was simulated by a ‘shock‐capturing’ one‐dimensional hydraulic model, the discharge hydrograph at the basin outlet was well represented if the rainfall was supposed to have occurred in the region near the main channel. This was simulated by reducing considerably the dynamic parameter, the lag time, of the instantaneous unit hydrograph for each homogeneous element into which the basin is divided. The error in peak discharge and time to peak decreased by a few percent. A sensitivity analysis of both the flooding volume involved in the shock wave and the lag time showed that this latter parameter requires a careful evaluation. Moreover, the analysis of the hydrograph peak prediction due to error in rainfall input showed that the error in peak discharge was lower than that of the same input error quantity. Therefore, the obtained results allowed us to support the hypothesis on the causes which triggered the complex event occurring in October 1998, and pointed out that the proposed procedure can be conveniently adopted for flood risk evaluation in ungauged river basins where a built‐up area is located. The need for a more detailed analysis regarding the processes of runoff generation and flood routing is also highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Evaluation of dam overtopping probability induced by flood and wind   总被引:5,自引:4,他引:1  
This study develops a probability-based methodology to evaluate dam overtopping probability that accounts for the uncertainties arising from wind speed and peak flood. A wind speed frequency model and flood frequency analysis, including various distribution types and uncertainties in their parameters, are presented. Furthermore, dam overtopping probabilities based on monthly maximum (MMax) series models are compared with those of the annual maximum (AMax) series models. An efficient sampling scheme, which is a combination of importance sampling (IS) and Latin Hypercube sampling (LHS) methods, is proposed to generate samples of peak flow rate and wind speed especially for rare events. Reservoir routing, which incorporates operation rules, wind setup, and run-up, is used to evaluate dam overtopping probability.  相似文献   

10.
In this paper a new procedure to derive flood hazard maps incorporating uncertainty concepts is presented. The layout of the procedure can be resumed as follows: (1) stochastic input of flood hydrograph modelled through a direct Monte-Carlo simulation based on flood recorded data. Generation of flood peaks and flow volumes has been obtained via copulas, which describe and model the correlation between these two variables independently of the marginal laws involved. The shape of hydrograph has been generated on the basis of a historical significant flood events, via cluster analysis; (2) modelling of flood propagation using a hyperbolic finite element model based on the DSV equations; (3) definition of global hazard indexes based on hydro-dynamic variables (i.e., water depth and flow velocities). The GLUE methodology has been applied in order to account for parameter uncertainty. The procedure has been tested on a flood prone area located in the southern part of Sicily, Italy. Three hazard maps have been obtained and then compared.  相似文献   

11.
As an alternative to the commonly used univariate flood frequency analysis, copula frequency analysis can be used. In this study, 58 flood events at the Litija gauging station on the Sava River in Slovenia were analysed, selected based on annual maximum discharge values. Corresponding hydrograph volumes and durations were considered. Different bivariate copulas from three families were applied and compared using different statistical, graphical and upper tail dependence tests. The parameters of the copulas were estimated using the method of moments with the inversion of Kendall's tau. The Gumbel–Hougaard copula was selected as the most appropriate for the pair of peak discharge and hydrograph volume (Q‐V). The same copula was also selected for the pair hydrograph volume and duration (V‐D), and the Student‐t copula was selected for the pair of peak discharge and hydrograph duration (Q‐D). The differences among most of the applied copulas were not significant. Different primary, secondary and conditional return periods were calculated and compared, and some relationships among them were obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

In a typical reservoir routing problem, the givens are the inflow hydrograph and reservoir characteristic functions. Flood attenuation investigations can be easily accomplished using a hydrological or hydraulic routing of the inflow hydrograph to obtain the reservoir outflow hydrograph, unless the inflow hydrograph is unavailable. Although attempts for runoff simulation have been made in ungauged basins, there is only a limited degree of success in special cases. Those approaches are, in general, not suitable for basins with a reservoir. The objective of this study is to propose a procedure for flood attenuation estimation in ungauged reservoir basins. In this study, a kinematic-wave based geomorphic IUH model was adopted. The reservoir inflow hydrograph was generated through convolution integration using the rainfall excess and basin geomorphic information. Consequently, a fourth-order Runge-Kutta method was used to route the inflow hydrograph to obtain the reservoir outflow hydrograph without the aid of recorded flow data. Flood attenuation was estimated through the analysis of the inflow and outflow hydrographs of the reservoir. An ungauged reservoir basin in southern Taiwan is presented as an example to show the applicability of the proposed analytical procedure. The analytical results provide valuable information for downstream flood control work for different return periods.  相似文献   

13.
Flood hydrographs from ephemeral streams in arid areas provide valuable information for assessing run‐off and groundwater recharge. However, such data are often scarce or incomplete, especially in hyper‐arid regions. The hypothesis of this study was that it is possible to reconstruct a hydrograph of a specific point along an ephemeral stream with the knowledge of only the peak flow rate of a flood event at that point and that this can be done at almost every point along the stream. The feasibility of this approach lies in the shape of the recession stage of the flood hydrograph, which is known to be a repeating phenomenon. The recession stage comes immediately after the peak flow rate, when it begins its decline, and lasts until the flood is extinguished. A general shape of the flood recession stage can be provided. Because the recession stage represents ~80% of the duration of a flood event, it can provide a general idea of the flood hydrograph's shape. A simple model based on geometric progression is suggested to describe the repeating recession stage of a flood. The advantage of the proposed model is that it requires only one parameter: the recession characteristic at a fixed point along the ephemeral stream, termed recession coefficient q. By knowing the recession coefficient of a fixed point and the peak flow rate of a flood event at that point, one can plot the flood hydrograph. A good agreement is shown between the observed and computed values of the recession stage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In recognition of the non‐linear relationship between storage and discharge existing in most river systems, non‐linear forms of the Muskingum model have been proposed, together with methods to calibrate the model parameters. However, most studies have focused only on routing a typical hypothetical flood hydrograph characterized by a single peak. In this study, we demonstrate that the storage–discharge relationship adopted for the non‐linear Muskingum model is not adequate for routing flood hydrographs in natural channels, which are often characterized by multiple peaks. As an alternative, an evolutionary algorithm‐based modelling approach, i.e. genetic programming (GP), is proposed, which is found to route complex flood hydrographs accurately. The proposed method is applied for constructing a routing model for a channel reach along the Walla Walla River, USA. The GP model performs extremely well with a root‐mean‐square error (RMSE) of 0·73 m3 s?1 as against an RMSE of 3·26 m3 s?1 for routing the multi‐peaked hydrograph. The advantage of GP lies in the fact that, unlike other models, it establishes the routing relationship in an easy and simple mathematical form. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The study simulated the effect of using reservoir storage for reducing flood peaks and volumes in urban areas with the Dzorwulu basin in Accra, Ghana as case study. A triangulated irregular network surface of the floodplain was created using ArcGIS from ESRI by integrating digital elevation model and the map of the study area. The weighted curve number for the basin was obtained from the land use and soil type shape files using ArcGIS. The Soil Conservation Service curve number unit hydrograph procedure was used to obtain an inflow hydrograph based on the highest rainfall recorded in recent history (3–4 June 1995) in the study area and then routed through an existing reservoir to assess the impact of the reservoir on potential flood peak attenuation. The results from the analysis indicate that a total of 13.09 × 106 m3 of flood water was generated during this 10‐h rainstorm, inundating a total area of 6.89 km2 with a depth of 4.95 m at the deepest section of the basin stream. The routing results showed that the reservoir has capacity to store 34.52% of the flood hydrograph leading to 45% reduction in flood peak and subsequently 38.5% reduction in flood inundation depth downstream of the reservoir. From results of the study, the reservoir storage concept looks promising for urban flood management in Ghana, especially in communities that are over‐urbanized downstream but have some space upstream for creating the storage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A lumped model for streamflow routing in arid ephemeral channels has been developed. The governing equations for movement of flood waves subjected to transmission losses are simplified through a time averaging process to develop an ordinary differential equation describing transmission losses as a function of distance, inflow, channel width, time parameters of flow and effective hydraulic conductivity. The resulting equation has an analytical solution and simulates runoff volume and peak discharge rates for individual storm events. The outflow hydrograph is fairly well approximated with a triangular approximation. The model is simplified and constructed to require a minimum of observed data for calibration. It can also be used for ungauged basins in arid regions through parameterization.  相似文献   

17.
Design flood estimates for a given return period are required in both gauged and ungauged catchments for hydraulic design and risk assessments. Contrary to classical design estimates, synthetic design hydrographs provide not only information on the peak magnitude of events but also on the corresponding hydrograph volumes together with the hydrograph shapes. In this study, we tested different regionalization approaches to transfer parameters of synthetic design hydrographs from gauged to ungauged catchments. These approaches include classical regionalization methods such as linear regression techniques, spatial methods, and methods based on the formation of homogeneous regions. In addition to these classical approaches, we tested nonlinear regression models not commonly used in hydrological regionalization studies, such as random forest, bagging, and boosting. We found that parameters related to the magnitude of the design event can be regionalized well using both linear and nonlinear regression techniques using catchment area, length of the main channel, maximum precipitation intensity, and relief energy as explanatory variables. The hydrograph shape, however, was found to be more difficult to regionalize due to its high variability within a catchment. Such variability might be better represented by looking at flood-type specific synthetic design hydrographs.  相似文献   

18.
Unit hydrographs (UHs), along with design rainfalls, are frequently used to determine the discharge hydrograph for design and evaluation of hydraulic structures. Due to the presence of various uncertainties in its derivation, the resulting UH is inevitably subject to uncertainty. Consequently, the performance of hydraulic structures under the design storm condition is uncertain. This paper integrates the linearly constrained Monte-Carlo simulation with the UH theory and routing techniques to evaluate the reliability of hydraulic structures. The linear constraint is considered because the water volume of each generated design direct runoff hydrograph should be equal to that of the design effective rainfall hyetograph or the water volume of each generated UH must be equal to one inch (or cm) over the watershed. For illustration, the proposed methodology is applied to evaluate the overtopping risk of a hypothetical flood detention reservoir downstream of Tong-Tou watershed in Taiwan.  相似文献   

19.
The detention pond is one of the crucial items in detention facilities. It may effectively alleviate the occurrence of peak discharge, control the center of flood flow, and reduce the amount of soil loss. The objective of this study is analyzing the detention volume change of a detention pond with long-duration rainfall under the known isosceles trapezoidal inflow hydrograph model. The volume change of detention, which is under the influences of a givenisosceles trapezoidal inflow hydrograph and the extent of peak attenuation, is investigated by using the non-dimensional detention theory and the related mathematical analyses. The minimum detention volume of a detention pond can therefore be calculated based on the estimated of volume change of detention. The proposed detention volume estimation model can be used for the design of detention of facilities during the hillside development.  相似文献   

20.
Unit hydrographs (UHs), along with design rainfalls, are frequently used to determine the discharge hydrograph for design and evaluation of hydraulic structures. Due to the presence of various uncertainties in its derivation, the resulting UH is inevitably subject to uncertainty. Consequently, the performance of hydraulic structures under the design storm condition is uncertain. This paper integrates the linearly constrained Monte-Carlo simulation with the UH theory and routing techniques to evaluate the reliability of hydraulic structures. The linear constraint is considered because the water volume of each generated design direct runoff hydrograph should be equal to that of the design effective rainfall hyetograph or the water volume of each generated UH must be equal to one inch (or cm) over the watershed. For illustration, the proposed methodology is applied to evaluate the overtopping risk of a hypothetical flood detention reservoir downstream of Tong-Tou watershed in Taiwan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号