首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dale W. Smith 《Icarus》1980,44(1):116-133
The Galilean satellite eclipse technique for measuring the aerosol distribution in the Jovian lower stratosphere and upper troposphere is described and applied using 30 color observations of 12 natural satellite eclipses obtained with the 200-in Hale telescope. These events probe the North and South Polar Regions, the North Temperate Belt, the South Equatorial Belt, the South Tropical Zone, the South Temperate Zone, and the Great Red Spot. Aerosol is found above the visible cloud tops in all locations. It is very tenuous and varies with altitude, increasing rapidly with downward passage through the tropopause. The aerosol extinction coefficient at 1.05 μm is 1.0 ± 0.05 × 10?8 cm?1 at the tropopause and the mass density is a few times 10?13 g cm?3. The observations require some aerosol above the tropopause but do not clearly determine its structure. The present analysis emphasizes an extended haze distribution, but the alternate possibility that the stratospheric aerosol resides in a thin layer is not excluded. The vertical aerosol optical depth above the tropopause at 1.05 μm exceeds 0.04 in the NPR, SPR, NTB, SEB, and StrZ, is ~0.006 ± 0.003 in the STZ, and is ~ 0.003 ± 0.001 above the GRS. The aerosol extinction increases with decreasing wavelength in the STZ and NTB and indicates a particle radius of 0.2–0.5 μm; a radius of ~0.9 μm is indicated in the STrZ.  相似文献   

2.
Vertical distributions and spectral characteristics of Titan’s photochemical aerosol and stratospheric ices are determined between 20 and 560 cm?1 (500–18 μm) from the Cassini Composite Infrared Spectrometer (CIRS). Results are obtained for latitudes of 15°N, 15°S, and 58°S, where accurate temperature profiles can be independently determined.In addition, estimates of aerosol and ice abundances at 62°N relative to those at 15°S are derived. Aerosol abundances are comparable at the two latitudes, but stratospheric ices are ~3 times more abundant at 62°N than at 15°S. Generally, nitrile ice clouds (probably HCN and HC3N), as inferred from a composite emission feature at ~160 cm?1, appear to be located over a narrow altitude range in the stratosphere centered at ~90 km. Although most abundant at high northern latitudes, these nitrile ice clouds extend down through low latitudes and into mid southern latitudes, at least as far as 58°S.There is some evidence of a second ice cloud layer at ~60 km altitude at 58°S associated with an emission feature at ~80 cm?1. We speculate that the identify of this cloud may be due to C2H6 ice, which in the vapor phase is the most abundant hydrocarbon (next to CH4) in the stratosphere of Titan.Unlike the highly restricted range of altitudes (50–100 km) associated with organic condensate clouds, Titan’s photochemical aerosol appears to be well-mixed from the surface to the top of the stratosphere near an altitude of 300 km, and the spectral shape does not appear to change between 15°N and 58°S latitude. The ratio of aerosol-to-gas scale heights range from 1.3–2.4 at about 160 km to 1.1–1.4 at 300 km, although there is considerable variability with latitude. The aerosol exhibits a very broad emission feature peaking at ~140 cm?1. Due to its extreme breadth and low wavenumber, we speculate that this feature may be caused by low-energy vibrations of two-dimensional lattice structures of large molecules. Examples of such molecules include polycyclic aromatic hydrocarbons (PAHs) and nitrogenated aromatics.Finally, volume extinction coefficients NχE derived from 15°S CIRS data at a wavelength of λ = 62.5 μm are compared with those derived from the 10°S Huygens Descent Imager/Spectral Radiometer (DISR) data at 1.583 μm. This comparison yields volume extinction coefficient ratios NχE(1.583 μm)/NχE(62.5 μm) of roughly 70 and 20, respectively, for Titan’s aerosol and stratospheric ices. The inferred particle cross-section ratios χE(1.583 μm)/χE(62.5 μm) appear to be consistent with sub-micron size aerosol particles, and effective radii of only a few microns for stratospheric ice cloud particles.  相似文献   

3.
High vertical resolution scans of the Venus limb made by the Pioneer Venus Orbiter Cloud Photopolarimeter at 365 nm and 690 nm wavelengths are used to investigate the level of the haze top, and haze particle properties and scale height. Haze particle vertical optical depth 0.01 occurs at altitude 80 to 85 km based on knowledge of instrument pointing. The lowest haze tops were observed close to subsolar longitudes but the data set supports a longitude dependence no more than a temporal variation. Single scattering computations for a spherical shell atmosphere show good agreement with observed intensities for particles smaller than 0.3 μm radius and refractive index less than 1.7, consistent with, but not limited to, concentrated sulfuric acid. Particle scale height in the 0.5 to 2 mbar pressure regions varies between 1 and 3 km over the season (12 of 92 days), latitude (15–45°N), and local time (0900–1800) ranges of the observations. Detached layers of haze are sometimes present. An average particle scale height of 2.2 km at 84 km altitude yields an eddy diffusion coefficient of 1.3 × 105 cm2 sec?1.  相似文献   

4.
We have analyzed the continuum emission of limb spectra acquired by the Cassini/CIRS infrared spectrometer in order to derive information on haze extinction in the 3–0.02 mbar range (∼150–350 km). We focused on the 600–1420 cm−1 spectral range and studied nine different limb observations acquired during the Cassini nominal mission at 55°S, 20°S, 5°N, 30°N, 40°N, 45°N, 55°N, 70°N and 80°N. By means of an inversion algorithm solving the radiative transfer equation, we derived the vertical profiles of haze extinction coefficients from 17 spectral ranges of 20-cm−1 wide at each of the nine latitudes. At a given latitude, all extinction vertical profiles retrieved from various spectral intervals between 600 and 1120 cm−1 display similar vertical slopes implying similar spectral characteristics of the material at all altitudes. We calculated a mean vertical extinction profile for each latitude and derived the ratio of the haze scale height (Hhaze) to the pressure scale height (Hgas) as a function of altitude. We inferred Hhaze/Hgas values varying from 0.8 to 2.4. The aerosol scale height varies with altitude and also with latitude. Overall, the haze extinction does not show strong latitudinal variations but, at 1 mbar, an increase by a factor of 1.5 is observed at the north pole compared to high southern latitudes. The vertical optical depths at 0.5 and 1.7 mbar increase from 55°S to 5°N, remain constant between 5°N and 30°N and display little variation at higher latitudes, except the presence of a slight local maximum at 45°N. The spectral dependence of the haze vertical optical depth is uniform with latitude and displays three main spectral features centered at 630 cm−1, 745 cm−1 and 1390 cm−1, the latter showing a wide tail extending down to ∼1000 cm−1. From 600 to 750 cm−1, the optical depth increases by a factor of 3 in contrast with the absorbance of laboratory tholins, which is generally constant. We derived the mass mixing ratio profiles of haze at the nine latitudes. Below the 0.4-mbar level all mass mixing ratio profiles increase with height. Above this pressure level, the profiles at 40°N, 45°N, 55°N, at the edge of the polar vortex, display a decrease-with-height whereas the other profiles increase. The global increase with height of the haze mass mixing ratio suggest a source at high altitudes and a sink at low altitudes. An enrichment of haze is observed at 0.1 mbar around the equator, which could be due to a more efficient photochemistry because of the strongest insolation there or an accumulation of haze due to a balance between sedimentation and upward vertical drag.  相似文献   

5.
We present results of the dual-frequency radio sounding of the Venusian ionosphere carried out by the Venera 9 and 10 satellites in 1975. Thirteen height profiles of electron density for different solar zenith angles varying from 10 to 87° have been obtained by analyzing the refraction bending of radiorays in the sounded ionssphere. The main maximum of electron density at a height of 140–150 km depends on the solar zenith angle and is 1.4 to 5 × 105 cm?3. The lower maximum is determined definitely to be at ~130 km high. In the main and lower maxima the electron density variations with solar zenith angle are in good agreement with the Chapman layer theory. For the first time it is found that the height of the upper boundary for the daytime ionosphere (hi) depends regularly on the solar zenith angle. At Z < 60°, hi does not exceed 300 km while at Z > 60°, it increases with Z and comes up to ~ 600 km at Z ~ 80°.  相似文献   

6.
Two coherently related radio signals transmitted from Voyager 1 at wavelengths of 13 cm (S-band) and 3.6 cm (X-band) were used to probe the equatorial atmosphere of Titan. The measurements were conducted during the occultation of the spacecraft by the satellite on November 12, 1980. An analysis of the differential dispersive frequency measurements did not reveal any ionization layers in the upper atmosphere of Titan. The resolution was approximately 3 × 103 and 5 × 103 electrons/cm3 near the evening and morning terminators, respectively. Abrupt signal changes observed at ingress and egress indicated a surface radius of 2575.0 ± 0.5 km, leading to a mean density of 1.881 ± 0.002 g cm?3 for the satellite. The nondispersive data were used to derive profiles in height of the gas refractivity and microwave absorption in Titan's troposphere and stratosphere. No absorption was detected; the resolution was about 0.01 dB/km at the 13-cm wavelength. The gas refractivity data, which extend from the surface to about 200 km altitude, were interpreted in two different ways. In the first, it is assumed that N2 makes up essentially all of the atmosphere, but with very small amounts of CH4 and other hydrocarbons also present. This approach yielded a temperature and pressure at the surface of 94.0 ± 0.7°K and 1496 ± 20 mbar, respectively. The tropopause, which was detected near 42 km altitude, had a temperature of 71.4 ± 0.5°K and a pressure of about 130 mbar. Above the tropopause, the temperature increased with height, reaching 170 ± 15°K near the 200-km level. The maximum temperature lapse rate observed near the surface (1.38 ± 0.10°K/km) corresponds to the adiabatic value expected for a dry N2 atmosphere—indicating that methane saturation did not occur in tbis region. Above the 3.5-km altitude level the lapse rate dropped abruptly to 0.9 ± 0.1°K/km and then decreased slowly with increasing altitude, crossing zero at the tropopause. For the N2 atmospheric model, the lapse rate transition at the 3.5-km level appears to mark the boundary between a convective region near the surface having the dry adiabatic lapse rate, and a higher stable region in radiative equilibrium. In the second interpretation of the refractivity data, it is assumed, instead, that the 3.5 km altitude level corresponds to the bottom of a CH4 cloud layer, and that N2 and CH4 are perfectly mixed below this level. These assumptions lead to an atmospheric model which below the clouds contains about 10% CH4 by number density. The temperature near the surface is about 95°K. Arguments concerning the temperature lapse rates computed from the radio measurements appear to favor models in which methane forms at most a limited haze layer high in the troposphere.  相似文献   

7.
We utilized aerosol extinction coefficient inferred from Cassini/CIRS spectra in the far and mid infrared region to derive the extinction cross-section near an altitude of 190 km at 15°S (from far-IR) and 20°S (from mid-IR). By comparing the extinction cross section that are derived from observations with theoretical calculations for a fractal aggregate of 3000 monomers, each having a radius of 0.05 μm, and a fractal dimension of 2, we are able to constrain the refractive index of Titan’s aerosol between 70 and 1500 cm?1 (143 and 6.7 μm). As the real and imaginary parts of the refractive index are related by the Kramers–Kronig equation, we apply an iterative process to determine the optical constants in the thermal infrared. The resulting spectral dependence of the imaginary index displays several spectral signatures, some of which are also seen for some Titan’s aerosol analogues (tholins) produced in laboratory experiments. We find that Titan’s aerosols are less absorbent than tholins in the thermal infrared. The most prominent emission bands observed in the mid-infrared are due to CH bending vibrations in methyl and methylene groups. It appears that Titan’s aerosols predominantly display vibrations implying carbon and hydrogen atoms and perhaps marginally nitrogen. In the mid infrared, all the aerosol spectral signatures are observed at three additional latitudes (56°S, 5°N and 30°N) and in the 193–274 km altitude range, which implies that Titan’s aerosols exhibit the same chemical composition in all investigated latitude and altitude regions.  相似文献   

8.
David Wallach  Bruce Hapke 《Icarus》1985,63(3):354-373
The problem of the reflection of light from an optically thick, spherical atmosphere in which the scatterers are distributed exponentially with a scale height small compared to the radius of the planet is discussed. Exact formal solutions are obtained for the single scattered component. Useful approximate analytic solutions, which also include multiply scattered light, are given. The results are applied to the analysis of the Mariner 10 limb and terminator images of Venus. The altitude of the “detached” haze layer discovered by Mariner 10 is at 79–85 km, but in places the haze exists above 100 km. This layer apparently is a stable, planetwide feature which forms at the top of the Pioneer Venus upper haze layer. It was similar in location, scale height, and thickness at the times of the two missions, in contrast to the lower, high-altitude haze which changed dramatically. We discuss two possibilities for the nature of the limb hazes. (1) The lower haze is probably the sulfuric acid cloud and the “detached” layer may be a separate water-ice haze. (2)The “detached” haze layer may not be separate at all, but part of the sulfuric acid haze, and the apparent “gap” at 75–80 km may be the source region of a broadband absorber. The spatial distribution of the strong near-UV absorber, which may be elemental sulfur as first suggested by B. Hapke and R. Nelson (1975, J. Atmos. Sci.32, 1212–1218), is examined in light of our results. Several arguments indicate that there is no nonabsorbing, overlying haze and that the UV absorber extends to the top of the haze 8layer.  相似文献   

9.
Abstract— Following a brilliant daylight fireball at 10:10 a.m. (local time) on 30 September 1984, a single stone weighing 488.1 grams was recovered from Binningup beach (33°09′23″S, 115°40′35″E), Western Australia. Data from 23 reported sightings of the fireball indicate an angle of trajectory 20–40° from the horizontal, a flight-path bearing N210°E and an end-point (ca. 32°39′S, 115°54.5′E) at a height of ~20–30 km. A recrystallized chondritic texture and the presence of olivine and low-Ca orthopyroxene with compositions of Fa18.4 (PMD 1.1)and Fs16.1 (PMD 1.1), respectively, show that Binningup is a typical member of the H-group of ordinary chondrites. Uniform mineral compositions and the presence of generally microcrystalline plagioclase feldspar indicate that the meteorite belongs to petrologic type 5. Pervasive fracturing of silicates suggests mild pre-terrestrial shock loading. Measurements (dpm kg?1) of cosmogenic radionuclides including 22Na (61 ± 5), 26Al (49 ± 3) and 54Mn (66 ± 10) indicate a normal history of irradiation.  相似文献   

10.
The peculiarities of non-Hubble bulk motions of galaxies are studied by analyzing a sample of 1271 thin edge-on spirals with distances determined using a multiparametric Tully-Fisher relation that includes the amplitude of the galaxy rotation, the blue and red diameters, surface brightness, and morphological type. In the purely dipole approximation, the bulk motion of galaxies relative to the cosmic microwave background frame can be described by the velocity of 336±96 km s?1 in the direction l=321°, b=?1° within radius R max =10000 km s?1. An analysis of more complex velocity field models shows that the anisotropy of the Hubble expansion described by the quadrupole term is equal to ~5% on scale lengths R max=6000–10000 km s?1. The amplitude within the Local Supercluster (R max=3000 km s?1) is as high as ~20%. The inclusion of the octupole component reduces the dipole amplitude to 134±111 km s?1 on scale lengths of ~8000 km s?1. The most remarkable feature of the galaxy velocity field within R max=8000 km s?1 is the zone of minimum centered on l=80°, b=0° (the constellation of Cygnus) whose amplitude reaches 18% of the mean Hubble velocity.  相似文献   

11.
An analysis of the Mariner 10 dual frequency radio occultation recordings has yielded new information on the radius and atmosphere of Mercury. The ingress measurements which were conducted near 1.1° North latitude and 67.4° East longitude on the night side of the planet, gave a value for the radius of 2439.5 ± 1 km. Egress near 67.6° North latitide and 258.4° East longitude in the sunlit side yielded a radius of 2439.0 ± 1 km. The atmospheric measurements showed the electron density to be less than 103 cm?3 on both sides of the planet. From the latter result one may infer an upper limit to the dayside surface gas density of 106 molecules per cm3.  相似文献   

12.
Data processing and interpretation of the nephelometer measurements made in the Venus atmosphere aboard the Venera 9, 10 and 11 landers in the sunlit hemisphere near the equator are discussed. These results were used to obtain the aerosol distribution and its microphysical properties from 62 km to the surface. The main aerosol content is found in the altitude range between 62 km (where measurements began) and 48 km, the location of the cloud region. Three prominent layers labeled as I (between 62 and 57 km), II (between 57 and 51 km) and III (between 51 and 48 km), each with different particle characteristics are discovered within the clouds. The measured light-scattering patterns can be intrepreted as having been produced by particles with effective radii from 1 to 2 μm depending on height and indices of refractivity from 1.45 in layer I to 1.42 in layer III. These values do not contradict the idea that the droplets are made of sulfuric acid. In layers II and III the particle size distribution is at least bimodal rather than uni-modal. The index of refraction is found to decrease to 1.33 in the lower part of layer II, suggesting a predominant abundance of larger particles of different chemical origin, and chlorine compounds are assumed to be relevant to this effect. In the entire heightrange of the Venera 9–11 craft descents, the clouds are rather rarefied and are characterized by a mean volume scattering coefficient σ ~ 2 × 10?5 cm?1 that corresponds to the mean meteorological range of visibility of about 2 km. The average mass content of condensate is estimated to be equal to 4 × 10?9 g/cm3, and the total optical depth of clouds to τ ~ 35. Near the bottom of layer III clouds are strongly variable. In the subcloud atmosphere a haze was observed between 48 and 32 km; that haze is mainly made of submicron particles, reff ~ 0.1μm. The atmosphere below that is totally transparent but separate (sometimes possibly disappearing) layers may be present up to a height of 8 km above the surface. A model of this region with a very low particle density (N ? 2–3 cm?3) strongly refractive large particles (reff ? 2.5 μm; 1.7 < n < 2.0) provided satisfactory agreement. The optical depth of aerosol in the atmosphere below the subcloud haze does not exceed 2.5.  相似文献   

13.
The four entry probes of the Pioneer Venus mission measured the radiative net flux in the atmosphere of Venus at latitudes of 60°N, 31°S, 27°S, and 4°N. The three higher latitude probes carried instruments (small probe net flux radiometers; SNFR) with external sensors. The measured SNFR net fluxes are too large below the clouds, but an error source and correction scheme have been found (H. E. Revercomb, L. A. Sromovsky, and V. E. Suomi, 1982, Icarus52, 279–300). The near-equatorial probe carried an infrared radiometer (LIR) which viewed the atmosphere through a window in the probe. The LIR measurements are reasonable in the clouds, but increase to physically unreasonable levels shortly below the clouds. The probable error source and a correction procedure are identified. Three main conclusions can be drawn from comparisons of the four corrected flux profiles with radiative transfer calculations: (1) thermal net fluxes for the sounder probe do not require a reduction in the Mode 3 number density as has been suggested by O. B. Toon, B. Ragent, D. Colburn, J. Blamont, and C. Cot (1984, Icarus57, 143–160), but the probe measurements as a whole are most consistent with a significantly reduced mode 3 contribution to the cloud opacity; (2) at all probe sites, the fluxes imply that the upper cloud contains a yet undetected source of IR opacity; and (3) beneath the clouds the fluxes at a given altitude increase with latitude, suggesting greater IR cooling below the clouds at high latitudes and water vapor mixing ratios of about 2–5 × 10?5 near 60°, 2–5 × 10?4 near 30°, and 5 × 10?4 near the equator. The suggested latitudinal variation of IR cooling is consistent with descending motions at high latitudes, and it is speculated that it could provide an important additional drive for the general circulation.  相似文献   

14.
Observations of the 15 August 1980 Uranus occultation of KM 12, obtained from Cerro Tololo InterAmerican Observatory, European Southern Observatory, and Cerro Las Campanas Observatory, are used to compare the atmospheric structure at points separated by ~140 km along the planetary limb. The results reveal striking, but by no means perfect, correlation of the light curves, ruling out isotropic turbulence as the cause of the light curve spikes. The atmosphere is strongly layered, and any acceptable turbulence model must accommodate the axial ratios of ?60 which are observed. The mean temperature of the atmosphere is 150 ± 15°K for the region near number density 1014 cm?3. Derived temperature variations of vertical scale ~ 130km and amplitude ±5°K are in agreement for all stations, and correlated spikes correspond to low-amplitude temperature variations with a vertical scale of several kilometers.  相似文献   

15.
We have analysed all the available high phase angle images of Titan limb taken by Voyager 1 and 2, in early 1980. For several different phase angles and wavelengths, we seek for a consistent set of haze parameters able to fit all data simultaneously. Our main purpose is to obtain an accurate estimate of the latitudinal variation of haze opacity at 200 km altitude at the time of the Voyager flyby's. We find that haze opacity at 200 km is about constant in the southern hemisphere and drops between equator and 60°N by about 30-50%, sharply increasing again beyond 60°N. The latter feature is clearly due to the north polarhood.This behaviour is opposite to total optical depth variations retrieved from IRIS observation, at the same epoch. The IRIS data refer to levels below 100 km altitude. A comparison of our results with calculations from a general circulation model, shows that (1) our results are realistic and can be considered as robust (2) the opacity variations at 200 km (this work) and at ground (IRIS data), although opposite, are not inconsistent with each other.  相似文献   

16.
It is shown that Titan's surface and plausible atmospheric thermal opacity sources—gaseous N2, CH4, and H2, CH4 cloud, and organic haze—are sufficient to match available Earth-based and Voyager observations of Titan's thermal emission spectrum. Dominant sources of thermal emission are the surface for wavelenghts λ ? 1 cm, atmospheric N2 for 1 cm ? λ ? 200 μm,, condensed and gaseous CH4 for 200 μm ? λ ? 20 μm, and molecular bands and organic haze for λ ? 20 μm. Matching computed spectra to the observed Voyager IRIS spectra at 7.3 and 52.7° emission angles yields the following abundances and locations of opacity sources: CH4 clouds: 0.1 g cm? at a planetocentric radius of 2610–2625 km, 0.3 g cm?2 at 2590–2610 km, total 0.4 ± 0.1 g cm–2 above 2590 km; organic haze: 4 ± 2 × 10?6, g cm, ?2 above 2750 km; tropospheric H2: 0.3 ± 0.1 mol%. This is the first quantitative estimate of the column density of condensed methane (or CH4/C2H6) on Titan. Maximum transparency in the middle to far IR occurs at 19 μm where the atmospheric vertical absorption optical depth is ?0.6 A particle radius r ? 2 μm in the upper portion of the CH4 cloud is indicated by the apparent absence of scattering effects.  相似文献   

17.
During a campaign of optical observations at high latitude, a bi-dimensional study of the wave structure of the OH layer has been performed in December 1981 from Sodankyla (Finland). This site is one of the three stations of the EISCAT ionosphere sounding system. It has been found that a wave field covering an area of 1 million km2 may extend to latitudes as high as 70°N. The OH wave structure shows many similarities with noctilucent clouds. The fairly large horizontal wavelength, of the order of 40 km cannot easily be explained by a wave motion at an interface. The observed wave structure seems to be a result of the propagation of an internal gravity wave in the 80–100 km region. This wave structure was often recorded during the same time as an active aurora was present. As a result, it appears that the perturbation might be correlated with particle precipitations at auroral latitudes.  相似文献   

18.
Five years of Cassini CIRS infrared spectra have been used to determine the tilt of Titan's stratospheric symmetry axis with respect to the solid body rotation axis. Measurements of HCN abundance centred around 5 mbar (125 km altitude) at equatorial latitudes show the symmetry axis is tilted by 4.0±1.5° in a direction 70±40°W of the sub-solar point. This value is consistent with tilts determined from temperature and haze measurements by Achterberg et al. (2008a) and Roman et al. (2009). The consistency of results from three independent methods suggests that Titan's entire stratosphere is tilted and provides a powerful constraint on the underlying atmospheric dynamics.  相似文献   

19.
The Galilean satellite eclipse technique for measuring the aerosol distribution in the upper Jovian atmosphere is described and applied using 30 color observations of the 13 May 1972 eclipse of Ganymede obtained with the 5-m Hale telescope. This event probes the South Temperate Zone. The observed aerosol lies above the visible cloud tops, is very tenuous and varies with altitude, increasing rapidly with downward passage through the tropopause. The aerosol extinction coefficient, κa (λ1.05 μm), is ~1.1 × 10?9 cm?1 in the lower stratosphere and ~1.1 × 10?8 cm?1 at the tropopause. The 1σ uncertainty in these values does not exceed 50% The observations require some aerosol above the tropopause but do not clearly determine its structure. The present analysis emphasizes an extended haze distribution, but the alternate possibility is not excluded that the stratospheric aerosol resides in a thin layer. The aerosol extinction increases with decreasing wavelength and indicates the particle radius to be ?0.2 μm. Larger radii are impossible. These overall results confirm Axel's (1972) suggestion of a small quantity of dust above the Jovian cloud tops and the optical depths are consistent with those required to explain the low uv albedo.  相似文献   

20.
L. Trafton 《Icarus》1985,63(3):374-405
We report the results of monitoring Saturn's H2 quadrupole and CH4 band absorptions outside of the equatorial zone over one-half of Saturn's year. This interval covers most of the perihelion half of Saturn's elliptical orbit, which happens to be approximately bounded by the equinoxes. Marked long-term changes occur in the CH4 absorption accompanied by weakly opposite changes in the H2 absorption. Around the 1980 equinox, the H2 and CH4 absorptions in the northern hemisphere appear to be discontinuous with those in the southern hemisphere. This discontinuity and the temporal variation of the absorptions are evidence for seasonal changes. The absorption variations can be attributed to a variable haze in Saturn's troposphere, responding to changes in temperature and insolation through the processes of sublimation and freezing. Condensed or frozen CH4 is very unlikely to contribute any haze. The temporal variation of the absorption in the strong CH4 bands at south temperate latitudes is consistent with a theoretically expected phase lag of 60° between the tropopause temperature and the seasonally variable insolation. We model the vertical haze distribution of Saturn's south temperature latitudes during 1971–1977 in terms of a distribution having a particle scale height equal to a fraction of the atmospheric scale height. The results are a CH4/H2 mixing ratio of (4.2 ± 0.4) × 10?3, a haze particle albedo of ω = 0.995 ± 0.003, and a range of variation in the particle to gas scale-height ratio of 0.6 ± 0.2. The haze was lowest near the time of maximum temperature. We also report spatial measurements of the absorption in the 6450 Å NH3 band made annually since the 1980 equinox. A 20 ± 4% increase in the NH3 absorption at south temperate latitudes has occurred since 1973–1976 and the NH3 absorption at high northern latitudes has increased during spring. Increasing insolation, and the resulting net sublimation of NH3 crystals, is probably the cause. Significant long-term changes apparently extend to the deepest visible parts of Saturn's atmosphere. An apparently anomalous ortho-para H2 ratio in 1978 suggests that the southern temperate latitudes experienced an unusual upwelling during that time. This may have signaled a rise in the radiative-convective boundary from deep levels following maximum tropospheric temperature and the associated maximum radiative stability. This would be further evidence that the deep, visible atmosphere is governed by processes such as dynamics and the thermodynamics of phase changes, which have response times much shorter than the radiative time constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号