首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thicklip grey mullet, Chelon labrosus, is an important commercial fish species and has been studied worldwide. However, no recent studies have been made regarding polychlorinated biphenyls (PCBs) in wild C. labrosus. Due to that, the concentration of 13 PCBs congeners was measured in muscles and livers, of males and females, of C. labrosus of different ages, allowing the estimation of PCB bioaccumulation throughout the species lifespan, in the Mondego estuary, a southern European temperate estuary. Male muscle sample concentrations ranged from 32 to 96 ng g 1 (lipid wt.) and in females from 32 to 62 ng g 1 (lipid wt.). In male liver sample concentrations ranged from 106 to 158 ng g 1 (lipid wt.), while female concentrations ranged from 88 to 129 ng g 1 (lipid wt.). The most abundant congeners presenting higher percentages in all samples were CB 138, 153 and 180. No significant differences were found between the concentrations in both sexes, but muscle and liver PCB concentrations in males tended to increase with age whereas in females concentrations remained stable throughout the species lifespan. Significant differences were found between concentrations in muscle and liver.  相似文献   

2.
Ringed seal (Phoca hispida) is assumed to be the most important and common prey of polar bears (Ursus maritimus). However, during a scientific survey in the ice area of the northern Barents Sea east of Svalbard in June 1995, an unexpectedly high number of polar bears were observed feeding on harp seal (Phoca groenlandica) carcasses. Samples of both harp and ringed seals were obtained and organochlorine (OC) occurrence and pattern in these two potential polar bear prey species were determined. Significantly higher OC concentrations were found in harp seals, as compared to the ringed seals. All animals in the northern harp seal group were lean specimens in late moult. The industrial chemicals, polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB), and the OC pesticides bis-2,2,(chlorophenyl)-1,1,1-trichloroethanes (DDTs), hexachlorocyclohexanes (HCHs), and chlordanes (CHLORs) were analysed in blubber. The concentrations of sigma PCB (sum of concentrations of 16 PCB congeners) and sigma DDT (sum of concentrations of p,p'-DDT and p,p'-DDE) in the northern harp seal group ranged from 2093 to 20,382 and 1460 to 10,381 ng g-1 lipid weight, with mean concentrations of 11,133 and 6847 ng g-1 lipid weight, respectively. The mean concentrations of the CHLORs, oxychlordane and trans-nonachlor, were 1311 and 3743 ng g-1 lipid weight, respectively, while the mean concentrations of HCB and HCH isomers (alpha-, beta- and gamma-HCH) were all < 500 ng g-1 lipid weight. No significant difference was found in the mean total blubber mass between the two seal species when collected in June. This indicates that polar bears preying on harp seals instead of ringed seals at this time of the year could accumulate significantly higher PCB concentrations. We suggest that polar bears feeding along the ice-edge east of Svalbard in May and June preferentially prey on harp seals instead of ringed seals, and that this may partly explain the variation in PCB concentrations among polar bears from the Norwegian Arctic. An hypothesis is that the harp seal may function as a transport vector of OCs into the high Arctic environment.  相似文献   

3.
The present paper synthesizes data obtained during a multidisciplinary cruise carried out in June 2004 at the continental margin of the northern Bay of Biscay. The data-set allows to describe the different stages of a coccolithophore bloom dominated by Emiliania huxleyi. The cruise was carried out after the main spring phytoplankton bloom that started in mid-April and peaked in mid-May. Consequently, low phosphate (PO4 < 0.2 μM) and silicate (DSi < 2.0 μM) concentrations, low partial pressure of carbon dioxide (pCO2) and high calcite saturation degree in surface waters combined with thermal stratification, probably favoured the blooming of coccolithophores. During the period of the year our cruise was carried out, internal tides induce enhanced vertical mixing at the continental shelf break leading to the injection of inorganic nutrients to surface waters that probably trigger the bloom. The bloom developed as the water-column stratified and as the water mass was advected over the continental shelf, following the general residual circulation in the area. The most developed phase of the bloom was sampled in a remote sensed high reflectance (HR) patch over the continental shelf that was characterized by low chlorophyll-a (Chl-a) concentration in surface waters (<1.0 μg L?1), high particulate inorganic carbon (PIC) concentration (~8 μmol L?1) and coccolithophore abundance up to 57 × 106 cells L?1. Transparent exopolymer particles (TEP) concentrations ranged between 15 and 75 μg C L?1 and carbon content of TEP represented up to 26% of the particulate organic carbon (POC; maximum concentration of 15.5 μmol L?1 in the upper 40 m). Integrated primary production (PP) ranged between 210 and 680 mg C m?2 d?1 and integrated calcification (CAL) ranged between 14 and 140 mg C m?2 d?1, within the range of PP and CAL values previously reported during coccolithophore blooms in open and shelf waters of the North Atlantic Ocean. Bacterial protein production (BPP) measurements in surface waters (0.3–0.7 μg C L?1 h?1) were much higher than those reported during early phases of coccolithophore blooms in natural conditions, but similar to those during peak and declining coocolithophorid blooms reported in mesocosms. Total alkalinity anomalies with respect to conservative mixing (ΔTA) down to ?49 μmol kg?1 are consistent with the occurrence of biogenic precipitation of calcite, while pCO2 remained 15–107 μatm lower than atmospheric equilibrium (372 μatm). The correlation between ΔTA and pCO2 suggested that pCO2 increased in part due to calcification, but this increase was insufficient to overcome the background under-saturation of CO2. This is related to the biogeochemical history of the water masses due to net carbon fixation by the successive phytoplankton blooms in the area prior to the cruise, hence, the investigated area remained a sink for atmospheric CO2 despite calcification.  相似文献   

4.
The fluxes of total mass, organic carbon (OC), biogenic opal, calcite (CaCO3) and long-chain C37 alkenones (ΣAlk37) were measured at three water depths (275, 455 and 930 m) in the Cariaco Basin (Venezuela) over three separate annual upwelling cycles (1996–1999) as part of the CARIACO sediment trap time-series. The strength and timing of both the primary and secondary upwelling events in the Cariaco Basin varied significantly during the study period, directly affecting the rates of primary productivity (PP) and the vertical transport of biogenic materials. OC fluxes showed a weak positive correlation (r2=0.3) with PP rates throughout the 3 years of the study. The fluxes of opal, CaCO3 and ΣAlk37 were strongly correlated (0.6<r2<0.8) with those of OC. The major exception was the lower than expected ΣAlk37 fluxes measured during periods of strong upwelling. All sediment trap fluxes were significantly attenuated with depth, consistent with marked losses during vertical transport. Annually, strong upwelling conditions, such as those observed during 1996–1997, led to elevated opal fluxes (e.g., 35 g m−2 yr−1 at 275 m) and diminished ΣAlk37 fluxes (e.g., 5 mg m−2 yr−1 at 275 m). The opposite trends were evident during the year of weakest upwelling (1998–1999), indicating that diatom and haptophyte productivity in the Cariaco Basin are inversely correlated depending on upwelling conditions.The analyses of the Cariaco Basin sediments collected via a gravity core showed that the rates of OC and opal burial (10–12 g m−2 yr−1) over the past 5500 years were generally similar to the average annual water column fluxes measured in the deeper traps (10–14 g m−2 yr−1) over the 1996–1999 study period. CaCO3 burial fluxes (30–40 g m−2 yr−1), on the other hand, were considerably higher than the fluxes measured in the deep traps (∼10 g m−2 yr−1) but comparable to those obtained from the shallowest trap (i.e. 38 g m−2 yr−1 at 275 m). In contrast, the burial rates of ΣAlk37 (0.4–1 mg m−2 yr−1) in Cariaco sediments were significantly lower than the water column fluxes measured at all depths (4–6 mg m−2 yr−1), indicating the large attenuation in the flux of these compounds at the sediment–water interface. The major trend throughout the core was the general decrease in all biogenic fluxes with depth, most likely due to post-depositional in situ degradation. The major exception was the relatively low opal fluxes (∼5 g m−2 yr−1) and elevated ΣAlk37 fluxes (∼2 mg m−2 yr−1) measured in the sedimentary interval corresponding to 1600–2000 yr BP. Such compositions are consistent with a period of low diatom and high haptophyte productivity, which based on the trends observed from the sediment traps, is indicative of low upwelling conditions relative to the modern day.  相似文献   

5.
Wildlife tourism (including pinniped tourism) offers people the opportunity to see wildlife in their natural environment. It can provide positive outcomes for the animals, through improved resources for conservation, or negative outcomes, such as inducing the animals to move away. This study assessed the impacts and sustainability of a novel but growing tourism industry, swimming with seals, based on interactions with New Zealand fur seals (Arctophoca australis forsteri) in the Bay of Plenty, New Zealand, between December 2011 and March 2012. The behaviour of all seals in the water (interaction, neutral, and avoidance) was monitored at 1 min intervals, during 16 seal-swim events. Seals mostly ignored the swimmers (54% of records), some interacted with swimmers (41%); seals rarely avoided the swimmers (5%). Interactions peaked in frequency at 6 min into the swims, then declined. They occurred most frequently during December, corresponding with the pupping period when juvenile seals—the age class most likely to interact—are excluded from breeding areas and so spend much of their time in the water. Compliance of tour operators to regulations was also monitored during seal-swim activities and the industry was found to be highly compliant. The results suggest the activities monitored had minimal impact on seals in the water, and are likely to be sustainable in relation to seal conservation. Tourism can be site and time specific, and it is recommended that approaches such as those trialled here be adopted to monitor other wildlife tourism activities to ensure their sustainability. Further research needs to examine potential impacts of the tours on seals ashore.  相似文献   

6.
The Mondego estuary fish assemblage was studied for the accumulation of PCBs. Three sampling stations were visited along an estuarine salinity gradient, and, in total, 15 species were collected. Analysis of PCBs revealed no significant differences among the sampling stations, although differences were observed among the fish assemblages. Fish assemblages could be divided into three groups. The first group comprised those with higher concentration (more than 10 ng g 1, dw), included the species Gobius niger, Sardina pilchardus, Anguilla anguilla, Pomatoschistus microps, Chelidonichthys lucerna and Liza ramada; the second group with medium concentration (5–10 ng g 1, dw), included the species Pomatoschistus minutus, Dicentrarchus labrax, Atherina presbyter, Chelon labrosus, Diplodus vulgaris, Platichthys flesus and Cilata mustela; and a third group with low concentration (less than 5 ng g 1, dw), included the species Solea solea and Callionymus lyra. A positive correlation was found between lipid content and PCB concentrations. To evaluate the influence of the residence time of species on the accumulation of PCBs, species were divided into two groups: species that spend more than 3 years in the estuary, and species that spend less than 3 years in the estuary. Species that spend more than 3 years in the estuary presented higher concentrations than species that spend less than 3 years in the estuary. CBs 138 and 153 had higher concentration, and tended to increase with time spent in the estuary.  相似文献   

7.
Benzo(a)pyrene (BaP) and polychlorinated biphenyls (PCBs) often co-exist in contaminated environments. Polychlorobiphenylols (OH-PCBs), formed by CYP-dependent monooxygenation of PCBs, are potent inhibitors of the glucuronidation of hydroxylated BaP metabolites. We hypothesized that OH-PCBs could drive the biotransformation of (−)BaP-7,8-dihydrodiol (BaP-7, 8-D) away from detoxication and towards formation of the reactive metabolite. A mixture of five OH-PCBs with 4–6 Cl atoms was infused into isolated, perfused, biliary intact livers (n=3 fish) removed from 3-methylcholanthrene-induced channel catfish. Controls (n=3) were infused with vehicle. Subsequently, [3H]-BaP-7, 8-D was infused into each liver and bile was collected for 1 h. The livers were taken for analysis of metabolites and DNA adducts. Induction status was confirmed by EROD assay. Bile was analyzed for metabolites. It was found that preinfusion of the mixture of OH-PCBs reduced the extent of glucuronidation of BaP-7, 8-D and increased the formation of DNA adducts 5-fold over controls. GSH conjugates, tetrols and triols were increased in the OH-PCB-infused fish, providing further support for our hypothesis that if the glucuronidation were inhibited, CYP-dependent activation would increase. These studies suggest a mechanism for synergy of toxicity of PAH and PCBs.  相似文献   

8.
The distribution of transparent exopolymer particles (TEP) was investigated during a coccolithophorid bloom in the northern Bay of Biscay (North Atlantic Ocean) in early June 2006. MODIS chlorophyll-a (Chl-a) and reflectance images before and during the cruise were used to localize areas of important biological activity and high reflectance (HR). TEP profiles along the continental margin, determined using microscopic (TEPmicro) and colorimetric (TEPcolor) methods, showed abundant (6.1×106–4.4×107 L?1) and relatively small (0.5–20 μm) particles, leading to a low total volume fraction (0.05–2.2 ppm) of TEPmicro and similar vertical profiles of TEPcolor. Estimates of carbon content in TEP (TEP-C) derived from the microscopic approach yielded surface concentration of 1.50 μmol C L?1. The contribution of TEP-C to particulate organic carbon (POC) was estimated to be 12% (molar C ratio) during this survey. Our results suggest that TEP formation is a probable first step to rapid and efficient export of C during declining coccolithophorid blooms.  相似文献   

9.
Surface effect ship (SES) air cushion and seal models are implemented in an URANS hydrodynamics solver. The air cushion is modeled either as a prescribed pressure patch, or as a compressible isothermal/adiabatic ideal stagnant air with fan and leakage flows. The seals are either discretized as hinged bodies or modeled as 2D planing surfaces with hydrodynamic interaction. Verification and validation studies are performed using T-Craft experimental data for calm water resistance, sinkage and trim at Froude number (Fr) = 0.1–0.6; impulsive heave and pitch decay at Fr = 0; and wave-induced resistance and motion predictions in head waves at Fr = 0 and 0.6. The compressible air cushion model with fan and leakage flows perform better than those without the fan and leakage flows and the prescribed pressure patch model. The hinged seal model performs better than the 2D planing surface model, but is computationally expensive for time accurate simulations. Therefore, the 2D planing surface model is used for the validation studies. SES simulations on grids with 5.3 M cells show grid verification intervals of 6%, which are comparable to those reported for displacement and semi-planing hull studies on similar grid sizes. On an average calm water and impulsive motion predictions compare within 8.5% of the experimental data, and wave-induced motion predictions show somewhat larger error of 13.5%. The errors levels are mostly comparable to those for displacement and semi-planing and planing hulls. The study identifies that most critical advancement needed for SES simulations is the seal modeling including fluid structure interaction.  相似文献   

10.
The total organic carbon (TOC) and total inorganic carbon (CT) exchange between the Atlantic Ocean and the Mediterranean Sea was studied in the Strait of Gibraltar in September 1997. Samples were taken at eight stations from western and eastern entrances of the Strait and at the middle of the Strait (Tarifa Narrows). TOC was analyzed by a high-temperature catalytic oxidation method, and CT was calculated from alkalinity–pHT pairs and appropriate thermodynamic relationships. The results are used in a two-layer model of water mass exchange through the Strait, which includes the Atlantic inflow, the Mediterranean outflow and the interface layer in between. Our observations show a decrease of TOC and an increase of CT concentrations from the surface to the bottom: 71–132 μM C and 2068–2150 μmol kg−1 in the Surface Atlantic Water, 74–95 μM C and 2119–2148 μmol kg−1 in the North Atlantic Central Water, 63–116 μM C and 2123–2312 μmol kg−1 in the interface layer, and 61–78 μM C and 2307–2325 μmol kg−1 in the Mediterranean waters. However, within the Mediterranean outflow, we found that the concentrations of carbon were higher at the western side of the Strait (75–78 μM C, 2068–2318 μmol kg−1) than at the eastern side (61–69 μM C, 2082–2324 μmol kg−1). This difference is due to the mixing between the Atlantic inflow and the Mediterranean outflow on the west of the Strait, which results in a flux of organic carbon from the inflow to the outflow and an opposite flux of inorganic carbon. We estimate that the TOC input from the Atlantic Ocean to the Mediterranean Sea through the Strait of Gibraltar varies from (0.97±0.8)104 to (1.81±0.90)104 mol C s−1 (0.3×1012 to 0.56×1012 mol C yr−1), while outflow of inorganic carbon ranges from (12.5±0.4)104 to (15.6±0.4)104 mol C s−1 (3.99–4.90×1012 mol C yr−1). The high variability of carbon exchange within the Strait is due to the variability of vertical mixing between inflow and outflow along the Strait. The prevalence of organic carbon inflow and inorganic carbon outflow shows the Mediterranean Sea to be a basin of active remineralization of organic material.  相似文献   

11.
12.
Atmospheric dry deposition of nitrogen (N) and dinitrogen (N2) fixation rates were assessed in 2004 at the time-series DYFAMED station (northwestern Mediterranean, 43°25′N, 7°52′E). The atmospheric input was monitored over the whole year. Dinitrogen fixation was measured during different seasonal trophic states (from mesotrophy to oligotrophy) sampled during nine cruises. The bioavailability of atmospherically deposited nutrients was estimated by apparent solubility after 96 h. The solubility of dry atmospheric N deposition was highly variable (from ∼18% to more than 96% of total N). New N supplied to surface waters by the dry atmospheric deposition was mainly nitrate (NO3) (∼57% of total N, compared to ∼6% released as ammonium (NH4+)). The mean bioavailable dry flux of total N was estimated to be ∼112 μmol m−2 d−1 over the whole year. The NO3 contribution (70 μmol NO3 m−2 d−1) was much higher than the NH4+ contribution (1.2 μmol NH4+ m−2 d−1). The N:P ratios in the bioavailable fraction of atmospheric inputs (122.5–1340) were always much higher than the Redfield N:P ratio (16). Insoluble N in atmospheric dry deposition (referred to as “organic” and believed to be strongly related to anthropogenic emissions) was ∼40 μmol m−2 d−1. N2 fixation rates ranged from 2 to 7.5 nmol L−1 d−1. The highest values were found in August, during the oligotrophic period (7.5 nmol L−1 at 10 m depth), and in April, during the productive period (4 nmol L−1 d−1 at 10 m depth). Daily integrated values of N2 fixation ranged from 22 to 100 μmol N m−2 d−1, with a maximum of 245 μmol N m−2 d−1 in August. No relationship was found between the availability of phosphorus or iron and the observed temporal variability of N2 fixation rates. The atmospheric dry deposition and N2 fixation represented 0.5–6% and 1–20% of the total biological nitrogen demand, respectively. Their contribution to new production was more significant: 1–28% and 2–55% for atmospheric dry deposition and N2 fixation, respectively. The dry atmospheric input was particularly significant in conditions of water column stratification (16–28% of new production), while N2 fixation reached its highest values in June (46% of new production) and in August (55%).  相似文献   

13.
Cockle (Cerastoderma edule) population dynamics were studied at the southern limit of the distribution of this marine bivalve in Merja Zerga, Morocco. Parameters such as growth, mortality, and production were compared with those of a population at Arcachon Bay (France) a site in the center of the cockle's range. At each sampling period between two and three cohorts were simultaneously observed at each site and the average total abundance was usually higher at Merja Zerga. Recruitment occurred at both sites in spring when temperature rose above 19 °C, independently of the month. In Merja Zerga, winter recruitment was also observed at one occasion, following high sediment disturbance. The first year (2005–06) at Merja Zerga, the mortality rate was close to nil for juveniles and was Z = 1.5 yr? 1 for adults, providing a high production (64 g dry weight m? 2 yr? 1). At Arcachon during the same period, the juvenile mortality rate was Z = 10.9 yr? 1, the adult mortality rate was 3.4 yr? 1 and production was 26 gDW m?2 yr? 1. The second year (2006–07), mortality after recruitment was much higher (Z = 8.6 yr? 1, for juveniles) and similar to what was observed at Arcachon (Z = 8.4 yr? 1). Mortality rate of adults was higher at Merja Zerga (Z = 3.0 yr? 1) than at Arcachon (Z = 1.5 yr? 1). Production was lower at Arcachon than at Merja Zerga although growth performances were higher at Arcachon. The higher growth performance at Arcachon (Φ′ = 3.3) was mainly due to high asymptotic length (L = 38 mm) and was related to low intraspecific competition compared to Merja Zerga where cockle abundance was higher (Φ′ = 3.1, L = 31 mm). P/B was low in both sites and slightly higher at Arcachon (1.1–1.5 against 1.0–1.1 yr? 1). At Arcachon, recruitment was correlated with temperature, a peak occurring when temperature rose above 19 °C (June–July). At Merja Zerga, recruitment was already 2–3 months earlier but was not significantly correlated to temperature.This study showed that population dynamics of cockles at the southern limit of this distribution fell in the range of what was observed elsewhere in the North-Eastern Atlantic coast. Most factors that were involved in population regulation (intraspecific competition, predation and sediment dynamics) were not strictly dependent on latitude. The direct role of temperature (latitude dependent factor) was not obvious. Variation in temperature could explain the recruitment delay between Arcachon and Merja Zerga and the low maximum shell length at Merja Zerga.  相似文献   

14.
Nutrient inputs associated with coastal population growth threaten the integrity of coastal ecosystems around the globe. In order to assess the threat posed by rapid growth in tourism, we analyzed the nutrient concentrations as well as the δ15N of NO3 and macrophytes to detect wastewater nitrogen (N) at 6 locations along a groundwater-dominated coastal seagrass bed on the Caribbean coast of Mexico. We predicted that locations with greater coastal development would have higher concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (P), as well as δ15N of NO3, reflecting wastewater sources of N. However, concentrations of NO3 were not significantly different between developed (3.3 ± 5.3 μM NO3) and undeveloped (1.1 ± 0.7 μM) marine embayments. The most important control on DIN concentration appeared to be mixing of fresh and salt water, with DIN concentrations negatively correlated with salinity. The δ15N of NO3 was elevated at an inland pond (7.0 ± 0.42‰) and a hydrologically-connected tide pool (7.6 ± 0.57‰) approximately 1 km downstream of the pond. The elevated δ15N of NO3 at the pond was paralleled by high δ15N values of Cladophora sp., a ubiquitous green alga (10 ± 1‰). We hypothesize that inputs of nitrogen rich (NO3 > 30 μM) groundwater, characterized by 15N enriched signatures, flow through localized submarine groundwater discharges (SGD) and contribute to the elevated δ15N signatures observed in many benthic macrophytes. However, changes in nitrogen concentrations and isotope values over the salinity gradient suggest that other processes (e.g. denitrification) could also be contributing to the 15N enrichments observed in primary producers. More measurements are needed to determine the relative importance of nitrogen transformation processes as a source of 15N to groundwaters; however, it is clear that continued inputs of anthropogenic N via SGD have the potential to severely impact ecologically and economically valuable seagrass meadows and coral reefs along the Caribbean coast of Mexico.  相似文献   

15.
Benthic fluxes of dissolved inorganic carbon, total alkalinity, oxygen, nutrients, nitrous oxide and methane were measured in situ at three sites of Río San Pedro salt marsh tidal creek (Bay of Cádiz, SW Spain) during three seasons. This system is affected by the discharges of organic carbon and nutrients from the surrounding aquaculture installations. Sediment oxygen uptake rates and inorganic carbon fluxes ranged respectively from 16 to 79 mmol O2 m? 2 d? 1 and from 48 to 146 mmol C m? 2 d? 1. Benthic alkalinity fluxes were corrected for the influence of NH4+ and NO3? + NO2? fluxes, and the upper and lower limits for carbon oxidation rates were inferred by considering two possible scenarios: maximum and minimum contribution of CaCO3 dissolution to corrected alkalinity fluxes. Average Cox rates were in all cases within ± 25% of the upper and lower limits and ranged from 40 to 122 mmol C m? 2 d? 1. Whereas carbon mineralization did not show significant differences among the sites, Cox rates varied seasonally and were correlated with temperature (r2 = 0.72). During winter and spring denitrification was estimated to account for an average loss of 46% and 75%, respectively, of the potentially recyclable N, whereas during the summer no net removal was observed. A possible shift from denitrification to dissimilatory nitrate reduction to ammonium (DNRA) during this period is argued. Dissolved CH4 and N2O fluxes ranged from 5.7 to 47 μmol CH4 m? 2 d? 1 and 4.3 to 49 μmol N–N2O m? 2 d? 1, respectively, and represented in all cases a small fraction of total inorganic C and N flux. Overall, about 60% of the total particulate organic matter that is discharged into the creek by the main fish farm facility is estimated to degrade in the sediments, resulting in a significant input of nutrients to the system.  相似文献   

16.
Data on temporal variations of total dimethylsulfoniopropionate (DMSPt) and the environmental factors that influence DMSPt concentrations are important in understanding the biogeochemical cycling of organic sulfur compounds. Annual and diurnal variations of DMSPt were investigated in relation to environmental variables at a fixed station in Dona Paula bay (west coast of India). DMSP concentrations were high in the day and low at night and ranged from 3.69 to 84 nM with a maximum at 17.00 h. The high concentrations of DMSPt during daytime closely followed that of Chl a concentrations. The DMSP utilizers averaged 0.8 ± 0.3 × 103 cells l?1 during night and 0.4 ± 0.1 × 103 cells l?1 during the day. The diel variation of DMSPt was influenced more by biological variables than hydrographic parameters. In the year-round study, the concentrations ranged from 0.69 to 15.8 nM. It was fourfold higher during the southwest monsoon season (13.4 ± 2 nM) and threefold higher during the post-monsoon season (9.96 ± 5 nM) compared to the pre-monsoon season (3.1 ± 1 nM). DMSPt concentrations showed temporal variability, both during diurnal and annual studies. Diatoms were identified as producers of DMSP in Dona Paula bay. Dinoflagellates also contributed during the non-monsoon seasons. Another factor involved in the variability of DMSPt was DMSP utilizing bacteria, which ranged from 1 to 10% of the total heterotrophic count.  相似文献   

17.
The giant diatom Ethmodiscus was examined along an east–west transect at 28–30°N during 2002 and 2003 to determine if abundance, chemical composition or physiological status of this largest of diatoms varied on the scale of 100's–1000's of km in North Pacific gyre. Abundance ranged from <0.1–>2.0 cells m−3 and supported the notion of an abundance mosaic reported previously. However, there was only minimal support for the relationship between abundance and nutrient concentration at 125 m reported previously. Cellular chlorophyll varied little along the transect (7.3–10.9 ng chl cell−1) except at the westernmost station. Cellular N and P quotas co-varied 3–4.5 fold (mean=50.8±3.7 and 3.7±0.8 nmol N and P cell−1) and yielded N:P ratios that closely clustered around the Redfield ratio (average=14.6±1.1). Only low levels of chlorophyll-normalized alkaline phosphatase (APase) activity were observed (0.4–2.5 nmol P μg chl−1 h−1) with APase activity lower than that in either the bulk water, or co-occurring Trichodesmium spp. and Pyrocystis noctiluca. The active fluorescence parameter Fv:Fm, a property sensitive to Fe stress, was uniformly high at all stations (average=0.73±0.04 for 2003, and 0.69±0.05 for 2002), indicating sufficient Fe for optimum photosynthetic competence. These results contrasted sharply with results from Rhizosolenia mats reported along the same transect where there was a significant decline westward in Fv:Fm. Both ferredoxin (Fd) and flavodoxin accumulated in cells of Ethmodiscus, resulting in Fd Index values of<0.6. Iron cell quotas ranged from 0.7–5.1 pmol Fe cell−1. When normalized to cytoplasmic volume, the Fe μm−3 was comparable to that of Escherichia coli. We note that the disproportionate contribution of the vacuole (with its high organic content) to total volume typical of large diatoms is a potentially significant source of error in Fe:C ratios and suggest that Fe should be normalized to cytoplasmic volume whenever possible to permit valid intercomparisons between studies. The composition, Fv:Fm data and Fe:C ratio suggest a relatively uniform population experiencing little N, P or Fe stress. The uncoupling of the Fd Index from these measures is consistent with previous findings showing that the expression of flavodoxin can be characterized as an early stress response and that its accumulation is not necessarily correlated with physiological deficit. Ethmodiscus appears to be well adapted to some of the most oligotrophic waters in the ocean. Because it is an important sedimentary marker, the biology of living Ethmodiscus provides insights into the source of extensive Ethmodiscus oozes. Mass sedimentation after frontal accumulation has been suggested as a source for these oozes. Our data contain no evidence that the flux is linked directly to Fe, N or P stress.  相似文献   

18.
We studied the accumulation of polychlorinated biphenyls (PCBs), 1,1,1.trichloro-2,2-bis[p-chlorophenyl]ethane (DDT) and its metabolites, and vitamins A and E in the top levels of the Baltic Sea food web. The investigation focused on the transfer of contaminants and vitamins to the ringed seal (Phoca hispida baltica) and the grey seal (Halichoerus grypus) from their main prey species. The trophic level of the seals was investigated using stable isotopes of nitrogen and the results indicated that both species of Baltic seal feed at approximately the same level. PCBs accumulated to a greater extent in the grey seal than in the ringed seal. Biomagnification factors for DDT compounds were similar for both species of Baltic seal (85-140). Differences in observed DDT levels were due to different prey selection by the two species, while differences in PCB levels indicated a species-specific metabolic system. There was a clearly greater accumulation of DDT compounds than of PCBs in both species of seal. The supply of dietary vitamin A was normally above the recommended level in all the seal populations studied. Low levels of hepatic vitamin A in the Baltic seals could therefore indicate the toxic effects of a high level of persistent organic pollutants on vitamin A dynamics, at least in the ringed seal. In the grey seals, low hepatic vitamin A levels could also be explained by lower levels of dietary vitamin A, compared to the reference grey seals, as it is not known if seals can store unlimited amounts of vitamin A. The greater uptake of vitamin E by Baltic seals, compared to seals in the reference areas, demonstrated by elevated levels of vitamin E in the blubber, could be a response to oxidative stress caused by the high contaminant load. These results further support our previous hypothesis that the toxic effects of environmental contaminants could be causing the observed divergence in vitamin levels between the Baltic seals and the reference seal populations.  相似文献   

19.
Benzo(a)pyrene (BaP) and polychlorinated biphenyls (PCBs) often co-exist in contaminated environments. Polychlorobiphenylols (OH-PCBs), formed by CYP-dependent monooxygenation of PCBs, are potent inhibitors of the glucuronidation of hydroxylated BaP metabolites. We hypothesized that OH-PCBs could drive the biotransformation of (-)BaP-7,8-dihydrodiol (BaP-7, 8-D) away from detoxication and towards formation of the reactive metabolite. A mixture of five OH-PCBs with 4-6 Cl atoms was infused into isolated, perfused, biliary intact livers (n=3 fish) removed from 3-methylcholanthrene-induced channel catfish. Controls (n=3) were infused with vehicle. Subsequently, [3H]-BaP-7, 8-D was infused into each liver and bile was collected for 1 h. The livers were taken for analysis of metabolites and DNA adducts. Induction status was confirmed by EROD assay. Bile was analyzed for metabolites. It was found that preinfusion of the mixture of OH-PCBs reduced the extent of glucuronidation of BaP-7, 8-D and increased the formation of DNA adducts 5-fold over controls. GSH conjugates, tetrols and triols were increased in the OH-PCB-infused fish, providing further support for our hypothesis that if the glucuronidation were inhibited, CYP-dependent activation would increase. These studies suggest a mechanism for synergy of toxicity of PAH and PCBs.  相似文献   

20.
Temporal changes in the abundance, community composition, and photosynthetic physiology of phytoplankton in surface waters were investigated during the second in situ iron (Fe) fertilization experiment in the NW subarctic Pacific (SEEDS-II). Surface chlorophyll a concentration was 0.75 mg m−3 on the day before the first Fe enrichment (i.e. Day 0), increased ca. 3-fold until Day 13 after two Fe additions, and thereafter declined with time. The photochemical quantum efficiency (Fv/Fm) and functional absorption cross-section (σPSII) of photosystem II for total phytoplankton in surface waters increased and decreased inside the Fe-enriched patch through Day 13, respectively. These results indicate that the photosynthetic physiological condition of the phytoplankton improved after the Fe infusions. However, the maximum Fv/Fm value of 0.43 and the maximum quantum yield of carbon fixation (φmax) of 0.041 mol C (mol photon)−1 during the development phase of the bloom were rather low, compared to their theoretical maximum of ca. 0.65 and 0.10 mol C (mol photon)−1, respectively. Diatoms, which were mainly composed of oceanic species, did not bloom, and autotrophic nanoflagellates such as cryptophytes and prasinophytes became predominant in the phytoplankton community inside the Fe-enriched patch. In ferredoxin/flavodoxin assays for micro-sized (20–200 μm in cell length) diatoms, ferredoxin was not detected but flavodoxin expressions consistently occurred with similar levels both inside and outside the Fe-enriched patch, indicating that the large-sized diatoms were stressed by Fe bioavailability inside the Fe-enriched patch even after the Fe enrichments. Our data suggest that the absence of a Fe-induced large-sized diatom bloom could be partly due to their Fe stress throughout SEEDS-II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号