首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
In the present study, measurements of surface ozone (\(\hbox {O}_{3}\)) and its precursors (NO and \(\hbox {NO}_{2}\)) were carried out at a sub-urban site of Agra (\(27{^{\circ }}10'\hbox {N}\), \(78{^{\circ }}05'\hbox {E}\)), India during May 2012–May 2013. During the study period, average concentrations of \(\hbox {O}_{3}\), NO, and \(\hbox {NO}_{2}\) were \(39.6 \pm 25.3\), \(0.8 \pm 0.8\) and \(9.1 \pm 6.6 \, \hbox {ppb}\), respectively. \(\hbox {O}_{3}\) showed distinct seasonal variation in peak value of diurnal variation: summer \({>}\) post-monsoon \({>}\) winter \({>}\) monsoon. However, \(\hbox {NO}_{2}\) showed highest levels in winter and lowest in monsoon. The average positive rate of change of \(\hbox {O}_{3}\) (08:00–11:00 hr) was highest in April (16.3 ppb/hr) and lowest in August (1.1 ppb/hr), while average negative rate of change of \(\hbox {O}_{3}\) (17:00–19:00 hr) was highest in December (–13.2 ppb/hr) and lowest in July (–1.1 ppb/hr). An attempt was made to identify the \(\hbox {VOC--NO}_{\mathrm{x}}\) sensitivity of the site using \(\hbox {O}_{3}/\hbox {HNO}_{3}\) ratio as photochemical indicator. Most of the days this ratio was above the threshold value (12–16), which suggests \(\hbox {NO}_{\mathrm{x}}\) sensitivity of the site. The episodic event of ozone was characterized through meteorological parameters and precursors concentration. Fine particles (\(\hbox {PM}_{2.5}\)) cause loss of ozone through heterogeneous reactions on their surface and reduction in solar radiation. In the study, statistical analyses were used to estimate the amount of ozone loss.  相似文献   

2.
Here we report new paleomagnetic results and precise paleopole position of the extensional study on \(\sim \)2367 Ma mafic giant radiating dyke swarm in the Dharwar craton, southern India. We have sampled 29 sites on 12 dykes from NE–SW Karimnagar–Hyderabad dykes and Dhone–Gooty sector dykes, eastern Dharwar craton to provide unambiguous paleomagnetism evidence on the spectacular radiating dyke swarm and thereby strengthening the presence of single magmatic event at \(\sim \)2367 Ma. A total of 158 samples were subjected to detailed alternating field and thermal demagnetization techniques and the results are presented here along with previously reported data on the same dyke swarm. The remanent magnetic directions are showing two components, viz., seven sites representing four dykes show component (A) with mean declination of \(94{{}^{\circ }}\) and mean inclination of \(-\,70{{}^{\circ }}\) (\(\hbox {k}=87\), \(\upalpha _{95}=10{{}^{\circ }}\)) and corresponding paleopole at \(16{{}^{\circ }}\hbox {N}\), \(41{{}^{\circ }}\hbox {E}\) (\(\hbox {dp}=15{{}^{\circ }}\) and \(\hbox {dm}=17{{}^{\circ }}\)) and 22 sites representing 8 dykes yielded a component (B) with mean declination of \(41{{}^{\circ }}\) and mean inclination of \(-\,21{{}^{\circ }}\) (\(\hbox {k}=41\), \(\upalpha _{95}=9{{}^{\circ }}\)) with a paleopole at \(41{{}^{\circ }}\hbox {N}\), \(200{{}^{\circ }}\hbox {E}\) (\(\hbox {dp}=5{{}^{\circ }}\) and \(\hbox {dm}=10{{}^{\circ }}\)). Component (A) results are similar to the previously reported directions from the \(\sim \)2367 Ma dyke swarm, which have been confirmed fairly reliably to be of primary origin. The component (B) directions appear to be strongly overprinted by the 2080 Ma event. The grand mean for the primary component (A) combined with earlier reported studies gives mean declination of \(97{{}^{\circ }}\) and mean inclination of \(-\,79{{}^{\circ }}\) (\(\hbox {k}=55\), \(\upalpha _{95}=3{{}^{\circ }}\)) with a paleopole at \(15{{}^{\circ }}\hbox {N}\), \(57{{}^{\circ }}\hbox {E}\) (\(\hbox {dp}=5{{}^{\circ }}\), \(\hbox {dm}=6{{}^{\circ }}\)). Paleogeographical position for the Dharwar craton at \(\sim \)2367 Ma suggests that there may be a chance to possible spatial link between Dharwar dykes of Dharwar craton (India), Widgemooltha and Erayinia dykes of Yilgarn craton (Australia), Sebanga Poort Dykes of Zimbabwe craton (Africa) and Karelian dykes of Kola-Karelia craton (Baltica Shield).  相似文献   

3.
Strain responses of frozen clay with thermal gradient under triaxial creep   总被引:1,自引:1,他引:0  
Thermal gradient is one of the main features for the temperature distribution in artificial frozen shaft lining (FSL). The time-dependent strain responses and the corresponding heterogeneity characteristics of frozen soils with thermal gradient are of potential significance for stability assessment and prediction of FSL, especially of the FSL embedded in thick alluvium. A series of triaxial creep tests were carried out on frozen saturated clay under various thermal gradients and creep stresses. The experimental results indicated that the triaxial creep curves for frozen clay with thermal gradient exhibit viscous characteristics, and the creep rate \(\Delta \varepsilon_{\text{a}} /\Delta t\) decreases with the increase in creep time \(t\) and decrease in thermal gradient. The stress–strain curve under different \(t\) showed that the creep stress has a marked growth when axial strain \(\varepsilon_{\text{a}} \le 1\,\%\). However, when \(\varepsilon_{\text{a}} \ge 1\,\%\), the growth rate decreases gradually. The deviation between measured radial strain \(\varepsilon_{\text{r}}^{\text{m}}\) under the middle specimen section height SSH and the calculated radial strain \(\varepsilon_{\text{r}}^{\text{c}}\) from the volumetric strain increases following a unified equation with the increase in axial strain. The radial strain \(\varepsilon_{\text{r}}^{\text{f}}\) for frozen clay with thermal gradient after experiment increases with the increase in SSH, and the slope of \( \varepsilon_{\text{r}}^{\text{f}} - {\text{SSH}} \) curve is significantly dependent on the thermal gradient and creep stress. The variation of \(\varepsilon_{\text{r}}^{\text{m}} - \varepsilon_{\text{r}}^{\text{c }}\) during experiment and \(\varepsilon_{\text{r}}^{\text{f}}\) distribution after experiment are the macro-responses of internal micro-heterogeneities in frozen soils induced from thermal gradient, and are closely related to strain rate and its variation. These observations and findings provide an insight into the creep mechanism and the estimation method of creep deformation for frozen soils with thermal gradient.  相似文献   

4.
This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and \(\hbox {O}_{2}\)(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (\(24.6^{\circ }\hbox {N}\), \(72.8^{\circ }\hbox {E}\)) since January 2013. NIRIS uses a diffraction grating of 1200 lines \(\hbox {mm}^{-1}\) and 1024\(\times \)1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of \(80^{\circ }\) along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, \(c_{z}\), is calculated and along with the coherent GW time period ‘\(\tau \)’, the vertical wavelength, \(\lambda _{z}\), is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, \(\lambda _{y}\), are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and \(\hbox {O}_{2}\) emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters (\(\tau \), \(c_{z}\), \(\lambda _{z}\), and \(\lambda _{y})\), and results on the statistical study of MTIs that exist in the earth’s mesospheric altitudes.  相似文献   

5.
We have estimated soil moisture (SM) by using circular horizontal polarization backscattering coefficient (\(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\)), differences of circular vertical and horizontal \(\sigma ^{\mathrm{o}} \, (\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}})\) from FRS-1 data of Radar Imaging Satellite (RISAT-1) and surface roughness in terms of RMS height (\({\hbox {RMS}}_{\mathrm{height}}\)). We examined the performance of FRS-1 in retrieving SM under wheat crop at tillering stage. Results revealed that it is possible to develop a good semi-empirical model (SEM) to estimate SM of the upper soil layer using RISAT-1 SAR data rather than using existing empirical model based on only single parameter, i.e., \(\sigma ^{\mathrm{o}}\). Near surface SM measurements were related to \(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\), \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}\) derived using 5.35 GHz (C-band) image of RISAT-1 and \({\hbox {RMS}}_{\mathrm{height}}\). The roughness component derived in terms of \({\hbox {RMS}}_{\mathrm{height}}\) showed a good positive correlation with \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}} \, (R^{2} = 0.65)\). By considering all the major influencing factors (\(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\), \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}\), and \({\hbox {RMS}}_{\mathrm{height}}\)), an SEM was developed where SM (volumetric) predicted values depend on \(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\), \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}\), and \({\hbox {RMS}}_{\mathrm{height}}\). This SEM showed \(R^{2}\) of 0.87 and adjusted \(R^{2}\) of 0.85, multiple R=0.94 and with standard error of 0.05 at 95% confidence level. Validation of the SM derived from semi-empirical model with observed measurement (\({\hbox {SM}}_{\mathrm{Observed}}\)) showed root mean square error (RMSE) = 0.06, relative-RMSE (R-RMSE) = 0.18, mean absolute error (MAE) = 0.04, normalized RMSE (NRMSE) = 0.17, Nash–Sutcliffe efficiency (NSE) = 0.91 (\({\approx } 1\)), index of agreement (d) = 1, coefficient of determination \((R^{2}) = 0.87\), mean bias error (MBE) = 0.04, standard error of estimate (SEE) = 0.10, volume error (VE) = 0.15, variance of the distribution of differences \(({\hbox {S}}_{\mathrm{d}}^{2}) = 0.004\). The developed SEM showed better performance in estimating SM than Topp empirical model which is based only on \(\sigma ^{\mathrm{o}}\). By using the developed SEM, top soil SM can be estimated with low mean absolute percent error (MAPE) = 1.39 and can be used for operational applications.  相似文献   

6.
The effect of solar flare, sudden commencement of magnetic storm and of the disturbances ring current on the equatorial electrojet in the Eastern Brazil region, where the ground magnetic declination is as large as \(20^{^{\circ }}\hbox {W}\) is studied based on geomagnetic data with one minute resolution from Bacabal during November–December 1990. It is shown that the mean diurnal vector of the horizontal field was aligned along \(2{^{\circ }}\hbox {E}\) of north at Huancayo and \(30{^{\circ }}\hbox {W}\) of north at Bacabal during the month of December 1990. Number of solar flares that occurred on 30 December 1990 indicated the direction of solar flare related \(\Delta H\) vector to be aligned along \(5{^{\circ }}\hbox {E}\) of north at Huancayo and \(28{^{\circ }}\hbox {W}\) of north at Bacabal. This is expected as the solar flare effects are due to the enhanced conductivity in the ionosphere. The SC at 2230 UT on 26 November 1990 produced a positive impulse in \(\Delta X\) and negative impulse in \(\Delta Y\) at Bacabal with \(\Delta H\) vector aligned along \(27{^{\circ }}\hbox {W}\) of north. At Huancayo the \(\Delta H\) vector associated with SC is aligned along \(8{^{\circ }}\hbox {E}\) of north, few degrees east to the alignment of the diurnal vector of H. The magnetic storm that followed the SC had a minimum Dst index of –150 nT. The corresponding storm time disturbance in \(\Delta X\) at Huancayo as well as at Bacabal were about –250 nT but \(\Delta Y\) at Bacabal was about +70 nT and very small at Huancayo, that give the alignment of the H vector due to ring current about \(16{^{\circ }}\hbox {W}\) of north at Bacabal and almost along N–S at Huancayo. Thus alignment of the \(\Delta H\) vector due to ring current at Bacabal is \(14{^{\circ }}\hbox {E}\) of the mean direction of \(\Delta H\) vector during December 1990. This is consistent with the direction of ring current dependent on the dipole declination at the ring current altitude which is about \(5{^{\circ }}\hbox {W}\) of north over Bacabal and the deviation of declination due to the ring current during disturbed period given by the angle (\(\psi \)-D).  相似文献   

7.
Su  Yu  Cui  Yu-Jun  Dupla  Jean-Claude  Canou  Jean 《Acta Geotechnica》2022,17(9):3747-3763

Experimental observations have shown that the resilient modulus Mr of fine/coarse soil mixture can be significantly affected by the coarse grain content fv, deviator stress σd and suction \(\psi\). In this study, a constitutive model incorporating the soil–water retention curve (SWRC) was proposed to describe the effects of \(\psi\) and \(\sigma_{{\text{d}}}\) on Mr. This model was then extended to the effect of fv. The proposed model implied the resilient modulus at saturation condition (Mr-sat), the resilient modulus at optimum moisture content (OMC) condition (Mr-opt), the suction at OMC (\(\psi_{{{\text{opt}}}}\)) and the parameters related to SWRC. The model was validated using experimental data from five studies reported in the literature. Comparisons with three representative existing models showed that the proposed model was capable to well describe the suction-dependent effect of deviator stress in the full range of suction, while the existing models gave satisfactory simulation results only in the low suction range. Indeed, experimental studies revealed that there was a threshold suction \(\psi_{{{\text{th}}}}\), and with increasing \(\sigma_{{\text{d}}}\), the Mr decreased when \(\psi < \psi_{{{\text{th}}}}\), but increased when \(\psi > \psi_{{{\text{th}}}}\). When \(\psi < \psi_{{{\text{th}}}}\), all models gave good simulations. On the contrary, when \(\psi > \psi_{{{\text{th}}}}\), only the proposed model gave good simulations, in particular when \(\psi_{{{\text{th}}}} > \psi_{{{\text{opt}}}}\). This showed the performance of the proposed model in describing the variation in resilient modulus of unsaturated fine/coarse soil mixtures with changes in coarse grain content, deviator stress and suction.

  相似文献   

8.
An eddy-resolving coupled ocean sea-ice modelling is carried out in the Southern Ocean region (9\(^{\circ }\)–78\(^{\circ }\)E; 51\(^{\circ }\)–71\(^{\circ }\)S) using the MITgcm. The model domain incorporates the Indian Antarctic stations, Maitri (11.7\({^{\circ }}\)E; 70.7\({^{\circ }}\)S) and Bharati (76.1\({^{\circ }}\)E; 69.4\({^{\circ }}\)S). The realistic simulation of the surface variables, namely, sea surface temperature (SST), sea surface salinity (SSS), surface currents, sea ice concentration (SIC) and sea ice thickness (SIT) is presented for the period of 1997–2012. The horizontal resolution of the model varies between 6 and 10 km. The highest vertical resolution of 5 m is taken near the surface, which gradually increases with increasing depths. The seasonal variability of the SST, SSS, SIC and currents is compared with the available observations in the region of study. It is found that the SIC of the model domain is increasing at a rate of 0.09% per month (nearly 1% per year), whereas, the SIC near Maitri and Bharati regions is increasing at a rate of 0.14 and 0.03% per month, respectively. The variability of the drift of the sea-ice is also estimated over the period of simulation. It is also found that the sea ice volume of the region increases at the rate of 0.0004 \(\hbox {km}^{3}\) per month (nearly 0.005 \(\hbox {km}^{3}\) per year). Further, it is revealed that the accumulation of sea ice around Bharati station is more as compared to Maitri station.  相似文献   

9.
We report the results of experiments designed to separate the effects of temperature and pressure from liquid composition on the partitioning of Ni between olivine and liquid, \(D_{\text{Ni}}^{\text{ol/liq}}\). Experiments were performed from 1300 to 1600 °C and 1 atm to 3.0 GPa, using mid-ocean ridge basalt (MORB) glass surrounded by powdered olivine in graphite–Pt double capsules at high pressure and powdered MORB in crucibles fabricated from single crystals of San Carlos olivine at one atmosphere. In these experiments, pressure and temperature were varied in such a way that we produced a series of liquids, each with an approximately constant composition (~12, ~15, and ~21 wt% MgO). Previously, we used a similar approach to show that \(D_{\text{Ni}}^{\text{ol/liq}}\) for a liquid with ~18 wt% MgO is a strong function of temperature. Combining the new data presented here with our previous results allows us to separate the effects of temperature from composition. We fit our data based on a Ni–Mg exchange reaction, which yields \(\ln \left( {D_{\text{Ni}}^{\text{molar}} } \right) = \frac{{ -\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } }}{RT} + \frac{{\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } }}{R} - \ln \left( {\frac{{X_{\text{MgO}}^{\text{liq}} }}{{X_{{{\text{MgSi}}_{ 0. 5} {\text{O}}_{ 2} }}^{\text{ol}} }}} \right).\) Each subset of constant composition experiments displays roughly the same temperature dependence of \(D_{\text{Ni}}^{\text{ol/liq}}\) (i.e.,\(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\)) as previously reported for liquids with ~18 wt% MgO. Fitting new data presented here (15 experiments) in conjunction with our 13 previously published experiments (those with ~18 wt% MgO in the silicate liquid) to the above expression gives \(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = 3641 ± 396 (K) and \(\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = ? 1.597 ± 0.229. Adding data from the literature yields \(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = 4505 ± 196 (K) and \(\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = ? 2.075 ± 0.120, a set of coefficients that leads to a predictive equation for \(D_{\text{Ni}}^{\text{ol/liq}}\) applicable to a wide range of melt compositions. We use the results of our work to model the melting of peridotite beneath lithosphere of varying thickness and show that: (1) a positive correlation between NiO in magnesian olivine phenocrysts and lithospheric thickness is expected given a temperature-dependent \(D_{\text{Ni}}^{\text{ol/liq}} ,\) and (2) the magnitude of the slope for natural samples is consistent with our experimentally determined temperature dependence. Alternative processes to generate the positive correlation between NiO in magnesian olivines and lithospheric thickness, such as the melting of olivine-free pyroxenite, are possible, but they are not required to explain the observed correlation of NiO concentration in initially crystallizing olivine with lithospheric thickness.  相似文献   

10.
We calculated the phase diagram of \(\hbox {AlPO}_{4}\) up to 15 GPa and 2,000 K and investigated the thermodynamic properties of the high-pressure phases. The investigated phases include the berlinite, moganite-like, \(\hbox {AlVO}_{4},\, P2_1/c\), and \(\hbox {CrVO}_{4}\) phases. The computational methods used include density functional theory, density functional perturbation theory, and the quasiharmonic approximation. The investigated thermodynamic properties include the thermal equation of state, isothermal bulk modulus, thermal expansivity, and heat capacity. With increasing pressure, the ambient phase berlinite transforms to the moganite-like phase, and then to the \(\hbox {AlVO}_{4}\) and \(P2_1/c\) phases, and further to the \(\hbox {CrVO}_{4}\) phase. The stability fields of the \(\hbox {AlVO}_{4}\) and \(P2_1/c\) phases are similar in pressure but different in temperature, as the \(\hbox {AlVO}_{4}\) phase is stable at low temperatures, whereas the \(P2_1/c\) phase is stable at high temperatures. All of the phase relationships agree well with those obtained by quench experiments, and they support the stabilities of the moganite-like, \(\hbox {AlVO}_{4}\), and \(P2_1/c\) phases, which were not observed in room-temperature compression experiments.  相似文献   

11.
The deglacial transition from the last glacial maximum at \(\sim \)20 kiloyears before present (ka) to the Holocene (11.7 ka to Present) was interrupted by millennial-scale cold reversals, viz., Antarctic Cold Reversal (\(\sim \)14.5–12.8 ka) and Greenland Younger Dryas (\(\sim \)12.8–11.8 ka) which had different timings and extent of cooling in each hemisphere. The cause of this synchronously initiated, but different hemispheric cooling during these cold reversals (Antarctic Cold Reversal \(\sim \)3\(^{\circ }\hbox {C}\) and Younger Dryas \(\sim \)10\(^{\circ }\hbox {C}\)) is elusive because \(\hbox {CO}_{2}\), the fundamental forcing for deglaciation, and Atlantic meridional overturning circulation, the driver of antiphased bipolar climate response, both fail to explain this asymmetry. We use centennial-resolution records of the local surface water \(\delta ^{18}\hbox {O}\) of the Eastern Arabian Sea, which constitutes a proxy for the precipitation associated with the Indian Summer Monsoon, and other tropical precipitation records to deduce the role of tropical forcing in the polar cold reversals. We hypothesize a mechanism for tropical forcing, via the Indian Summer Monsoons, of the polar cold reversals by migration of the Inter-Tropical Convergence Zone and the associated cross-equatorial heat transport.  相似文献   

12.
This paper studies the reliability of the calculated shear-wave velocity (\(V_{\mathrm{S}}\)) from different available \(V_{\mathrm{S}}\) and SPT-N correlations in terms of seismic site response analysis. In the present study, various \(V_{\mathrm{S}}\)N correlations developed for different regions around the globe have been used to calculate the bound of \(V_{\mathrm{S}}\) variations with depth at three different sites in Kolkata city. This bound has later been used to generate the random \(V_{\mathrm{S}}\) profiles using the Monte Carlo simulation. Equivalent linear site response analysis has been performed to study the response of those generated profiles under different input motion excitations. Strong-to-weak ground motion records have been used for this purpose. The amplification spectra of the generated \(V_{\mathrm{S}}\) profiles using all soil types and specific soil-type \(V_{\mathrm{S}}\)N correlations show significant variations. The study also shows that the \(V_{\mathrm{S}}\)N correlation may result in quite different \(V_{\mathrm{S},30}\) values and subsequently it may lead to the different site classes according to the NEHRP 2003 classification. So, the random choice of the \(V_{\mathrm{S}}\)N correlation, where the direct measurement of \(V_{\mathrm{S}}\) is not available, may affect the outcome of seismic hazard analysis significantly. The study points out the need for accurate estimation of the \(V_{\mathrm{S}}\) profile either from in-situ determination or using site-specific correlation.  相似文献   

13.
Clayey-silt aquitards account for 60 % of the ~100-m-thick alluvial sediment sequence in the Gunnedah area of eastern Australia. To better understand the stress-dependent hydraulic properties of these low-permeability units, oedometer test data presented for the first time in this study have been integrated with geotechnical centrifuge permeameter tests. Estimates of vertical pre-consolidation effective stress (\(\sigma_{\text{p}}^{'}\)), vertical in situ effective stress (\(\sigma_{\text{i}}^{'}\)), and over-consolidation ratio (OCR) were used to determine whether centrifugation stresses caused compression of core samples, and the degree to which vertical hydraulic conductivity (K v) assessments were representative of the core samples tested. Results suggest that minimally disturbed drill core from semi-consolidated sediments (e.g., alluvial, colluvial, and eolian deposits) evaluated in this study should have target centrifugation stress less than \(\sigma_{\text{p}}^{'}, \) where OCR < 1 and \(\sigma_{\text{i}}^{'}\) where OCR > 1 to avoid significant changes in hydraulic properties during plastic straining. The results also imply that the stress-dependent response of aquitards is critical to understand the sensitivity of groundwater resources in areas with multiple stakeholders such as mining, coal seam gas, and agriculture developments. Groundwater in alluvial sediments that is essential for irrigation, water supply, and base flows to rivers must be sufficiently disconnected from groundwater in coal seams that are depressurized for extraction of energy resources.  相似文献   

14.
The solubility of chromium in chlorite as a function of pressure, temperature, and bulk composition was investigated in the system Cr2O3–MgO–Al2O3–SiO2–H2O, and its effect on phase relations evaluated. Three different compositions with X Cr = Cr/(Cr + Al) = 0.075, 0.25, and 0.5 respectively, were investigated at 1.5–6.5 GPa, 650–900 °C. Cr-chlorite only occurs in the bulk composition with X Cr = 0.075; otherwise, spinel and garnet are the major aluminous phases. In the experiments, Cr-chlorite coexists with enstatite up to 3.5 GPa, 800–850 °C, and with forsterite, pyrope, and spinel at higher pressure. At P > 5 GPa other hydrates occur: a Cr-bearing phase-HAPY (Mg2.2Al1.5Cr0.1Si1.1O6(OH)2) is stable in assemblage with pyrope, forsterite, and spinel; Mg-sursassite coexists at 6.0 GPa, 650 °C with forsterite and spinel and a new Cr-bearing phase, named 11.5 Å phase (Mg:Al:Si = 6.3:1.2:2.4) after the first diffraction peak observed in high-resolution X-ray diffraction pattern. Cr affects the stability of chlorite by shifting its breakdown reactions toward higher temperature, but Cr solubility at high pressure is reduced compared with the solubility observed in low-pressure occurrences in hydrothermal environments. Chromium partitions generally according to \(X_{\text{Cr}}^{\text{spinel}}\) ? \(X_{\text{Cr}}^{\text{opx}}\) > \(X_{\text{Cr}}^{\text{chlorite}}\) ≥ \(X_{\text{Cr}}^{\text{HAPY}}\) > \(X_{\text{Cr}}^{\text{garnet}}\). At 5 GPa, 750 °C (bulk with X Cr = 0.075) equilibrium values are \(X_{\text{Cr}}^{\text{spinel}}\) = 0.27, \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.08, \(X_{\text{Cr}}^{\text{garnet}}\) = 0.05; at 5.4 GPa, 720 °C \(X_{\text{Cr}}^{\text{spinel}}\) = 0.33, \(X_{\text{Cr}}^{\text{HAPY}}\) = 0.06, and \(X_{\text{Cr}}^{\text{garnet}}\) = 0.04; and at 3.5 GPa, 850 °C \(X_{\text{Cr}}^{\text{opx}}\) = 0.12 and \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.07. Results on Cr–Al partitioning between spinel and garnet suggest that at low temperature the spinel- to garnet-peridotite transition has a negative slope of 0.5 GPa/100 °C. The formation of phase-HAPY, in assemblage with garnet and spinel, at pressures above chlorite breakdown, provides a viable mechanism to promote H2O transport in metasomatized ultramafic mélanges of subduction channels.  相似文献   

15.
The biotite zone assemblage: calcite-quartz-plagioclase (An25)-phengite-paragonite-chlorite-graphite, is developed at the contact between a carbonate and a pelite from British Columbia. Thermochemical data for the equilibrium paragonite+calcite+2 quartz=albite+ anorthite+CO2+H2O yields: $$\log f{\text{H}}_{\text{2}} {\text{O}} + \log f{\text{CO}}_{\text{2}} = 5.76 + 0.117 \times 10^{ - 3} (P - 1)$$ for a temperature of 700°K and a plagioclase composition of An25. By combining this equation with equations describing equilibria between graphite and gas species in the system C-H-O, the following partial pressures: \(P{\text{H}}_2 {\text{O}} = 2572{\text{b, }}P{\text{CO}}_2 = 3162{\text{b, }}P{\text{H}}_2 = 2.5{\text{b, }}P{\text{CH}}_4 = 52.5{\text{b, }}P{\text{CO}} = 11.0{\text{b}}\) are obtained for \(f{\text{O}}_2 = 10^{ - 26}\) . If total pressure equals fluid pressure, then the total pressure during metamorphism was approximately 6 kb. The total fluid pressure calculated is extremely sensitive to the value of \(f{\text{O}}_2\) chosen.  相似文献   

16.
Seismic source parameters of small to moderate sized intraplate earthquakes that occurred during 2002–2009 in the tectonic blocks of Kachchh Rift Basin (KRB) and the Saurashtra Horst (SH), in the stable continental region of western peninsular India, are studied through spectral analysis of shear waves. The data of aftershock sequence of the 2001 Bhuj earthquake (\(M_{w}\) 7.7) in the KRB and the 2007 Talala earthquake (\(M_{w}\) 5.0) in the SH are used for this study. In the SH, the seismic moment (\(M_{o})\), corner frequency \((f_{c})\), stress drop (\(\varDelta \sigma \)) and source radius (r) vary from \(7.8\times 10^{11}\) to \(4.0\times \)10\(^{16}\) N-m, 1.0–8.9 Hz, 4.8–10.2 MPa and 195–1480 m, respectively. While in the KRB, these parameters vary from \(M_{o} \sim 1.24 \,\times \, 10^{11}\) to \(4.1 \times 10^{16}\) N-m, \(f_{c }\sim \) 1.6 to 13.1 Hz, \(\varDelta \sigma \sim 0.06\) to 16.62 MPa and \(r \sim 100\) to 840 m. The kappa (K) value in the KRB (0.025–0.03) is slightly larger than that in the SH region (0.02), probably due to thick sedimentary layers. The estimated stress drops of earthquakes in the KRB are relatively higher than those in SH, due to large crustal stress concentration associated with mafic/ultramafic rocks at the hypocentral depths. The results also suggest that the stress drop value of intraplate earthquakes is larger than the interplate earthquakes. In addition, it is observed that the strike-slip events in the SH have lower stress drops, compared to the thrust and strike-slip events.  相似文献   

17.
We present new partition coefficients for the REE, HFSE, Sn, In, Ga, Ba, Pt and Rh between clinopyroxene, olivine and basaltic melt as a function of crystal chemistry and melt composition at temperatures of 1190–1300 °C and 1-bar pressure. Two components, namely \(\mathrm {Al_2O_3}\) and \(\mathrm {Na_2O}\), were chosen to be investigated since they are known to affect the structure of silicate melts and especially clinopyroxene crystal chemistry. The amount of \(^{[4]}\mathrm{Al}\) in clinopyroxene will result in an increase of \(D_i^\mathrm{{cpx/melt}}\) even after applying a correction factor to account for the effect of melt polymerization. Moreover, the positive correlation between \(^{[4]}\mathrm{Al}\) and \(D_i^\mathrm{{cpx/melt}}\) is not restricted to the REE, but also applies for Sn, Ga, In, and Ba. The addition of up to 2.6 wt% \(\mathrm {Na_2O}\) to the silicate melt universally increases the \(D_i^\mathrm{{cpx/melt}}\) without any concomitant change in crystal chemistry or a significant effect in melt polymerization. This compositional effect is likely due to the ability of Na to break REE–Al complexes in the melt. Our results emphasize the importance of considering all variables that affect the behavior of trace elements in magmatic systems before applying the lattice strain model and derive meaningful results for the changes in the parameters of the crystallographic sites.  相似文献   

18.
This article formulates the experimentally substantiated physical principle that the natural stress condition of the Earth’s crust is formed due to the superposition of stress fields, which is caused by the gravitational forces of the Earth and by tectonic and astrophysical forces that are produced by physical processes in space. The natural stress field is represented by the stress tensor regulatory components: \(\sigma _{z}^{{\text{N}}}\) = \( - \gamma H + {{\sigma }_{{zT}}} + {{\sigma }_{{z{\text{AF}}}}}\), \(\sigma _{x}^{{\text{N}}}\) = \( - \lambda \gamma H + {{\sigma }_{{xT}}} + {{\sigma }_{{x{\text{AF}}}}}\), \(\sigma _{y}^{{\text{N}}}\) = \( - \lambda \gamma H + {{\sigma }_{{yT}}} + {{\sigma }_{{y{\text{AF}}}}}\).  相似文献   

19.
This systematic study was carried out with objective to delineate the various sources responsible for \(\hbox {NO}_{3}^{-}\) contamination and \(\hbox {F}^{-}\) enrichment by utilizing statistical and graphical methods. Since Central Ground Water Board, India, indicated susceptibility of \(\hbox {NO}_{3}^{-}\) contamination and \(\hbox {F}^{-}\) enrichment, in most of the groundwater, \(\hbox {NO}_{3}^{-}\) and \(\hbox {F}^{-}\) concentration primarily observed \({>}45\) and \({>}1.5~\hbox {mg/L}\), respectively, i.e., higher than the permissible limit for drinking water. Water Quality Index (WQI) indicates \({\sim }22.81\%\) groundwater are good-water, \({\sim }71.14\%\) groundwater poor-water, \({\sim }5.37\%\) very poor-water and 0.67% unsuitable for drinking purpose. Piper diagram indicates \({\sim }59.73\%\) groundwater hydrogeochemical facies are Ca–Mg–\(\hbox {HCO}_{3 }\) water-types, \({\sim }28.19\%\) Ca–Mg–\(\hbox {SO}_{4}\)–Cl water-types, \({\sim }8.72\%\) Na–K–\(\hbox {SO}_{4}\)–Cl water-types and 3.36% Na–K–\(\hbox {HCO}_{3 }\) water-types. This classification indicates dissolution and mixing are mainly controlling groundwater chemistry. Salinity diagram indicate \({\sim }44.30\%\) groundwater under in low sodium and medium salinity hazard, \({\sim }49.66\%\) groundwater fall under low sodium and high salinity hazard, \({\sim }3.36\%\) groundwater fall under very-high salinity hazard. Sodium adsorption ratio indicates \({\sim }97\%\) groundwater are in excellent condition for irrigation. The spatial distribution of \(\hbox {NO}_{3}^{-}\) indicates significant contribution of fertilizer from agriculture lands. Fluoride enrichment occurs in groundwater through the dissolution of fluoride-rich minerals. By reducing the consumption of fertilizer and stress over groundwater, the water quality can be improved.  相似文献   

20.
The phonon dispersion and thermodynamic properties of pyrope (\(\hbox {Mg}_3\hbox {Al}_2\hbox {Si}_3\hbox {O}_{12}\)) and grossular (\(\hbox {Ca}_3\hbox {Al}_2\hbox {Si}_3\hbox {O}_{12}\) ) have been computed by using an ab initio quantum mechanical approach, an all-electron variational Gaussian-type basis set and the B3LYP hybrid functional, as implemented in the Crystal program. Dispersion effects in the phonon bands have been simulated by using supercells of increasing size, containing 80, 160, 320, 640, 1280 and 2160 atoms, corresponding to 1, 2, 4, 8, 16 and 27 \(\mathbf {k}\) points in the first Brillouin zone. Phonon band structures, density of states and corresponding inelastic neutron scattering spectra are reported. Full convergence of the various thermodynamic properties, in particular entropy (S) and specific heat at constant volume (\(C_\mathrm{{V}}\)), with the number of \(\mathbf {k}\) points is achieved with 27 \(\mathbf {k}\) points. The very regular behavior of the S(T) and \(C_\mathrm{{V}}(T)\) curves as a function of the number of \(\mathbf {k}\) points, determined by high numerical stability of the code, permits extrapolation to an infinite number of \(\mathbf {k}\) points. The limiting value differs from the 27-\(\mathbf {k}\) case by only 0.40 % at 100 K for S (the difference decreasing to 0.11 % at 1000 K) and by 0.29 % (0.05 % at 1000 K) for \(C_\mathrm{{V}}\). The agreement with the experimental data is rather satisfactory. We also address the problem of the relative entropy of pyrope and grossular, a still debated question. Our lattice dynamical calculations correctly describe the larger entropy of pyrope than grossular by taking into account merely vibrational contributions and without invoking “static disorder” of the Mg ions in dodecahedral sites. However, as the computed entropy difference is found to be larger than the experimental one by a factor of 2–3, present calculations cannot exclude possible thermally induced structural changes, which could lead to further conformational contributions to the entropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号