首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 938 毫秒
1.
The headrace tunnels at the Jinping II Hydropower Station cross the Jinping Mountain with a maximum overburden depth of 2,525 m, where 80% of the strata along the tunnels consist of marble. A number of extremely intense rockbursts occurred during the excavation of the auxiliary tunnels and the drainage tunnel. In particular, a tunnel boring machine (TBM) was destroyed by an extremely intense rockburst in a 7.2-m-diameter drainage tunnel. Two of the four subsequent 12.4-m-diameter headrace tunnels will be excavated with larger size TBMs, where a high risk of extremely intense rockbursts exists. Herein, a top pilot tunnel preconditioning method is proposed to minimize this risk, in which a drilling and blasting method is first recommended for the top pilot tunnel excavation and support, and then the TBM excavation of the main tunnel is conducted. In order to evaluate the mechanical effectiveness of this method, numerical simulation analyses using the failure approaching index, energy release rate, and excess shear stress indices are carried out. Its construction feasibility is discussed as well. Moreover, a microseismic monitoring technique is used in the experimental tunnel section for the real-time monitoring of the microseismic activities of the rock mass in TBM excavation and for assessing the effect of the top pilot tunnel excavation in reducing the risk of rockbursts. This method is applied to two tunnel sections prone to extremely intense rockbursts and leads to a reduction in the risk of rockbursts in TBM excavation.  相似文献   

2.
There are two kinds of excavation methods in underground engineering: the tunnel boring machine (TBM) and the drill-blasting method. A large number of studies have shown that the deformation and failure, the degree of disturbance, the stability and the reinforcement measures of surrounding rock using the TBM and drill-blasting method vary from each other. To accurately master these macroscopic damages, it is necessary to focus on the investigation of the micro-mechanical responses of the surrounding rock. Scanning electron microscopy tests, acoustic emission tests and tunnel acoustic detection tests were carried out to analyze the mechanical response of surrounding rock of tunnels, which were excavated in marble by, respectively, the TBM and the drill-blasting method. The tests results showed that most of the rock fractures cut by TBM is wipe along the crystal, and the failure mechanism is mainly cutting, while most of the rock fractures induced by the TBM coincide with crystal planes, its mechanism is mainly tensile. The stress–strain curves of rocks cut by the TBM method are rather flat around the peak strength, which means a strong resistance to deformation around the peak load. The response of AE for the rock cut by the TBM method appears after larger strains than the response of the rock constructed by the drill-blasting method. This suggests that the resistance to damage is higher under TBM excavation conditions. The relaxation depths of the tunnel excavated by the drill-blasting method are larger than the tunnel excavated by the TBM method. The research can provide more insight into tunnel failure mechanisms and provide a framework for reinforcement measures.  相似文献   

3.
大埋深、高地应力隧洞围岩变形问题是制约TBM隧洞安全及高效施工的关键性因素之一。隧洞埋深大、地应力高、岩石强度高、工程条件复杂,在施工过程中因开挖卸载,围岩变形随时间及应力集中程度不同表现出不同的破裂变形形式,引发拱顶沉降、拱底隆起,严重威胁施工人员及机械设备安全。本文选取引汉济渭工程秦岭隧洞岭北段K45+534.70~K45+701.92区间,分析了围岩破裂形式、隧洞拱肩及拱顶变形特征,探讨了高地应力条件下围岩破裂变形过程,揭示了围岩破裂变形规律及内在机制,提出了高地应力硬岩隧洞围岩破裂变形支护措施。结果表明:大埋深、高地应力围岩在切向应力作用下发生以劈裂为主的张剪破坏,表现为岩爆及静态脆性破坏(片帮、溃屈、板裂)两大类。隧洞围岩破裂变形分为急剧变形、快速变形及缓慢变形3个阶段,前两个阶段可达总变形量的60% ~80%;隧洞拱顶变形随应力条件不同可能出现二次甚至三次加速变形,初次加速主要原因为张开裂隙、岩板剪胀及部分岩板挠屈弯折,发生速度快、持续时间短;二次加速主要由岩板挠屈弯折及岩块碎胀引起,变形速度小但持续时间长。针对高地应力隧洞围岩破裂变形特征,提出了包括吸能锚杆、钢筋挂网、钢纤维混凝土等在内的围岩支护措施,为相似工程TBM隧洞安全高效施工提供了工程经验与理论依据。  相似文献   

4.
周辉  卢景景  徐荣超  张传庆  孟凡震 《岩土力学》2015,36(10):2737-2749
规律性的板裂化破坏是深埋硬脆性岩体开挖卸荷造成的典型围岩破坏现象,给隧洞的安全施工建设带来了严峻挑战。板裂化破坏的研究主要涉及两个关键问题:板裂化破坏的形成机制及其影响因素,板裂化破坏与岩爆的关系。多年来,国内外学者通过理论分析、现场及室内试验、数值模拟等不同途径对板裂化破坏问题进行了系统的研究,取得了丰富的研究成果。在系统分析有关板裂化破坏两个关键问题研究进展的基础上认为,板裂化破坏的形成机制复杂、影响因素众多。基于板裂化破坏形成的细观机制,建立不同类型板裂化破坏的力学准则与力学模型是揭示板裂化破坏形成机制的关键所在;板裂化破坏现象与岩爆之间具有很强的相关性和本质的联系,深入揭示板裂化破坏特征所包含的岩爆前兆信息是板裂化破坏与岩爆关系研究的关键与难点问题。  相似文献   

5.
针对全断面隧道掘进机(TBM)开挖过程掌子面岩体软硬交替变化的特点,以兰州水源地建设工程为背景,采用模型试验与数值模拟方法研究了复合地层TBM开挖过程隧洞围岩的动态响应规律。通过开展相似配比试验配制了不同围岩强度比的复合地层岩体相似材料,运用光纤光栅技术全程捕捉了隧洞开挖过程复合地层应变演化规律,并分析了隧洞围岩的宏观破裂形态。模型试验结果表明:TBM推进过程中复合地层应变变化规律体现了掌子面推进的空间效应,软岩部分应变要大于硬岩部分应变,且随着开挖步数的增加两种岩层应变差值越大;隧洞内岩体完全挖除后,围岩宏观破裂形态表明因复合地层岩体物理力学性质的差异,上覆软岩变形破坏较为严重,破裂和变形较为显著,在软、硬岩层交界面出现“变形不协调”现象。选取工程沿线某洞段的地质力学参数,基于破坏接近度(FAI)指标评价了隧洞开挖过程中复合地层围岩的稳定性,数值结果表明:开挖过程软岩中FAI变化较为明显,塑性区和破坏区分布范围更广,而下部硬岩受开挖扰动影响较小,只有拱底小范围岩体进入破坏状态。模型试验和数值结果均说明交替变化的掌子面岩体在开挖过程中其围岩在变形破坏等规律方面存在明显差异,因此,TBM在复合地层施工可采取重点部位监测预警、提前采取相应措施等手段,减少或避免卡机事故的发生。该研究成果对于指导复合地层TBM施工具有一定的借鉴和指导意义。  相似文献   

6.
为探究预应力锚杆对岩体板裂化破坏的控制机制,首先进行了岩体板裂化破坏的室内物理模型试验,并运用FLAC数值模拟技术,模拟了平面应变状态下板裂化破坏的形成过程;在此基础上,通过3种不同的预应力锚杆施加方案,进行预应力锚杆对岩体板裂化破坏控制机制的数值试验。研究结果表明:预应力锚杆的作用削弱了裂隙尖端应力集中现象,有效地抑制了岩体内裂隙的扩展与贯通、板裂化破坏的形成;作用在板裂区边界的预应力锚杆,不仅能够抑制板裂化破坏的形成,而且能在一定程度上控制板裂化破坏的范围;作用在板裂破坏区内的预应力锚杆,可有效限制板裂岩体向临空面的位移,体现出提高板裂岩体整体变形刚度的作用。研究结果对认识深埋隧洞围岩板裂化破坏的形成机制、板裂化破坏的合理支护控制以及岩爆防治具有重要指导价值。  相似文献   

7.
陈智强  张永兴  周检英 《岩土力学》2011,32(Z1):141-148
利用相似材料模拟方法,借助数字散斑观测技术,对深埋隧道围岩岩爆倾向进行试验研究。分析考虑材料强度、开挖速度和支护作用影响下的岩爆发生和破坏规律,寻求岩爆发生与深埋隧道变形破坏之间内在的联系。试验结果与现场实际发生岩爆强度较高的岩石类型花岗岩、闪长岩等相比,破坏特征相似,且围岩强度越高,岩爆发生可能性越大;在高地应力状态和完整岩体中开挖速度对岩爆的发生影响较大;锚网支护对隧道围岩变形有一定的控制作用,也可一定程度上避免岩爆发生。支护试验结果与现场实际支护效果一致,随支护强度提高,隧道抵抗力增加,整体变形减小、稳定性提高。所得试验结论为深埋隧道的合理设计和安全开挖提供技术指导和理论依据,对革新深埋隧道开挖技术和支护技术具有重要的意义  相似文献   

8.
Summary. Tunnel face and wall collapse are common during excavations performed by tunnel boring machines (TBMs) due to the difficulty of correctly identifying the properties of the excavated rock. This identification, however, can be simplified by using the cutting force to estimate rock strength, a method that has already proved quite successful in Japanese tunnel excavations. This paper summarizes knowledge relating to the cutting force obtained through tunnel excavation experience, and the relationship between rock strength and TBM operation is discussed. Although TBM operators rely on intuition to set the cutter head speed appropriately, this decision process represents a logical method of operation that takes advantage of the variable speed capability of the cutter head. Selection of appropriate support methods for the excavated face is also a critical issue in tunnel excavation. This selection process is based on the condition of the rock, which is difficult to determine quickly and accurately during tunnel excavation. The present paper uses the excavation of two tunnels to demonstrate that it is possible to assign rock mass classifications accurately based on rock strength when boring a uniform rock type. It is also shown that the rock mass can be classified from the rock strength normalized by the uniaxial compressive strength when boring through mixed rock types.  相似文献   

9.
A Completely 3D Model for the Simulation of Mechanized Tunnel Excavation   总被引:2,自引:1,他引:1  
For long deep tunnels as currently under construction through the Alps, mechanized excavation using tunnel boring machines (TBMs) contributes significantly to savings in construction time and costs. Questions are, however, posed due to the severe ground conditions which are in cases anticipated or encountered along the main tunnel alignment. A major geological hazard is the squeezing of weak rocks, but also brittle failure can represent a significant problem. For the design of mechanized tunnelling in such conditions, the complex interaction between the rock mass, the tunnel machine, its system components, and the tunnel support need to be analysed in detail and this can be carried out by three-dimensional (3D) models including all these components. However, the state-of-the-art shows that very few fully 3D models for mechanical deep tunnel excavation in rock have been developed so far. A completely three-dimensional simulator of mechanised tunnel excavation is presented in this paper. The TBM of reference is a technologically advanced double shield TBM designed to cope with both conditions. Design analyses with reference to spalling hazard along the Brenner and squeezing along the Lyon–Turin Base Tunnel are discussed.  相似文献   

10.
深埋长隧道TBM施工关键问题探讨   总被引:2,自引:0,他引:2  
周建军  杨振兴 《岩土力学》2014,35(Z2):299-305
针对深埋长隧道开挖所面临的高水压、高地压、高地温、大变形、难支护等问题,分析总结传统钻爆法开挖与支护技术、全断面隧道掘进机(TBM)施工技术、TBM导洞扩挖技术应用中的优劣,TBM导洞扩挖法为深埋长隧道开挖提供了新的设计思路。由于深埋长隧道的建设环境与浅埋隧道建设环境存在显著差异,TBM施工将面临3个关键问题--岩爆问题、卡盾(大变形)问题和未准确探测前方地质而发生的施工事故(涌水、突泥等)。为揭示TBM施工过程中卡盾的存在性,分别针对某一特定地质条件下深埋软、硬岩TBM施工进行理论分析和数值模拟研究。结果表明,软岩地层TBM施工发生卡盾,而硬岩完整地层TBM施工未发生卡盾。  相似文献   

11.
基于锦屏二级水电站深埋隧洞钻爆法及隧道掘进机(TBM)开挖过程中大量微震监测数据及不同等级的岩爆案例,对不同开挖方式下即时型岩爆的孕育及发生过程的能量释放展开研究,并运用分形几何原理研究微震能量分布的变化规律,得到以下结论:(1)即时型岩爆的孕育及发生过程中,岩爆区围岩岩体处于破坏加速集聚并不断扩展的过程;(2)钻爆法开挖过程中储存在岩体内的弹性应变能消耗于岩体破裂过程大于TBM开挖,而转化为岩体动能小于TBM开挖;(3)钻爆法开挖微震能量分形维度在即时型岩爆的孕育过程不断增加,岩爆临近前会增加到某个临界值以上;(4)TBM开挖即时型高等级岩爆能量分形维度值大于钻爆法开挖,并且其分形维度值可以反映低等级岩爆伴随发生的特征。  相似文献   

12.
Surface-parallel slabbing is a failure mode often observed in highly stressed hard rocks in underground excavations. This paper presents the results of experimental studies on slabbing failure of hard rock with different sample height-to-width ratios. The main purpose of this study was to find out the condition to create slabbing failure under uniaxial compression and to determine the slabbing strength of hard rock in the laboratory. Uniaxial compression tests were carried out using five groups of granite specimens. The mechanical parameters of the sample rock, Iddefjord granite from Norway, were measured on the cylindrical and Brazilian disc specimens. The transition of the failure mode was studied using rectangular prism specimens. The initiation and the propagation of slabbing fractures in specimens were identified by examining the relationship among the applied stress, strain and the acoustic emission. The stress thresholds identified were compared to those reported by other authors for crack initiation and brittle failure. It is observed that the macro failure mode will be transformed from shear to slabbing when the height/width ratio is reduced to 0.5 in the prism specimens under uniaxial compression. Micro σ 1-parallel fractures initiate when the lateral strain departs from its linearity. Slabbing fractures are approximately parallel to the loading direction. Labotatory tests show that the slabbing strength (σ sl) of hard rock is about 60% of its uniaxial compression strength. It means that if the maximum tangential stress surrounding an underground excavation reaches about the slabbing threshold, slabbing fractures may take place on the boundary of the excavation. Therefore, the best way to stop or eliminate slabbing failure is to control the excavation boundary to avoid the big stress concentration, so that the maximum tangential stress could be under the slabbing threshold.  相似文献   

13.
Summary The initial phase of the Donkin-Morien project involves the driving of two parallel tunnels through an interbedded sequence of coal measures strata to intersect the Harbour Seam which lies approximately 3.5 km offshore. The No. 2 tunnel was driven a total distance of 3579 m using a 7.6 m diameter full face shielded Lovat TBM and supported by steel ring beams. The No. 3 tunnel was initially driven a distance of 1027 m using conventional drill and blast methods (7.6 m wide by 5.3 m high with a uniradial arch and supported by rock bolts and shotcrete). The TBM was subsequently used to complete the drivage of the No. 3 tunnel to the Harbour Seam.Both the No. 2 and No. 3 tunnels followed a thick sandstone unit at a grade of –20% for the first 900 m. This provided an opportunity to compare the rock mass disturbance resulting from two different excavation methods. A programme of field and laboratory measurements was therefore undertaken, which included: the use of a borehole dilatometer to determinein situ rock modulus,in situ gas permeability testing, seismic reflection surveys on the tunnel walls, and the laboratory testing of core samples.The paper examines the four different techniques used and compares the results obtained.  相似文献   

14.
Summary The understanding of rock breaking and chipping due to the TBM cutter disks mechanism in deep tunnels is considered in this paper. The interest stems from the use of TBMs for the excavation of long Trans-Alpine tunnels. Some tests that simulate the disk cutter action at the tunnel face by means of an indenter, acting on a rock specimen are proposed. The rock specimen is confined through a flat-jack and a confinement-free area on one side of the specimen simulates the formation of a groove near the indenter, like it occurs in TBM excavation conditions. Results show a limited influence of the confinement stress versus the thrust increment required for breaking the rock between the indenter and the free side of the specimen. Numerical modelling of the cutter disk action on confined material has also been carried out in order to investigate further aspects of the fracture initiation. Also in this case the importance of the relative position between disk cutter and groove is pointed out.  相似文献   

15.
松散堆积体隧道围岩变形破坏细观特征研究   总被引:1,自引:0,他引:1  
谢亦朋  杨秀竹  阳军生  张聪  戴勇  梁雄  龚方浩 《岩土力学》2019,40(12):4925-4934
隧道穿越复杂松散堆积体地层时,如何确保隧道施工过程的安全是工程人员普遍关心的课题。依托云南省罗打拉隧道,基于Monte Carlo随机原理,结合数字图像处理技术,建立了考虑接触面单元及抗拉强度的堆积体地层隧道开挖细观结构模型,并探讨了隧道开挖引起的堆积体围岩变形、破坏过程以及失稳机制,并在现场进行应用验证。研究结果表明,构建的堆积体地层隧道开挖细观结构模型可有效反映隧道开挖过程中围岩的破坏过程,围岩位移等值线呈波动性与非对称性分布;围岩破坏以剪切破坏为主,局部存在拉裂?剪切复合破坏,且破坏区由边缘块石尖端向深层逐步扩展,形成包裹块石的剪切楔形区及拉剪松动圈,在施工扰动下易发生局部失稳。针对堆积体地层破坏特征,提出了围岩注浆加固措施,地层加固后土石颗粒间胶结良好,开挖轮廓周边形成有效的注浆加固圈,开挖支护过程围岩变形可控,支护结构稳定,效果良好,可为后续类似松散堆积体地层隧道的设计、施工提供新思路。  相似文献   

16.
Summary The paper analyses the influence of rock mass quality on the performance of a double shield TBM in the excavation of a tunnel in a gneiss formation which is characterized by high strength and low fracture intensity.As full observation of the rock conditions was prevented by the use of segmental lining, a geomechanical survey of the face was performed during maintenance downtime and the observed conditions were correlated with the machine performance parameters for that same day. A statistical analysis of the data shows that penetration rate correlates well with a slightly modified RMR index (in which the influence of the water conditions and joint orientation were discounted), but the most important factor is by far the partial rating of the RMR classification related to joint spacing only. However in tunnels characterized by greater variability in rock strength and joint conditions, it could be worthwhile using the complete RMR index.Given the toughness of the rock, failure of the cutter bearings and supports were a frequent occurrence during excavation. Owing to this factor the influence of rock quality on the rate of advance was found to be weak and the correlation more scattered.The results obtained for the Varzo tunnel were compared with those relative to other tunnels in granitic rocks and found to be in good agreement. However the relationships obtained should be considered valid only for this type of rock; machine behaviour could be found to be markedly different in other rock types, even where rock material strength and joint frequency are the same.  相似文献   

17.
TBM开挖隧洞,由于刀盘及刀具的限制,目前开挖完的隧洞为同一直径,为了保证后期衬砌施工中结构的强度,需要对不同的围岩类别采取不同的衬砌厚度。研究表明,采取可变径全圆针梁台车进行这方面的衬砌,具有明显的优越性。本文基于吉林引松供水工程项目,论述了可变径全圆针梁台车在TBM施工隧洞衬砌中的应用。  相似文献   

18.
在分岔隧道施工过程中,小间距段支护体系力学性态直接反映分岔隧道的稳定状况,结合沪-蓉线庙垭分岔隧道,对小间距中墙薄弱处侧向加固进行了理论分析,通过对围岩变形和围岩压力、钢支撑内力、锚杆轴力等支护体系监测成果的系统分析,以及中墙爆破振动现场试验研究,评判了小间距隧道的稳定状况,所得结论可为日后同类工程的设计、施工、监测提供有益的借鉴。  相似文献   

19.
Summary  Basic principles of the theory of rock cutting with rolling disc cutters are used to appropriately reduce tunnel boring machine (TBM) logged data and compute the specific energy (SE) of rock cutting as a function of geometry of the cutterhead and operational parameters. A computational code written in Fortran 77 is used to perform Kriging predictions in a regular or irregular grid in 1D, 2D or 3D space based on sampled data referring to rock mass classification indices or TBM related parameters. This code is used here for three purposes, namely: (1) to filter raw data in order to establish a good correlation between SE and rock mass rating (RMR) (or tunnelling quality index Q) along the chainage of the tunnel, (2) to make prediction of RMR, Q or SE along the chainage of the tunnel from boreholes at the exploration phase and design stage of the tunnel, and (3) to make predictions of SE and RMR or Q ahead of the tunnel’s face during excavation of the tunnel based on SE estimations during excavation. The above tools are the basic constituents of an algorithm to continuously update the geotechnical model of the rock mass based on logged TBM data. Several cases were considered to illustrate the proposed methodology, namely: (a) data from a system of twin tunnels in Hong Kong, (b) data from three tunnels excavated in Northern Italy, and (c) data from the section Singuerlin-Esglesias of the Metro L9 tunnel in Barcelona. Correspondence: G. Exadaktylos, Department of Mineral Resources Engineering, Technical University of Crete, Chania, Greece  相似文献   

20.
利用FLAC模拟了两个不同直径圆形隧洞的剪切应变局部化过程。为了模拟隧洞开挖,利用编写的FISH函数删除隧洞内部的单元。岩石服从莫尔库仑剪破坏与拉破坏复合的破坏准则,破坏之后呈现应变软化-理想塑性行为。本文的模拟分为3步:首先,将静水压力施加在模型上,直至达到静力平衡状态;然后,利用编写的FISH函数,开挖隧洞;最后,计算重新开始,直至达到静力平衡状态(对于小孔隧洞)或者塑性流动状态(对于大孔隧洞)。模拟结果表明,多个“狗耳”形或V形坑在小孔隧洞周边附近产生,最终,围岩处于平衡状态。这一结果与陆家佑和王昌明(1994)的实验结果及许多现场观察结果一致。对于大孔隧洞,由于在围岩中出现了多条剪切带,因而隧洞的整个断面均遭到了破坏。这一现象与现场观察到的猛烈破坏现象类似。隧洞的剪切应变局部化受隧洞尺寸的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号