首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
SHRIMP U–Pb zircon dating of gabbro, anorthosite, trondhjemite and granodiorite from the Jinshajiang ophiolitic mélange of southwestern China provides geochronological constraints on the evolution of Paleo-Tethys. The ophiolitic mélange is exposed for about 130 km along the Jinshajiang River where numerous blocks of serpentinite, ultramafic cumulate, gabbro, sheeted dikes, pillow lavas and radiolarian chert are set in a greenschist matrix. A cumulate gabbro-anorthosite association and an amphibole gabbro have ages of 338 ± 6 Ma, 329 ± 7 Ma and 320 ± 10 Ma, respectively, which constrain the time of formation of oceanic crust. An ophiolitic isotropic gabbro dated at 282–285 Ma has the same age as a trondhjemite vein (285 ± 6 Ma) cutting the gabbro. These ages probably reflect a late phase of sea-floor spreading above an intra-oceanic subduction zone. At the southern end of the Jinshajiang belt, a granitoid batholith (268 ± 6 Ma), a gabbro massif (264 ± 4 Ma), and a granodiorite (adakite) intrusion (263 ± 6 Ma) in the ophiolitic mélange constitute a Permian intra-oceanic plutonic arc complex. A trondhjemite dike intruded serpentinite in the mélange at 238 ± 10 Ma and postdates the arc evolution of the Jinshajiang segment of Paleo-Tethys.  相似文献   

2.
白云山蛇绿混杂岩是北山造山带中红柳河-牛圈子-洗肠井蛇绿岩带的一部分,由蛇纹石化二辉橄榄岩、蛇纹岩、辉长岩(堆晶辉长岩、块状辉长岩)、基性枕状熔岩(变玄武岩)及深海-次深海远洋、半远洋相沉积物(硅质岩、板岩)、白云岩等组成。其中辉长岩LA-ICP-MS锆石U-Pb测年结果为496.4±2.2 Ma,指示蛇绿岩形成于晚寒武世;混杂带中玄武岩地球化学特征为洋底玄武岩,兼有洋岛碱性玄武岩(OIB)和洋脊玄武岩(MORB)的地球化学性质,枕状熔岩与硅质岩交互产出,指示其形成环境为深水洋盆。结合区域地质资料,推测该蛇绿混杂岩带为寒武纪洋中脊存在的遗迹。  相似文献   

3.
The Talaud Islands lie at the northern margin of the collision zone between the Sangihe and Halmahera island arc systems. Rock units on Talaud are Neogene marine strata, basalt and andesite, tectonic mélange, and ophiolite. The units are exposed in N–S trending belts that are commonly separated by faults. The marine strata consist of tuffaceous siltstone, sandstone, shale and marl. They are strongly deformed by west-verging folds with wavelengths of 20–500 m. Volcanic rocks of island arc affinity are exposed on the east coast of Karakelang Island and appear to be interbedded with the lowermost marine strata. Tectonic mélanges contain blocks of serpentinite, gabbro, basalt, red middle Eocene chert and limestone, and greywacke turbidites. The blocks range in length from a few millimetres to hundreds of metres, and are enclosed in a scaly clay matrix. Several mappable slabs of ophiolite are separated by Tertiary strata or mélange. The dismembered ophiolites consist of serpentized peridotite, gabbro, spilites and cherts. Locally, the mélanges and ophiolites are thrust over the younger sedimentary rocks along east-dipping faults. The dominant eastward dips of mélange foliation, the westward vergence of structures in the Neogene strata, the Eocene ages of the cherts, and the Miocene age of the strata overlying the ophiolite slabs suggest that the ophiolites are pieces of Eocene or older oceanic crust (derived from a mid-ocean ridge or back-arc basin) and upper mantle that were emplaced as thrust slices into the lower slope of a west-facing arc during the Miocene and have been uplifted during arc—arc collision.  相似文献   

4.
The Shanderman eclogites and related metamorphosed oceanic rocks mark the site of closure of the Palaeotethys ocean in northern Iran. The protolith of the eclogites was an oceanic tholeiitic basalt with MORB composition. Eclogite occurs within a serpentinite matrix, accompanied by mafic rocks resembling a dismembered ophiolite. The eclogitic mafic rocks record different stages of metamorphism during subduction and exhumation. Minerals formed during the prograde stages are preserved as inclusions in peak metamorphic garnet and omphacite. The rocks experienced blueschist facies metamorphism on their prograde path and were metamorphosed in eclogite facies at the peak of metamorphism. The peak metamorphic mineral paragenesis of the rocks is omphacite, garnet (pyrope‐rich), glaucophane, paragonite, zoisite and rutile. Based on textural relations, post‐peak stages can be divided into amphibolite and greenschist facies. Pressure and temperature estimates for eclogite facies minerals (peak of metamorphism) indicate 15–20 kbar at ~600 °C. The pre‐peak blueschist facies assemblage yields <11 kbar and 400–460 °C. The average pressure and temperature of the post‐peak amphibolite stage was 5–6 kbar, ~470 °C. The Shanderman eclogites were formed by subduction of Palaeotethys oceanic crust to a depth of no more than 75 km. Subduction was followed by collision between the Central Iran and Turan blocks, and then exhumation of the high pressure rocks in northern Iran.  相似文献   

5.
在内蒙牙克石地区发育两种不同构造属性的岩石组合:一类为乌奴耳-头道桥蛇绿混杂岩,另一类为晚古生代弧属性侵入岩。乌奴耳-头道桥蛇绿混杂岩由辉长岩、辉长辉绿岩、辉绿玢岩(岩墙?)、变玄武岩和放射虫硅质岩组成;地球化学特征显示基性岩类属于拉斑玄武岩系列,具有相似的稀土和原始地幔标准化配分模式,与N-MORB的特征类似,不具有Nb-Ta负异常,Nb/Nb~*值平均1;构造环境判别图显示该蛇绿混杂岩可能形成于扩张脊。晚古生代弧属性侵入岩出露于白井山、乌尔其汗,由中基性单元(辉长岩、辉长闪长岩和石英闪长岩)和酸性单元(花岗闪长岩和二长花岗岩)组成;地球化学特征显示中基性单元和酸性单元属于钙碱性岩系列,富集LREEs和LILEs,具有Nb-Ta负异常,高Sr、Sr/Y值,低HREEs和Y,Eu异常不明显;酸性单元显示埃达克质岩的地球化学特征。乌奴耳-头道桥蛇绿混杂岩可能形成于新元古代,与头道桥蓝片岩、吉峰蛇绿混杂岩、新林蛇绿岩构成一条重要的缝合带,暗示本区古洋盆的存在。晚古生代弧属性侵入岩中,辉长岩的结晶年龄为326±1.9Ma,花岗闪长岩的结晶年龄为323.7±1.9Ma;微量元素的组成特征显示,中基性单元和酸性单元的形成与早石炭世洋壳板片的俯冲作用有关,暗示兴安地块和松嫩地块之间洋盆的萎缩。  相似文献   

6.
We reconstructed the accretion process related to Paleo-Tethys subduction recorded in northern Thailand, based on mélange and thrust structures, and metamorphic temperatures derived from illite crystallinity data. Mélange formation was characterized by hydrofracturing and cataclastic deformation, with mud injection under semi-lithified conditions followed by shear deformation and pressure solution. Illite crystallinity data suggest metamorphic temperatures below 250 °C during mélange formation. The combined structural and metamorphic data indicate that during mélange formation, the accretionary complex related to Paleo-Tethys subduction developed at shallow levels within an accretionary prism. Asymmetric shear fabrics in mélange indicate top-to-south shear. After correction for rotation associated with collision between the Indian and Eurasian continents, the trend of the Paleo-Tethys subduction zone is estimated to have been N80 °E. We conclude that the Paleo-Tethys was subducted northward beneath the Indochina Block from the Permian to Triassic.  相似文献   

7.
Leucogranitic lenses are found within the Xiwan ophiolitic mélange in northeastern Jiangxi Province, South China. The leucogranites occur exclusively within the serpentinized peridotite unit of the ophiolite suite. SHRIMP U–Pb zircon dating results indicate that these granites were formed at 880 ± 19 Ma, and were overprinted by an Indosinian tectono-thermal event at ~ 230 Ma. The leucogranites are peraluminous (A/CNK = 1.0–1.24), characterized by high Al2O3 (14–18.33%) and Na2O (6.5–10%) and clearly low εNd(T) values of 0.8 to − 3.9 compared with the other rock units of the ophiolite suite. On the basis of their REE characters, the leucogranites can be divided into three groups. Group I leucogranites show the most fractionated LREE-enrichment patterns (with LaN/YbN and LaN/SmN ratios of 30.1–75.0 and 2.3–3.9, respectively). Group II leucogranites have moderately fractionated LREE-enrichment patterns (with LaN/YbN and LaN/SmN ratios of 13.1–26.5 and 0.8–1.9, respectively). Group III leucogranites are characterized by obviously low total REE contents and flat REE patterns with significant positive Eu anomalies, probably due to small degrees of partial melting. All these leucogranites were likely formed by partial melting of sedimentary rocks from a marginal basin at the Yangtze side of the orogen, beneath a major thrust fault during the obduction of the ophiolite onto the continental crust. They are broadly similar to obduction-related granites within ophiolites identified in many places worldwide. Identification of the ca. 880 Ma obduction-type granites in the NE Jiangxi ophiolite provides a petrological constraint on the timing of the ophiolite obduction onto the continental crust. In combination with the termination of the Shuangxiwu arc magmatism at ca. 890 Ma, we interpret that the close of the Neoproterozoic back-arc basin and the termination of the continental amalgamation between the Yangtze and Cathaysia Blocks occurred at ca. 880 Ma.  相似文献   

8.
In the Ladakh–Zanskar area, relicts of both ophiolites and paleo-accretionary prism have been preserved in the Sapi-Shergol mélange zone. The paleo-accretionary prism, related to the northward subduction of the northern Neo-Tethys beneath the Ladakh Asian margin, mainly consists of tectonic intercalations of sedimentary and blueschist facies rocks. Whole rock chemical composition data provide new constraints on the origin of both the ophiolitic and the blueschist facies rocks. The ophiolitic rocks are interpreted as relicts of the south Ladakh intra-oceanic arc that were incorporated in the accretionary prism during imbrication of the arc. The blueschist facies rocks were previously interpreted as oceanic island basalts (OIB), but our new data suggest that the protolith of some of the blueschists is a calc-alkaline igneous rock that formed in an arc environment. These blueschists most likely originated from the south Ladakh intra-oceanic arc. This arc was accreted to the southern margin of Asia during the Late Cretaceous and the buried portion was metamorphosed under blueschist facies conditions. Following oceanic subduction, the external part of the arc was obducted to form the south Ladakh ophiolites or was incorporated into the Sapi-Shergol mélange zone. The incorporation of the south Ladakh arc into the accretionary prism implies that the complete closure of the Neo-Tethys likely occurred by Eocene time.  相似文献   

9.
U–Pb SHRIMP results of 2672 ± 14 Ma obtained on hydrothermal monazite crystals, from ore samples of the giant Morro Velho and Cuiabá Archean orogenic deposits, represent the first reliable and precise age of gold mineralization associated with the Rio das Velhas greenstone belt evolution, in the Quadrilátero Ferrífero, Brazil. In the basal Nova Lima Group, of the Rio das Velhas greenstone belt, felsic volcanic and volcaniclastic rocks have been dated between 2792 ± 11 and 2751 ± 9 Ma, coeval with the intrusion of syn-tectonic tonalite and granodiorite plutons, and also with the metamorphic overprint of older tonalite–trondhjemite–granodiorite crust. Since cratonization and stable-shelf sedimentation followed intrusion of Neoarchean granites at 2612 + 3/− 2 Ma, it is clear that like other granite–greenstone terranes in the world, gold mineralization is constrained to the latest stages of greenstone evolution.  相似文献   

10.
The Makran accretionary prism in SE Iran and SW Pakistan is one of the most extensive subduction accretions on Earth. It is characterized by intense folding, thrust faulting and dislocation of the Cenozoic units that consist of sedimentary, igneous and metamorphic rocks. Rock units forming the northern Makran ophiolites are amalgamated as a mélange. Metamorphic rocks, including greenschist, amphibolite and blueschist, resulted from metamorphism of mafic rocks and serpentinites. In spite of the geodynamic significance of blueschist in this area, it has been rarely studied. Peak metamorphic phases of the northern Makran mafic blueschist in the Iranshahr area are glaucophane, phengite, quartz±omphacite+epidote. Post peak minerals are chlorite, albite and calcic amphibole. Blueschist facies metasedimentary rocks contain garnet, phengite, albite and epidote in the matrix and as inclusions in glaucophane. The calculated P–T pseudosection for a representative metabasic glaucophane schist yields peak pressure and temperature of 11.5–15 kbar at 400–510 °C. These rocks experienced retrograde metamorphism from blueschist to greenschist facies (350–450 °C and 7–8 kbar) during exhumation. A back arc basin was formed due to northward subduction of Neotethys under Eurasia (Lut block). Exhumation of the high‐pressure metamorphic rocks in northern Makran occurred contemporarily with subduction. Several reverse faults played an important role in exhumation of the ophiolitic and HP‐LT rocks. The presence of serpentinite shows the possible role of a serpentinite diapir for exhumation of the blueschist. A tectonic model is proposed here for metamorphism and exhumation of oceanic crust and accretionary sedimentary rocks of the Makran area. Vast accretion of subducted materials caused southward migration of the shore.  相似文献   

11.
A regional melange zone, 150 km long and 30 km wide, forms the southern boundary and structural capping to a high-pressure blueschist belt in northern New Caledonia. The disrupted country rocks in the melange zone are Mesozoic metagrey-wackes and Eocene chert-limestone sequences which have been penetrated from below by tectonically-injected ophiolite slivers containing metamorphosed serpentinite, gabbro, dolerite, basalt, tuff, chert and shale. An ocean crust origin for these rocks is indicated by chemical, mineralogical and radiometric data from coastal outcrops at Anse Ponandou on the northeast coast. The age (41 m.y.), metamorphic environment (350 ° C at 7 kb), and mineral association (acmitic jadeite-riebeckite-pyropic spessartine-pistacitic epidote-lawsonite-high Si phengite) are significantly different from those of the adjacent regional high-pressure schist belt, indicating a separate structural site for blueschist metamorphism of buried ophiolitic ocean crust during early Tertiary orogenesis.  相似文献   

12.
Structural studies in the Schistes lustrés nappe west of Bastia, Corsica, demonstrate the existence of a tectonic mélange in which km-scale blocks and smaller lozenges of basement granite gneiss, thick-layered marble and dismembered Mesozoic ophiolite are enveloped in a matrix of calc-schist and blueschist. The main (S1) foliation is developed in both block and matrix and is concordant with lithologie contacts. Blueschist facies metamorphism was syn-kinematic with the main foliation.The S1 in the Schistes lustrés was refolded about ENE-WSW trending, tight similar and monoclinal fold axes (F2). These second folds verge to the southeast and show km-scale axial culminations and depressions that are reflected by topography and residual Bouguer gravity anomalies.Parautochthonous Hercynian basement (Tenda-Corte complex) beneath the western edge of the Schistes lustrés nappe contains a mylonitic foliation which is concordant with the main foliation in the Schistes lustrés. The intensity of deformation in the basement decreases away from this contact and undeformed granites are found 3 km to the west.Whole rock samples of the deformed basement immediately beneath the Schistes lustrés yield an Rb-Sr isochron diagram (n = 4) which has an age of 105 ± 8 Ma (1σ) and initial ratio of 0.7228 ± 0.0005 (1σ). This result is more precise than our preliminary age and initial ratio estimate of 98 ± 14 and 0.7296 ± 0.0068, respectively (Cohen et al., 1979). It is similar to a recently published mid-Cretaceous (90 Ma) 40Ar-39Ar age from glaucophane mineral separates. We interpret this date as the age of a metamorphic overprint related to the emplacement of the Schistes lustrés nappe and associated ophiolites, the formation of the main foliation and blueschist facies metamorphism.These results indicate that the mid-Cretaceous blueschist facies metamorphism documented in the Western Alps formerly extended farther south of its present terminus. The data are consistent with mid-Cretaceous obduction of Tethyan oceanic crust onto the present-day eastern continental margin of Corsica. We postulate that during Eocene—early Oligocene time a polarity flip occurred outboard of the obducted crust and a new, southfacing subduction zone developed. This change in polarity was responsible for the development of southeast-vergent second folds and for the resetting of 40Ar−39Ar and K-Ar geochronologic clocks described in the literature.  相似文献   

13.
The Mitsuishi ultramafic rock body in Hokkaido, Japan, consists mainly of serpentinized peridotites that originated from a depleted mantle. This study aims to show new evidence of small-scale mélange fabric of serpentinite matrix in the rock body. Each serpentinite block in the serpentine matrix shows large and stable intensities of natural remanent magnetization (NRM). However, the directions of serpentinite blocks' NRM in the matrix are randomly scattered. A Curie temperature (Tc) of 580 °C corresponding to pure magnetite was also observed. Additionally, there is no evidence of heating over 580 °C after serpentinization. The blocks in the matrix must have obtained crystallization remanent magnetization (CRM) during serpentinization. The directions of the blocks' characteristic remanent magnetization (ChRM) are also scattered. It shows that serpentinite blocks were magnetized prior to uplifting. The results of the study indicate that the magnetic carrier of the serpentinite blocks in the matrix is mainly composed of magnetite, and it can keep original magnetization before uplifting. The results also imply that the scattering directions of NRM indicate the presence of small-scale mélange fabric of serpentinite matrix.  相似文献   

14.
A tectonic mélange exposed on land is examined to reveal relationships between mélange formation, underplating, and deformation mechanisms, focusing on the deformation of basaltic rocks. The studied Mugi Mélange of the Shimanto Belt is composed of a shale matrix surrounding various blocks of sandstone, pelagic sediments, and basalts. The mélange was formed during Late Cretaceous to early Tertiary times in a subduction zone under PT conditions of 150–200 °C and 6–7 km depth as estimated from vitrinite reflectance and quartz veins fluid inclusions. The mélange represents a range of deformation mechanisms; pressure solution with micro-scale cataclasis in the shale matrix, brittle tension cracking in the blocks, and ubiquitous strong cataclasis in the basal portion of basaltic layers. The cataclastic deformation in the basalts suggests a breakage of a topographic high in the seismogenic depth.  相似文献   

15.
The Itacaiúnas Belt of the highly mineralised Carajás Mineral Province comprises ca. 2.75 Ga volcanic rocks overlain by sedimentary sequences of ca. 2.68 Ga age, that represent an intracratonic basin rather than a greenstone belt. Rocks are generally at low strain and low metamorphic grade, but are often highly deformed and at amphibolite facies grade adjacent to the Cinzento Strike Slip System. The Province has been long recognised for its giant enriched iron and manganese deposits, but over the past 20 years has been increasingly acknowledged as one of the most important Cu–Au and Au–PGE provinces globally, with deposits extending along an approximately 150 km long WNW-trending zone about 60 km wide centred on the Carajás Fault. The larger deposits (approx. 200–1000 Mt @ 0.95–1.4% Cu and 0.3–0.85 g/t Au) are classic Fe-oxide Cu–Au deposits that include Salobo, Igarapé Bahia–Alemão, Cristalino and Sossego. They are largely hosted in the lower volcanic sequences and basement gneisses as pipe- or ring-like mineralised, generally breccia bodies that are strongly Fe- and LREE-enriched, commonly with anomalous Co and U, and quartz- and sulfur-deficient. Iron oxides and Fe-rich carbonates and/or silicates are invariably present. Rhenium–Os dating of molybdenite at Salobo and SHRIMP Pb–Pb dating of hydrothermal monazite at Igarapé-Bahia indicate ages of ca. 2.57 Ga for mineralisation, indistinguishable from ages of poorly-exposed Archean alkalic and A-type intrusions in the Itacaiúnas Belt, strongly implicating a deep magmatic connection.A group of smaller, commonly supergene-enriched Cu–Au deposits (generally < 50 Mt @ < 2% Cu and < 1 g/t Au in hypogene ore), with enrichment in granitophile elements such as W, Sn and Bi, spatially overlap the Archean Fe-oxide Cu–Au deposits. These include the Breves, Águas Claras, Gameleira and Estrela deposits which are largely hosted by the upper sedimentary sequence as greisen-to ring-like or stockwork bodies. They generally lack abundant Fe-oxides, are quartz-bearing and contain more S-rich Cu–Fe sulfides than the Fe-oxide Cu–Au deposits, although Cento e Dezoito (118) appears to be a transitional type of deposit. Precise Pb–Pb in hydrothermal phosphate dating of the Breves and Cento e Dezoito deposits indicate ages of 1872 ± 7 Ma and 1868 ± 7 Ma, respectively, indistinguishable from Pb–Pb ages of zircons from adjacent A-type granites and associated dykes which range from 1874 ± 2 Ma to 1883 ± 2 Ma, with 1878 ± 8 Ma the age of intrusions at Breves. An unpublished Ar/Ar age for hydrothermal biotite at Estrela is indistinguishable, and a Sm–Nd isochron age for Gameleira is also similar, although somewhat younger. The geochronological data, combined with geological constraints and ore-element associations, strongly implicate a magmatic connection for these deposits.The highly anomalous, hydrothermal Serra Pelada Au–PGE deposit lies at the north-eastern edge of the Province within the same fault corridor as the Archean and Paleoproterozoic Cu–Au deposits, and like the Cu–Au deposits is LREE enriched. It appears to have formed from highly oxidising ore fluids that were neutralised by dolomites and reduced by carbonaceous shales in the upper sedimentary succession within the hinge of a reclined synform. The imprecise Pb–Pb in hydrothermal phosphate age of 1861 ± 45 Ma, combined with an Ar/Ar age of hydrothermal biotite of 1882 ± 3 Ma, are indistinguishable from a Pb–Pb in zircon age of 1883 ± 2 Ma for the adjacent Cigano A-type granite and indistinguishable from the age of the Paleoproterozoic Cu–Au deposits. Again a magmatic connection is indicated, particularly as there is no other credible heat or fluid source at that time.Finally, there is minor Au–(Cu) mineralisation associated with the Formiga Granite whose age is probably ca. 600 Ma, although there is little new zircon growth during crystallisation of the granite. This granite is probably related to the adjacent Neoproterozoic (900–600 Ma) Araguaia Fold Belt, formed as part of the Brasiliano Orogeny.Thus, there are two major and one minor period of Cu–Au mineralisation in the Carajás Mineral Province. The two major events display strong REE enrichment and strongly enhanced LREE. There is a trend from strongly Fe-rich, low-SiO2 and low-S deposits to quartz-bearing and more S-rich systems with time. There cannot be significant connate or basinal fluid (commonly invoked in the genesis of Fe-oxide Cu–Au deposits) involved as all host rocks were metamorphosed well before mineralisation: some host rocks are at mid- to high-amphibolite facies. The two major periods of mineralisation correspond to two periods of alkalic to A-type magmatism at ca. 2.57 Ga and ca. 1.88 Ga, and a magmatic association is compelling.The giant to world-class late Archean Fe-oxide Cu–Au deposits show the least obvious association with deep-seated alkaline bodies as shown at Palabora, South Africa, and implied at Olympic Dam, South Australia. The smaller Paleoproterozoic Cu–Au–W–Sn–Bi deposits and Au–PGE deposit show a more obvious relationship to more fractionated A-type granites, and the Neoproterozoic Au–(Cu) deposit to crustally-derived magmas. The available data suggest that magmas and ore fluids were derived from long-lived metasomatised lithosphere and lower crust beneath the eastern margin of the Amazon Craton in a tectonic setting similar to that of other large Precambrian Fe-oxide Cu–Au deposits.  相似文献   

16.
对扬子陆块西缘会理关河—通安地区菜子园蛇绿混杂岩进行了厘定。菜子园蛇绿混杂岩主要以强烈剪切变形的基质和洋板构造岩块混杂堆积为特征。基质主要有变质粉砂岩、板岩、硅质板岩、片岩、千枚岩等。洋板构造岩块由蛇纹岩、辉长岩、玄武岩、硅质岩、大理岩等组成,部分地区玄武岩保留枕状构造,各岩块之间为构造接触关系。菜子园蛇绿混杂岩中桃树湾辉长岩和玄武岩具有轻稀土元素亏损、类似N-MORB(正常洋中脊玄武岩)的稀土元素配分模式,相对于N-MORB富集大离子亲石元素,亏损Nb、Ta高场强元素,极低的Nb/U(9.74)、Nb/Th(3.02)和V/Ti(0.1)平均值,具典型MORB-like玄武岩(前弧玄武岩-FAB)地球化学特征,认为可能形成于洋内弧环境。桃树湾辉长岩LA-ICP-MS锆石U-Pb同位素定年表明,辉长岩的年龄为1375±7Ma(MSWD=1.2,n=21),可能代表菜子园-通安洋洋壳初始俯冲的时间。菜子园蛇绿混杂岩的厘定,对重新认识通安群(通安组)的属性,研究扬子陆块西缘古—中元古代地层系统、地质演化、岩浆作用、构造定位,重新划分扬子陆块基底大地构造单元,以及探索全球Columbia超大陆裂解到Rodinia超大陆汇聚的演化过程等都具有重要意义。  相似文献   

17.
造山带内蛇绿混杂岩带结构与组成的精细研究可为古板块构造格局重建和古洋盆演化提供最直接证据。北山造山带内存在多条蛇绿混杂岩带,记录了古亚洲洋古生代以来的俯冲和闭合过程,然而其大地构造演化长期存在争议。红石山—百合山蛇绿混杂岩带位于北山造山带北部,主要由蛇绿(混杂)岩和增生杂岩组成,具典型的"块体裹夹于基质"的混杂岩结构特征,发育紧闭褶皱、无根褶皱、透入性面理和双重逆冲构造。蛇绿混杂岩带中岩块主要由超镁铁质-镁铁质岩(变质橄榄岩、辉石橄榄岩、异剥辉石岩、蛇纹岩)、辉长岩、玄武岩、斜长花岗岩、硅质岩等洋壳残块以及奥陶纪火山岩、灰岩等外来岩块组成,基质则主要为蛇纹岩、砂板岩及少量的绿帘绿泥片岩;在蛇绿混杂岩带北侧发育有台地相灰岩与深水浊积岩组成的沉积混杂块体,具滑塌堆积特征。蛇绿混杂岩带内发育三期构造变形,前两期为中深构造层次下形成的透入性变形,第三期为浅表层次的脆性变形,未形成区域性面理。空间上,由增生杂岩和蛇绿(混杂)岩组成的百合山蛇绿混杂岩带共同仰冲于绿条山组浊积岩之上,具有与红石山地区蛇绿混杂岩带相似的岩石组成、构造变形和时空结构特征。百合山蛇绿混杂岩带南侧发育同期的明水岩浆弧,由晚石炭世石英闪长岩-花岗闪长岩-二长花岗岩以及白山组岛弧火山岩组成,其与百合山蛇绿混杂岩带共同构成了北山造山带北部石炭—二叠纪的沟-弧体系,指示了红石山—百合山洋盆向南俯冲的极性。  相似文献   

18.
The Papuan Ultramafic Belt (PUB) ophiolite is former oceanic crust and upper mantle emplaced onto continental crust in Papua New Guinea (PNG) in a zone of general convergence between the Pacific and Australian plates. The metamorphic sole beneath the ophiolite is best exposed in the Musa–Kumusi divide and comprises a 40- to 300-m-thick body of granulite and amphibolite facies rocks. Geochronological studies on the metamorphic sole, using amphiboles from the granulites and amphibolites, yield measured K–Ar ages ranging from 65.0±0.7 to 57.2±0.6 Ma and average 40Ar–39Ar direct total fusion ages ranging from 67.0±0.7 to 59.5±0.2 Ma. Five of the six 40Ar–39Ar plateau ages, derived from age spectra, lie between 58.6±0.2 and 57.8±0.2 Ma, with an overall mean age of 58.3±0.4 Ma. The large spread in measured K–Ar and 40Ar–39Ar total fusion ages is thought to be caused by the presence of variable amounts of excess argon. The mean plateau age for five samples of 58.3±0.4 Ma is interpreted to mark the time of cooling of the metamorphic sole following peak metamorphism. We suggest that the development of the metamorphic sole and emplacement of the PUB ophiolite onto the PNG crust occurred in a relatively short time interval in the Paleocene.  相似文献   

19.
Two types of Neoproterozoic metabasites occur together with regionally intruded arc-related Neoproterozoic granitoids (ca. 850–830 Ma) in the Hongseong area, southwestern Gyeonggi Massif, South Korea, which is the extension of the Dabie–Sulu collision belt in China. The first type of metabasite (the Bibong and Baekdong metabasites) is a MORB-like back-arc basin basalt or gabbro formed at ca. 890–860 Ma. The Bibong and Baekdong metabasites may have formed during back-arc opening by diapiric upwelling of deep asthenospheric mantle which was metasomatized by large ion lithophile element (LILE) enriched melt or fluid derived from the subducted slab and/or subducted sediment beneath the arc axis. The second type of metabasite (the Gwangcheon metabasite) formed in a plume-related intra-continental rift setting at 763.5 ± 18.3 Ma and is geochemically similar to oceanic island basalt (OIB). These data indicate a transition in tectonic setting in the Hongseong area from arc to intra-continental rift between ca. 830 and 760 Ma. This transition is well correlated to the Neoproterozoic transition from arc to intra-continental rift tectonic setting at the margin of the Yangtze Craton and corresponds to the amalgamation and breakup of Rodinia Supercontinent.  相似文献   

20.
The Honvang serpentinite body in the Song Ma fault zone consists mainly of massive serpentinite, altered gabbro and rare chromitite. The serpentinite preserves relict chromian spinel with rare olivine inclusions. The compositional relationship between the Fo content of olivine (Fo90–92) and YCr [atomic ratio Cr / (Cr + Al) = 0.43–0.44] of chromian spinel suggests that the original peridotite was spinel-bearing lherzolitic harzburgite. Chromitite is typically a high-Al type, consisting of chromian spinel with YCr = 0.43–0.44. Saussuritized fine-grained gabbros display nearly flat rare earth element patterns, suggesting MORB-like affinity. Considering this petrotectonic information, we suggest that the serpentinite body of the Song Ma fault zone represents a remnant of paleo-oceanic lithosphere between the Indochina and South China blocks. The lherzolitic harzburgite may have formed in an environment with low degrees of melt depletion in a slow-spreading setting similar to some Tethyan paleo-oceanic lithospheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号