首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Numerous dykes of ultramafic lamprophyre (aillikite, mela-aillikite,damtjernite) and subordinate dolomite-bearing carbonatite withU–Pb perovskite emplacement ages of 590–555 Ma occurin the vicinity of Aillik Bay, coastal Labrador. The ultramaficlamprophyres principally consist of olivine and phlogopite phenocrystsin a carbonate- or clinopyroxene-dominated groundmass. Ti-richprimary garnet (kimzeyite and Ti-andradite) typically occursat the aillikite type locality and is considered diagnosticfor ultramafic lamprophyre–carbonatite suites. Titanianaluminous phlogopite and clinopyroxene, as well as comparativelyAl-enriched but Cr–Mg-poor spinel (Cr-number < 0.85),are compositionally distinct from analogous minerals in kimberlites,orangeites and olivine lamproites, indicating different magmageneses. The Aillik Bay ultramafic lamprophyres and carbonatiteshave variable but overlapping 87Sr/86Sri ratios (0·70369–0·70662)and show a narrow range in initial Nd (+0·1 to +1·9)implying that they are related to a common type of parentalmagma with variable isotopic characteristics. Aillikite is closestto this primary magma composition in terms of MgO (15–20wt %) and Ni (200–574 ppm) content; the abundant groundmasscarbonate has 13CPDB between –5·7 and –5,similar to primary mantle-derived carbonates, and 18OSMOW from9·4 to 11·6. Extensive melting of a garnet peridotitesource region containing carbonate- and phlogopite-rich veinsat 4–7 GPa triggered by enhanced lithospheric extensioncan account for the volatile-bearing, potassic, incompatibleelement enriched and MgO-rich nature of the proto-aillikitemagma. It is argued that low-degree potassic silicate to carbonatiticmelts from upwelling asthenosphere infiltrated the cold baseof the stretched lithosphere and solidified as veins, therebycrystallizing calcite and phlogopite that were not in equilibriumwith peridotite. Continued Late Neoproterozoic lithosphericthinning, with progressive upwelling of the asthenosphere beneatha developing rift branch in this part of the North Atlanticcraton, caused further veining and successive remelting of veinsplus volatile-fluxed melting of the host fertile garnet peridotite,giving rise to long-lasting hybrid ultramafic lamprophyre magmaproduction in conjunction with the break-up of the Rodinia supercontinent.Proto-aillikite magma reached the surface only after coatingthe uppermost mantle conduits with glimmeritic material, whichcaused minor alkali loss. At intrusion level, carbonate separationfrom this aillikite magma resulted in fractionated dolomite-bearingcarbonatites (13CPDB –3·7 to –2·7)and carbonate-poor mela-aillikite residues. Damtjernites maybe explained by liquid exsolution from alkali-rich proto-aillikitemagma batches that moved through previously reaction-lined conduitsat uppermost mantle depths. KEY WORDS: liquid immiscibility; mantle-derived magmas; metasomatism, Sr–Nd isotopes; U–Pb geochronology  相似文献   

2.
In the Speik Complex (Eastern Alps, Austria), highly melt-depleted,metamorphosed harzburgites with abundant pods and layers ofchromitite are interlayered with a suite of metamorphosed orthopyroxenites,clinopyroxenites and gabbros. Coarse-grained orthopyroxenitesoccur as centimetre- to metre-wide veinlets and pods, but alsoas intrusive plugs several tens of metres wide. Intimately associatedmetaclinopyroxenite and metagabbro are present as bodies upto several metres thick at a distinct stratigraphic level withinthe complex. In the ultramafic rocks, relict magmatic olivine,orthopyroxene, clinopyroxene and spinel have been overprintedby a metamorphic assemblage of forsterite, diopside, tremolite,anthophyllite, chlorite, serpentine, talc and Cr–Fe-richspinel. Hornblende, epidote, zoisite and chlorite dominate themetamorphic paragenesis in metagabbros, in addition to rarerelicts of clinopyroxene and two phases of Ca-rich garnet. Thepolymetamorphic evolution of the Speik Complex includes rarelypreserved pre-Variscan (400 Ma) eclogite-facies conditions,Variscan (330 Ma) amphibolite-facies conditions (600–700°C,>5 kbar) and Eoalpine (100 Ma) greenschist- to amphibolite-faciesconditions reaching 550°C and 7–10 kbar. Orthopyroxenitesare characterized by high concentrations of SiO2, MgO and Cr,and by U-shaped chondrite-normalized rare earth element (REE)patterns similar to those of their harzburgite hosts. The REEpatterns of the clinopyroxenites are flat to slightly enrichedin light REE. Metagabbro compositions are variable, but generallycharacterized by low SiO2 and high mg-numbers (61–78).Their REE patterns all have GdN/YbN > 1; some samples havelarge positive Eu anomalies implying the original presence ofcumulus plagioclase. In the orthopyroxenites, clinopyroxenitesand some peridotites, Pt, Pd and Re are distinctly enrichedcompared with Os, Ir and Ru, whereas most harzburgites haveunfractionated to slightly fractionated platinum-group element(PGE) patterns with respect to average upper mantle. The Re–Osisotope compositions of the pyroxenites define an errorchronat 550 ± 17 Ma and a supra-chondritic 187Os/188Os of0·179 ± 0·003. An isochron age of 554 ±37 Ma with Nd(i) +0·7 is indicated by the Sm–Ndisotope compositions of whole-rock pyroxenite and gabbro samples,whereas the harzburgites plot on an errorchron of 745 ±45 Ma and Nd(i) +6. The pyroxenites and gabbros probably representa cogenetic suite of magmatic dykes intruded into uppermost,highly depleted, suboceanic mantle below the crust–mantletransition zone in an oceanic basin close to the northwesternmargin of Gondwana. KEY WORDS: pyroxenite; metagabbro; geochemistry; Re–Os isotopes; Sm–Nd isotopes  相似文献   

3.
The volcanic history of Santo Antão, NW Cape Verde Islands,includes the eruption of basanite–phonolite series magmasbetween 7·5 and 0·3 Ma and (melilite) nephelinite–phonoliteseries magmas from 0·7 to 0·1 Ma. The most primitivevolcanic rocks are olivine ± clinopyroxene-phyric, whereasthe more evolved rocks have phenocrysts of clinopyroxene ±Fe–Tioxide ± kaersutite ± haüyne ± titanite± sanidine; plagioclase occurs in some intermediate rocks.The analysed samples span a range of 19–0·03% MgO;the most primitive have 37–46% SiO2, 2·5–7%TiO2 and are enriched 50–200 x primitive mantle in highlyincompatible elements; the basanitic series is less enrichedthan the nephelinitic series. Geochemical trends in each seriescan be modelled by fractional crystallization of phenocrystassemblages from basanitic and nephelinitic parental magmas.There is little evidence for mineral–melt disequilibrium,and thus magma mixing is not of major importance in controllingbulk-rock compositions. Mantle melting processes are modelledusing fractionation-corrected magma compositions; the modelssuggest 1–4% partial melting of a heterogeneous mantleperidotite source at depths of 90–125 km. Incompatibleelement enrichment among the most primitive magma types is typicalof HIMU OIB. The Sr, Nd and Pb isotopic compositions of theSanto Antão volcanic sequence and geochemical characterchange systematically with time. The older volcanic rocks (7·5–2Ma) vary between two main mantle source components, one of whichis a young HIMU type with 206Pb/204Pb = 19·88, 7/4 =–5, 8/4 0, 87Sr/86Sr = 0·7033 and 143Nd/144Nd= 0·51288, whereas the other has somewhat less radiogenicSr and Pb and more radiogenic Nd. The intermediate age volcanicrocks (2–0·3 Ma) show a change of sources to two-componentmixing between a carbonatite-related young HIMU-type source(206Pb/204Pb = 19·93, 7/4 = –5, 8/4 = –38,87Sr/86Sr = 0·70304) and a DM-like source. A more incompatibleelement-enriched component with 7/4 > 0 (old HIMU type) isprominent in the young volcanic rocks (0·3–0·1Ma). The EM1 component that is important in the southern CapeVerde Islands appears to have played no role in the petrogenesisof the Santo Antão magmas. The primary magmas are arguedto be derived by partial melting in the Cape Verde mantle plume;temporal changes in composition are suggested to reflect layeringin the plume conduit. KEY WORDS: radiogenic isotopes; geochemistry; mantle melting; Cape Verde  相似文献   

4.
This study focuses on the origin of magma heterogeneity andthe genesis of refractory, boninite-type magmas along an arc–ridgeintersection, exposed in the Lewis Hills (Bay of Islands Ophiolite).The Lewis Hills contain the fossil fracture zone contact betweena split island arc and its related marginal oceanic basin. Threetypes of intrusions, which are closely related to this narrowtectonic boundary, have been investigated. Parental melts inequilibrium with the ultramafic cumulates of the PyroxeniteSuite are inferred to have high MgO contents and low Al2O3,Na2O and TiO2 contents. The trace element signatures of thesePyroxenite Suite parental melts indicate a re-enriched, highlydepleted source with 0·1 x mid-ocean ridge basalt (MORB)abundances of the heavy rare earth elements (HREE). InitialNd values of the Pyroxenite Suite range from -1·5 to+0·6, which overlap those observed for the island arc.Furthermore, the Pyroxenite Suite parental melts bear strongsimilarities to boninite-type equilibrium melts from islandarc-related pyroxenitic dykes and harzburgites. Basaltic dykessplit into two groups. Group I dykes have 0·6 x MORBabundances of the HREE, and initial Nd values ranging from +5·4to +7·5. Thus, they have a strong geochemical affinitywith basalts derived from the marginal basin spreading ridge.Group II dykes have comparatively lower trace element abundances(0·3 x MORB abundances of HREE), and slightly lower initialNd values (+5·4 to +5·9). The geochemical characteristicsof the Group II dykes are transitional between those of GroupI dykes and the Pyroxenite Suite parental melts. Cumulates fromthe Late Intrusion Suite are similarly transitional, with Ndvalues ranging from +2·9 to +4·6. We suggest thatthe magma heterogeneity observed in the Lewis Hills is due tothe involvement of two compositionally distinct mantle sources,which are the sub-island lithospheric mantle and the asthenosphericmarginal basin mantle. It is likely that the refractory, boninite-typeparental melts of the Pyroxenite Suite result from remeltingof the sub-arc lithospheric mantle at an arc–ridge intersection.Furthermore, it is suggested that the thermal-dynamic conditionsof the transtensional transform fault have provided the prerequisitefor generating magma heterogeneity, as a result of mixing relationshipsbetween arc-related and marginal basin-related magmas. KEY WORDS: Bay of Islands ophiolite; transform (arc)–ridge intersection; boninites; rare earth elements, Nd isotopes  相似文献   

5.
The <80 ka basalts–basanites of the Potrillo VolcanicField (PVF) form scattered scoria cones, lava flows and maarsadjacent to the New Mexico–Mexico border. MgO ranges upto 12·5%; lavas with MgO < 10·7% have fractionatedboth olivine and clinopyroxene. Cumulate fragments are commonin the lavas, as are subhedral megacrysts of aluminous clinopyroxene(with pleonaste inclusions) and kaersutitic amphibole. REE modellingindicates that these megacrysts could be in equilibrium withthe PVF melts at 1·6–1·7 GPa pressure. Thelavas fall into two geochemical groups: the Main Series (85%of lavas) have major- and trace-element abundances and ratiosclosely resembling those of worldwide ocean-island alkali basaltsand basanites (OIB); the Low-K Series (15%) differ principallyby having relatively low K2O and Rb contents. Otherwise, theyare chemically indistinguishable from the Main Series lavas.Sr- and Nd-isotopic ratios in the two series are identical andvary by scarcely more than analytical error, averaging 87Sr/86Sr= 0·70308 (SD = 0·00004) and 143Nd/144Nd = 0·512952(SD=0·000025). Such compositions would be expected ifboth series originated from the same mantle source, with Low-Kmelts generated when amphibole remained in the residuum. ThreePVF lavas have very low Os contents (<14 ppt) and appearto have become contaminated by crustal Os. One Main Series picritehas 209 ppt Os and has a Os value of +13·6, typical forOIB. This contrasts with published 187Os/188Os ratios for KilbourneHole peridotite mantle xenoliths, which give mostly negativeOs values and show that Proterozoic lithospheric mantle formsa thick Mechanical Boundary Layer (MBL) that extends to 70 kmdepth beneath the PVF area. The calculated mean primary magma,in equilibrium with Fo89, has Na2O and FeO contents that givea lherzolite decompression melting trajectory from 2·8GPa (95 km depth) to 2·2 GPa (70 km depth). Inverse modellingof REE abundances in Main Series Mg-rich lavas is successfulfor a model invoking decompression melting of convecting sub-lithosphericlherzolite mantle (Nd = 6·4; Tp 1400°C) between90 and 70 km. Nevertheless, such a one-stage model cannot accountfor the genesis of the Low-K Series because amphibole wouldnot be stable within convecting mantle at Tf 1400°C. Thesemagmas can only be accommodated by a three-stage model thatenvisages a Thermal Boundary Layer (TBL) freezing conductivelyonto the 70 km base of the Proterozoic MBL during the 20 Myrtectonomagmatic quiescence before PVF eruptions. As it grew,this was veined by hydrous small-fraction melts from below.The geologically recent arrival of hotter-than-ambient (Tp 1400°C) convecting mantle beneath the Potrillo area re-meltedthe TBL and caused the magmatism. KEY WORDS: western USA; picrites; Sr–Nd–Os isotopes; petrogenetic modelling; thermal boundary layer  相似文献   

6.
The Origin and Evolution of the Kaapvaal Cratonic Lithospheric Mantle   总被引:5,自引:0,他引:5  
A detailed petrological and geochemical study of low-temperatureperidotite xenoliths from Kimberley and northern Lesotho ispresented to constrain the processes that led to the magmaphileelement depletion of the Kaapvaal cratonic lithospheric mantleand its subsequent re-enrichment in Si and incompatible traceelements. Whole-rocks and minerals have been characterized forRe–Os isotope compositions, and major and trace elementconcentrations, and garnet and clinopyroxene for Lu–Hfand Sm–Nd isotope compositions. Most samples are characterizedby Archaean Os model ages, low Al, Fe and Ca contents, highMg/Fe, low Re/Os, very low (< 0·1 x chondrite) heavyrare earth element (HREE) concentrations and a decoupling betweenNd and Hf isotope ratios. These features are most consistentwith initial melting at 3·2 Ga followed by metasomatismby hydrous fluids, which may have also caused additional meltingto produce a harzburgitic residue. The low HREE abundances ofthe peridotites require that extensive melting occurred in thespinel stability field, possibly preceded by some melting inthe presence of garnet. Fractional melting models suggest that30% melting in the spinel field or 20% melting in the garnetfield followed by 20% spinel-facies melting are required toexplain the most melt-depleted samples. Garnet Nd–Hf isotopecharacteristics indicate metasomatic trace element enrichmentduring the Archaean. We therefore suggest a model includingshallow ridge melting, followed by metasomatism of the Kaapvaalupper mantle in subduction zones surrounding cratonic nuclei,probably during amalgamation of smaller pre-existing terranesin the Late Archaean (2·9 Ga). The fluid-metasomatizedresidua have subsequently undergone localized silicate meltinfiltration that led to clinopyroxene ± garnet enrichment.Calculated equilibrium liquids for clinopyroxene and their Hf–Ndisotope compositions suggest that most diopside in the xenolithscrystallized from an infiltrating kimberlite-like melt, eitherduring Group II kimberlite magmatism at 200–110 Ma (Kimberley),or shortly prior to eruption of the host kimberlite around 90Ma (northern Lesotho). KEY WORDS: Kaapvaal craton; lithospheric mantle; metasomatism; Nd–Hf isotopes; Re–Os isotopes  相似文献   

7.
We present trace element and Sr–Nd–Hf–Pb isotopecompositions for clinopyroxenes from anhydrous spinel peridotiteand garnet ± spinel pyroxenite xenoliths of Pan-Africanlithospheric mantle from Jordan, including the first high-precisiondouble-spike Pb isotope measurements of mantle clinopyroxene.Clinopyroxenes from the peridotites are variably Th–U–LILE–LREEenriched and display prominent negative Nb, Zr and Ti anomalies.MREE–HREE abundances can generally be modelled as partialmelting residues of spinel lherzolite with primitive-mantle-likecomposition after extraction of 5–10% melt, whereas theenrichments in Th–U–LILE–LREE require a Pan-Africanor later metasomatic event. The large range of Nd, Sr, Pb andHf isotope ratios in both peridotites and pyroxenites (e.g.Nd 1·4–17·5; 206Pb/204Pb 17·2–20·4;Hf 0·6–164·6) encompasses compositionsmore radiogenic than mid-ocean ridge basalt (MORB), and Pb isotopescover almost the entire range of oceanic basalt values. Hf valuesare some of the highest ever recorded in mantle samples andare decoupled from Nd in the same samples. Marked correlationsbetween Sr–Nd–Pb isotopes, LILE–LREE enrichmentsand HFSE depletion suggest that the metasomatizing agent wasa carbonatitic-rich melt and isotopic data suggest that metasomatismmay have been related to Pan-African subduction. The metasomaticmelt permeated depleted upper mantle (<16 kbar) during Pan-Africansubduction at 600–900 Ma, and the variably metasomatizedmaterial was then incorporated into the Arabian lithosphericmantle. There is no evidence for recent metasomatism (<30Ma) related to the Afar plume like that postulated to have affectedsouthern Arabian lithospheric mantle. Hf isotopes in the mantleclinopyroxenes are unaffected by metasomatism, and even somestrongly overprinted lithologies record ancient (>1·2Ga) pre-metasomatic Lu–Hf signatures of the depleted uppermantle that was the protolith of the Arabian lithospheric mantle.The ‘resistance’ of the Lu–Hf isotopic systemto later metasomatic events resulted in the development of extremelyheterogeneous Hf isotopic signatures over time that are decoupledfrom other isotopic systems. No mantle sample in this studyexactly matches the chemical and isotopic signature of the sourceof Jordanian intraplate basalts. However, the xenolith compositionsare broadly similar to those of the source of Arabian intraplatebasalts, suggesting that the numerous Cenozoic intraplate volcanicfields throughout Arabia may be the product of melting uppermantle wedge material fertilized during Pan-African subductionand incorporated into the Arabian lithospheric mantle. We proposea model whereby the proto-Arabian lithospheric mantle underwenta major melting event in early Proterozoic–late Archeantimes (at the earliest at 1·2 Ga). Island-arc volcanismand major crust formation occurred during the Pan-African orogeny,which liberated fluids and possibly small-degree melts thatmigrated through the mantle creating zones of enrichment forcertain elements depending upon their compatibility. Immobileelements, such as Nb, were concentrated near the base of themantle wedge providing the source of the Nb-rich Jordanian volcanicrocks. More mobile elements, such as LILE and LREE, were transportedup through the mantle and fertilized the shallow mantle sourceof the Jordanian xenoliths. Following subduction, the mantlewedge became fossilized and preserved distinct enriched anddepleted zones. Lithospheric rifting in the Miocene triggeredpartial melting of spinel-facies mantle in the lower lithosphere,which mixed with deeper asthenospheric garnet-facies melts asrifting evolved. These melts entrained segments of variablycarbonatite-metasomatized shallow lithospheric mantle en routeto the surface. KEY WORDS: Arabian lithospheric mantle; Jordan; mantle xenoliths; Sr–Nd–Hf–Pb isotopes  相似文献   

8.
A combined set of U–Pb and Lu–Hf in situ laser ablationICP-(MC)-MS zircon analyses were obtained from orthogneissesand granitoids in the Central Zone of the Limpopo Belt, whichcomprises the Beit Bridge and Mahalapye complexes. The resultsindicate that by combining the two isotope systems primary magmaticzircon domains can be distinguished from those formed duringlater metamorphic events, even if the distinct zircon domainsunderwent multiple Pb loss and the texture–age relationships,as obtained by cathodoluminescence images and U–Pb analyses,are ambiguous. Furthermore, the applied technique allows distinctionof zircon grains formed in juvenile magmas from those generatedby melting of older continental crust or affected by substantialcrustal contamination. The combined U–Pb and Lu–Hfdata reveal that the Sand River gneiss suite of the Beit BridgeComplex was emplaced at 3283 ± 8 Ma and formed from meltingof an older Archaean crust, which was derived from a depletedmantle source at around 3·65 Ga. The hafnium model age(TDMHf) is significantly older than those obtained from zirconsfrom numerous Neoarchaean granitoids of the Beit Bridge Complex,comprising the Singelele gneiss (2647 ± 12 Ma), the Bulaigranite (2612 ± 7 Ma), the Regina gneiss (2649 ±9 Ma) and two samples of the Zanzibar gneiss (2613 ±6 Ma). These granitoids show initial Hf(t) values between +0·5 and –7·1, which correspond to initialTDMHf between 3·46 and 3·01 Ga. These variableTDMHfinitial and Hf(t)initial values are interpreted to be theresult of different mixtures of reworked 3·65 Ga Palaeoarchaeancrust with juvenile magmas extracted from the depleted mantleduring the Neoarchaean at 2·65 Ga. This conclusion issupported by results obtained from the Mahalapye Complex, whichwas affected by migmatization and granite intrusions duringthe Palaeoproterozoic at 2·02–2·06 Ga. TheMokgware granite (2019 ± 9 Ma) contains zircon xenocrystswith Pb–Pb ages of 2·52–2·65 Ga and2·93 Ga and hafnium model ages of 3·0–3·4Ga, indicating that this granite is derived from remelting ofArchaean crust. In contrast, uniform TDMHfinitial ages of 2·61–2·67Ga obtained from a diorite gneiss (2061 ± 6 Ma) of theMahalapye Complex indicate that its protolith may have beenformed from remelting of a Neoarchaean juvenile crust. VariableHf(t)initial values from –3·7 to +6·3 ofzircon cores (2711 ± 11 Ma) in an adjacent leucosomealso support a model of mixing of juvenile mantle derived matterwith older crust in the Neoarchaean. KEY WORDS: Archaean; Palaeoproterozoic; Limpopo Belt; zircon, U–Pb dating; Lu–Hf isotopes; LA-ICP-MS  相似文献   

9.
The present work reports the first broad geochemical investigationof the recently discovered late Archean (2700 Ma) Skjoldungenalkaline igneous province (SAP) in southeast Greenland. Therocks studied range in composition from ultramafic to felsicand comprise pyroxenites, hornblendites, hornblende noritesand diorites, monzonites, syenites, and nephelinitic rocks andcarbonatites. Various lithologic units from the host Archeangneissic basement are also investigated. The magmatic rocksshow remarkably coherent major element, trace element, rareearth element (REE), and Sr and Nd isotope systematics, suggestinga petrogenetic relationship. The most important geochemicalfeatures are high normative proportions of nepheline, forsteriteand albite, low TiO2 (<15 wt %) and moderate FeO (total)(<12 wt %) contents, enrichments in large ion lithophileelements (LILE) and light rare earth elements both absoluteand relative to high field strength elements (HFSE) that displaylarge negative anomalies, and generally low to moderate abundancesof compatible elements. Field relations and REE and compatibleelement systematics among Skjoldungen rocks suggest that maficand ultramafic hornblende-rich samples may represent cumulatelithologies of the regional parental magma. On the basis ofmineral data, this is deduced to have had mg-number of 064,shoshonitic affinities (K2O15 wt %), been close to silica saturationand volatile rich. Major element, trace element and REE systematicsfurther suggest that felsic intrusions are related to the maficregional parental magma through extensive olivine, hyperstheneand hornblende fractionation. Lack of correlation between La/Yband other critical trace and REE ratios indicates that apatite,zircon and titaniferous minerals were not important cumulusphases at advanced stages of evolution. The measured Sm–Ndwhole-rock isochron age is 2716 23 Ma (2 error) [mean squareof weighted deviates (MSWD) = 14], whereas linear regressionof the Sr isotope data yields an age of 26047 Ma (2 error)(MSWD = 22•2). The age obtained by Nd isotopes is corroboratedby U–Pb zircon results (2698 7 Ma), suggesting thatthe Sm–Nd system remained closed since crystallization.By contrast, the 100 Ma younger age obtained by Sr isotopessuggests that the Rb–Sr system has been disturbed. Initial143Nd/144 Nd ratios span a narrow range corresponding to Nd(27Ga) =+074 to –109, whereas initial Sr values at 27Ga cover a comparatively larger interval from –10 to +20.Neither initial Nd nor initial Sr values conform to previouslysuggested mantle depletion curves and no meaningful correlationexists between Nd and Sr isotopes for the Skjoldungen magmaticrocks as a whole. Although compositionally heterogeneous, theanalyzed suite of samples from the host agmatitic basement isextremely homogeneous with respect to age, with TCHUR crustalresidence times around 2700–2800 Ma confirming limitedavailable isotopic evidence. Large-scale assimilation of Archeancrust or recycling of sediments derived from the local basementinto the mantle source fails to explain adequately negativeNb anomalies and low Nd signatures characteristic of the Skjoldungenintrusions. Rather, the nearchondritic isotopic compositionof Nd in the Skjoldungen samples together with the decoupledLILE and HFSE enrichment and slightly positive Sr values areconsidered to reflect characteristics of the mantle source ina subduction zone environment. The geodynamic site hosting theSkjoldungen province thus may be an early manifestation of modern-styleplate tectonics. KEY WORDS: Skjoldungen province; Greenland; Archean; alkaline igneous rocks; geochronology; geochemistry *Corresponding author. Present address: Ecole Normale Suprieure de Lyon, 46 AlLe d'Italie, 69364 Lyon Cedex 07, France  相似文献   

10.
Komatiites from the 2 Ga Jeesiörova area in Finnish Laplandhave subchondritic Al2O3/TiO2 ratios like those in Al-depletedkomatiites from Barberton, South Africa. They are distinct inthat their Al abundances are higher than those of the Al-depletedrocks and similar to levels in Al-undepleted komatiites. Moderatelyincompatible elements such as Ti, Zr, Eu, and Gd are enriched.Neither majorite fractionation nor hydrous melting in a supra-subductionzone setting could have produced these komatiites. Their highconcentrations of moderately incompatible elements may haveresulted from contamination of their parental melt through interactionwith metasomatic assemblages in the lithospheric mantle or enrichmentof their mantle source in basaltic melt components. Re–Osisotope data for chromite from the Jeesiörova rocks yieldan average initial 187Os/188Os of 0·1131 ± 0·0006(2), Os(I) = 0·1 ± 0·5. These data, coupledwith an initial Nd of +4, indicate that melt parental to thekomatiites interacted minimally with ancient lithospheric mantle.If their mantle source was enriched in a basaltic component,the combined Os–Nd isotopic data limit the enrichmentprocess to within 200 Myr prior to the formation of the komatiites.Their Os–Nd isotopic composition is consistent with derivationfrom the contemporaneous convecting upper mantle. KEY WORDS: Finnish Lapland; Jeesiörova; komatiites; mantle geochemistry; petrogenesis; redox state; Re/Os isotopes; Ti enrichment  相似文献   

11.
Different lithologies (impure marble, eclogite and graniticorthogneiss) sampled from a restricted area of the coesite-bearingBrossasco–Isasca Unit (Dora Maira Massif) have been investigatedto examine the behaviour of 40Ar–39Ar and Rb–Srsystems in phengites developed under ultrahigh-pressure (UHP)metamorphism. Mineralogical and petrological data indicate thatzoned phengites record distinct segments of the PT path:prograde, peak to early retrograde in the marble, peak to earlyretrograde in the eclogite, and late retrograde in the orthogneiss.Besides major element zoning, ion microprobe analysis of phengitein the marble also reveals a pronounced zoning of trace elements(including Rb and Sr). 40Ar–39Ar apparent ages (35–62Ma, marble; 89–170 Ma, eclogite; 35–52 Ma, orthogneiss),determined through Ar laserprobe data on phengites (step-heatingand in situ techniques), show wide intra-sample and inter-samplevariations closely linked to within-sample microchemical variations:apparent ages decrease with decreasing celadonite contents.These data confirm previous reports on excess Ar and, more significantly,highlight that phengite acted as a closed system in the differentlithologies and that chemical exchange, not volume diffusion,was the main factor controlling the rate of Ar transport. Conversely,a Rb–Sr internal isochron from the same eclogite yieldsan age of 36 Ma, overlapping with the time of the UHP metamorphicpeak determined through U–Pb data and thereby corroboratingthe previous conclusion that UHP metamorphism and early retrogressionoccurred in close succession. Different phengite fractions ofthe marble yield calcite–phengite isochron ages of 36to 60 Ma. Although this time interval matches Ar ages from thesame sample, Rb–Sr data from phengite are not entirelyconsistent with the whole dataset. According to trace elementvariations in phengite, only Rb–Sr data from two wet-groundphengite separates, yielding ages of 36 and 41 Ma, are internallyconsistent. The oldest age obtained from a millimetre-sizedgrain fraction enriched in prograde–peak phengites mayrepresent a minimum age estimate for the prograde phengite relics.Results highlight the potential of the in situ 40Ar–39Arlaser technique in resolving discrete PT stages experiencedby eclogite-facies rocks (provided that excess Ar is demonstrablya negligible factor), and confirm the potential of Rb–Srinternal mineral isochrons in providing precise crystallizationages for eclogite-facies mineral assemblages. KEY WORDS: 40Ar–39Ar dating; Rb–Sr dating; phengite; SIMS; UHP metamorphism  相似文献   

12.
Garnet clinopyroxenite and garnet websterite layers occur locallywithin mantle peridotite bodies from the External Liguride Jurassicophiolites (Northern Apennines, Italy). These ophiolites werederived from an ocean–continent transition similar tothe present-day western Iberian margin. The garnet clinopyroxenitesare mafic rocks with a primary mineral assemblage of pyrope-richgarnet + sodic Al-augite (Na2O 2·5 wt %, Al2O3 12·5wt %), with accessory graphite, Fe–Ni sulphides and rutile.Decompression caused Na-rich plagioclase (An50–45) exsolutionin clinopyroxene porphyroclasts and extensive development ofsymplectites composed of secondary orthopyroxene + plagioclase(An85–72) + Al-spinel ± clinopyroxene ±ilmenite at the interface between garnet and primary clinopyroxene.Further decompression is recorded by the development of an olivine+ plagioclase-bearing assemblage, locally under syn-kinematicconditions, at the expense of two-pyroxenes + Al-spinel. Mg-richgarnet has been also found in the websterite layers, which arecommonly characterized by the occurrence of symplectites madeof orthopyroxene + Al-spinel ± clinopyroxene. The enclosingperidotites are Ti-amphibole-bearing lherzolites with a fertilegeochemical signature and a widespread plagioclase-facies myloniticfoliation, which preserve in places a spinel tectonite fabric.Lu–Hf and Sm–Nd mineral isochrons (220 ±13 Ma and 186.0 ± 1·8 Ma, respectively) have beenobtained from a garnet clinopyroxenite layer and interpretedas cooling ages. Geothermobarometric estimates for the high-pressureequilibration have yielded T 1100°C and P 2·8 GPa.The early decompression was associated with moderate cooling,corresponding to T 950°, and development of a spinel tectonitefabric in the lherzolites. Further decompression associatedwith plagioclase–olivine growth in both peridotites andpyroxenites was nearly isothermal. The shallow evolution occurredunder a brittle regime and led to the superposition of hornblendeto serpentine veining stages. The garnet pyroxenite-bearingmantle from the External Liguride ophiolites represents a raretectonic sampling of deep levels of subcontinental lithosphereexhumed in an oceanic setting. The exhumation was probably accomplishedthrough a two-step process that started during Late Palaeozoiccontinental extension. The low-pressure portion of the exhumationpath, probably including also the plagioclase mylonitic shearzones, was related to the Mesozoic (Triassic to Jurassic) riftingthat led to continental break-up. In Jurassic times, the studiedmantle sequence became involved in an extensional detachmentprocess that resulted in sea-floor denudation. KEY WORDS: garnet pyroxenite; ophiolite; non-volcanic margin; mantle exhumation; Sm–Nd and Lu–Hf geochronology  相似文献   

13.
Hafnium isotope and incompatible trace element data are presentedfor a suite of mid-ocean ridge basalts (MORB) from 13 to 47°Eon the Southwest Indian Ridge (SWIR), one of the slowest spreadingand most isotopically heterogeneous mid-ocean ridges. Variationsin Nd–Hf isotope compositions and Lu/Hf ratios clearlydistinguish an Atlantic–Pacific-type MORB source, presentwest of 26°E, characterized by relatively low Hf valuesfor a given Nd relative to the regression line through all Nd–Hfisotope data for oceanic basalts (termed the ‘Nd–Hfmantle array line’; the deviation from this line is termedHf) and low Lu/Hf ratios, from an Indian Ocean-type MORB signature,present east of 32°E, characterized by relatively high Hfvalues and Lu/Hf ratios. Additionally, two localized, isotopicallyanomalous areas, at 13–15°E and 39–41°E,are characterized by distinctly low negative and high positiveHf values, respectively. The low Hf MORB from 13 to 15°Eappear to reflect contamination by HIMU-type mantle from thenearby Bouvet mantle plume, whereas the trace element and isotopiccompositions of MORB from 39 to 41°E are most consistentwith contamination by metasomatized Archean continental lithosphericmantle. Relatively small source-melt fractionation of Lu/Hfrelative to Sm/Nd, compared with MORB from faster-spreadingridges, argues against a significant role for garnet pyroxenitein the generation of most central SWIR MORB. Correlations betweenHf and Sr and Pb isotopic and trace element ratios clearly delineatea high-Hf ‘Indian Ocean mantle component’ that canexplain the isotope composition of most Indian Ocean MORB asmixtures between this component and a heterogeneous Atlantic–Pacific-typeMORB source. The Hf, Nd and Sr isotope compositions of IndianOcean MORB appear to be most consistent with the hypothesisthat this component represents fragments of subduction-modifiedlithospheric mantle beneath Proterozoic orogenic belts thatfoundered into the nascent Indian Ocean upper mantle duringthe Mesozoic breakup of Gondwana. KEY WORDS: mid-ocean ridge basalt; isotopes; incompatible elements; Indian Ocean  相似文献   

14.
A suite of dolerite dykes from the Ahlmannryggen region of westernDronning Maud Land (Antarctica) forms part of the much moreextensive Karoo igneous province of southern Africa. The dykecompositions include both low- and high-Ti magma types, includingpicrites and ferropicrites. New 40Ar/39Ar age determinationsfor the Ahlmannryggen intrusions indicate two ages of emplacementat 178 and 190 Ma. Four geochemical groups of dykes have beenidentified in the Ahlmannryggen region based on analyses of60 dykes. The groups are defined on the basis of whole-rockTiO2 and Zr contents, and reinforced by rare earth element (REE),87Sr/86Sr and 143Nd/144Nd isotope data. Group 1 were intrudedat 190 Ma and have low TiO2 and Zr contents and a significantArchaean crustal component, but also evidence of hydrothermalalteration. Group 2 dykes were intruded at 178 Ma; they havelow to moderate TiO2 and Zr contents and are interpreted tobe the result of mixing of melts derived from an isotopicallydepleted source with small melt fractions of an enriched lithosphericmantle source. Group 3 dyke were intruded at 190 Ma and formthe most distinct magma group; these are largely picritic withsuperficially mid-ocean ridge basalt (MORB)-like chemistry (flatREE patterns, 87Sr/86Sri 0·7035, Ndi 9). However, theyhave very high TiO2 (4 wt %) and Zr (500 ppm) contents, whichis not consistent with melting of MORB-source mantle. The Group3 magmas are inferred to be derived by partial melting of astrongly depleted mantle source in the garnet stability field.This group includes several high Mg–Fe dykes (ferropicrites),which are interpreted as high-temperature melts. Some Group3 dykes also show evidence of contamination by continental crust.Group 4 dykes are low-K picrites intruded at 178 Ma; they havevery high TiO2–Zr contents and are the most enriched magmagroup of the Karoo–Antarctic province, with ocean-islandbasalt (OIB)-like chemistry. Dykes of Group 1 and Group 3 aresub-parallel (ENE–WSW) and both groups were emplaced at190 Ma in response to the same regional stress field, whichhad changed by 178 Ma, when Group 2 and Group 4 dykes were intrudedalong a dominantly NNE–SSW strike. KEY WORDS: flood basalt; depleted mantle; enriched mantle; Ahlmannryggen; Karoo dyke  相似文献   

15.
The Liov Granulite Massif differs from neighbouring granulitebodies in the Moldanubian Zone of southern Bohemia (Czech Republic)in including a higher proportion of intermediate–maficand orthopyroxene-bearing rocks, associated with spinel peridotitesbut lacking eclogites. In addition to dominantly felsic garnetgranulites, other major rock types include quartz dioritic two-pyroxenegranulites, tonalitic granulites and charnockites. Minor bodiesof high-pressure layered gabbroic garnet granulites and spinelperidotites represent tectonically incorporated foreign elements.The protoliths of the mafic–intermediate granulites (quartz-dioriticand tonalitic) crystallized 360–370 Ma ago, as indicatedby laser ablation inductively coupled plasma mass spectrometryU–Pb ages of abundant zircons with well-preserved magmaticzoning. Strongly metamorphically recrystallized zircons giveages of 330–340 Ma, similar to those of other Moldanubiangranulites. For the overwhelming majority of the Liov granulitespeak metamorphic conditions probably did not exceed 800–900°Cat 4–5 kbar; the equilibration temperature of the pyroxenegranulites was 670–770°C. This is in sharp contrastto conditions of adjacent contemporaneous Moldanubian granulites,which are characterized by a distinct HP–HT signature.The mafic–intermediate Liov granulites are thought tohave originated during Viséan metamorphic overprintingof metaluminous, medium-K calc-alkaline plutonic rocks thatformed the mid-crustal root of a Late Devonian magmatic arc.The protolith resembled contemporaneous calc-alkaline intrusionsin the European Variscan Belt. KEY WORDS: low-pressure granulites; geothermobarometry; laser-ablation ICP-MS zircon dating; whole-rock geochemistry; Sr–Nd isotopes; Moldanubian Zone  相似文献   

16.
The mutual solubility in the system corundum–hematite[-(Al, Fe3+)2O3] was investigated experimentally using bothsynthetic and natural materials. Mixtures of -Al2O3 and -Fe2O3(weight ratios of 8:2 and 10:1) were used as starting materialsfor synthesis experiments in air at 800–1300°C withrun times of 7–34 days. Experiments at 8–40 kbarand 490–1100°C were performed in a piston-cylinderapparatus (run times of 0·8–7·4 days) usinga natural diasporite consisting of 60–70 vol. % diasporeand 20–30 vol. % Ti-hematite. During the diasporite–corunditetransformation, the FeTiO3 component (12–18 mol %) ofTi-hematite only slightly increased, implying that oxygen fugacitywas maintained at high values. Run products were studied byelectron microprobe and X-ray diffraction (Rietveld) techniques.An essentially linear volume of mixing exists in the solid solutionwith a slight positive deviation at the hematite side. Up to1000°C, corundum contains <4 mol % Fe2O3 and hematite<10 mol % Al2O3; at 1200°C these amounts increase to9·3 and 17·0 mol %, respectively. At 1300°Chematite was no longer stable and coexists with the orthorhombic phase . The present results agree with corundum (solvus) compositions obtained inprevious studies but indicate a larger solubility of Al in hematite.The miscibility gap in the solution can be modelled with anasymmetric Margules equation with interaction parameters (2uncertainties): ; ; ; . Application of the corundum–hematite solution as a solvus geothermometer is limited because of thescarcity of suitable rock compositions. KEY WORDS: corundum; hematite; corundum–hematite miscibility gap; experimental study; Margules model; metabauxite  相似文献   

17.
Detailed petrographic and geochemical data and Sr and Nd isotopecompositions of enclaves and host-granite are reported for oneof the largest strongly peraluminous cordierite-bearing intrusionsof the Hercynian Sardinia-Corsica Batholith: the San BasilioGranite. Compared with other peraluminous series, the San BasilioGranite has a ‘non-minimum melt’ composition andshows variations primarily owing to fractionation of early-crystallizedplagioclase, quartz and biotite. Crystallization age is constrainedat 305 Ma, by Rb-Sr whole-rock age [30523 Ma with (87Sr/86Sr)i= 0.711050.00041], and occurred during late Hercynian tectonicevents. Nd(305Ma) values range from –7.8 to –7.5.The San Basilio Granite contains both magmatic and metamorphicenclaves. Magmatic enclaves, similar to mafic microgranularenclaves common in calc-alkaline granitoids, are tonalitic incomposition and show a variation in silica content from 60.3to 67.7 wt % correlating with a variation in (87Sr/86 Sr) (305Ma)and Nd (305 Ma) from 0.7092 to 0.7109 and from –6.6 to–7.4, respectively. Together with petrographic and othergeochemical data, the Sr and Nd isotopic data record differentstages in a complex homogenization process of an unrelated maficmagma with a crustal melt. A process of simple mixing may accountfor the variations of nonalkali elements and, to some extent,of Sr and Nd isotopes, whereas the distribution of alkali elementsrequires diffusioncontrolled mass transfer. Petrographic andmineralogical data on metamorphic enclaves and geochemical modellingfor trace elements in granite indicate melt generation by high-degreepartial melting involving biotite breakdown of a dominantlyquartzo-feldspathic protolith at about T>750–800Cand P>6 kbar leaving a granulite facies garnet-bearing residue,followed by emplacement at 3 kbar. Nd(305Ma) values of thegranite fall within the range defined by the pre-existing metamorphicrocks but (87Sr/86Sr) (305Ma) ratios are lower, indicating involvementof at least two distinct components: a dominant crustal componentand a minor well-mixed mafic end-member. These data point toa decoupling between the Sr-Nd isotope systematics and majorand trace element compositions, suggesting that the effect ofthe mafic component was minor on granite major and trace elementconcentrations, but significant on Sr and Nd isotopes. The studyof the magmatic enclaves and the isotopic evidence demonstratethat unrelated mafic magmas, probably derived from the mantle,had a close spatial and temporal association with the productionof ‘on-minimum melt’ strongly peraluminous granites,and support the proposal that heat from the mafic magma contributedto crustal melting. KEY WORDS: cordierite-bearing granite; enclaves; felsic-mafic interaction; Sardinia-Corsica Batholith; Sr and Nd isotopes *Corresponding author.  相似文献   

18.
The Grønnedal-Ika complex is dominated by layered nephelinesyenites which were intruded by a xenolithic syenite and a centralplug of calcite to calcite–siderite carbonatite. Aegirine–augite,alkali feldspar and nepheline are the major mineral phases inthe syenites, along with rare calcite. Temperatures of 680–910°Cand silica activities of 0·28–0·43 weredetermined for the crystallization of the syenites on the basisof mineral equilibria. Oxygen fugacities, estimated using titanomagnetitecompositions, were between 2 and 5 log units above the fayalite–magnetite–quartzbuffer during the magmatic stage. Chondrite-normalized REE patternsof magmatic calcite in both carbonatites and syenites are characterizedby REE enrichment (LaCN–YbCN = 10–70). Calcite fromthe carbonatites has higher Ba (5490 ppm) and lower HREE concentrationsthan calcite from the syenites (54–106 ppm Ba). This isconsistent with the behavior of these elements during separationof immiscible silicate–carbonate liquid pairs. Nd(T =1·30 Ga) values of clinopyroxenes from the syenites varybetween +1·8 and +2·8, and Nd(T) values of whole-rockcarbonatites range from +2·4 to +2·8. Calcitefrom the carbonatites has 18O values of 7·8 to 8·6and 13C values of –3·9 to –4·6. 18Ovalues of clinopyroxene separates from the nepheline syenitesrange between 4·2 and 4·9. The average oxygenisotopic composition of the nepheline syenitic melt was calculatedbased on known rock–water and mineral–water isotopefractionation to be 5·7 ± 0·4. Nd and C–Oisotope compositions are typical for mantle-derived rocks anddo not indicate significant crustal assimilation for eithersyenite or carbonatite magmas. The difference in 18O betweencalculated syenitic melts and carbonatites, and the overlapin Nd values between carbonatites and syenites, are consistentwith derivation of the carbonatites from the syenites via liquidimmiscibility. KEY WORDS: alkaline magmatism; carbonatite; Gardar Province; liquid immiscibility; nepheline syenite  相似文献   

19.
The Jozini and Mbuluzi rhyolites and Oribi Beds of the southernLebombo Monocline, southeastern Africa, have geochemical characteristicsthat indicate they were derived by partial melting of a mixtureof high-Ti/Zr and low-Ti/Zr Sabie River Basalt Formation types.Compositional variations within the different rhyolite typescan largely be explained by subsequent fractional crystallization.The Sr- and Nd-isotope composition of the rhyolites is uniqueamongst Gondwana silicic large igneous provinces, having Ndvalues close to Bulk Earth (–0·94 to 0·35)and low, but more variable, initial 87Sr/86Sr ratios (0·7034–0·7080).Quartz phenocryst 18O values indicate that the rhyolite magmashad 18O values between 5·3 and 6·7, consistentwith derivation from a basaltic protolith with 18O values between4·8 and 6·2. The low-18O rhyolites (< 6·0)come from the same stratigraphic horizon and are overlain andunderlain by rhyolites with more ‘normal’ 18O magmavalues. These low-18O rhyolites cannot have been produced byfractional crystallization or partial melting of mantle-derivedbasaltic material. The rhyolites have low water contents, makingit unlikely that the low 18O values are the result of post-emplacementalteration. Modification of the source by fluid–rock interactionat elevated temperatures is the most plausible mechanism forlowering the 18O magma value. It is proposed that the low-18Orhyolites were derived by melting of earlier altered rhyolitein calderas situated to the east, which were not preserved afterGondwana break-up. KEY WORDS: rhyolite; Lebombo; stable and radiogenic isotopes; low-18O magmas; partial melting  相似文献   

20.
Glass inclusions in plagioclase and orthopyroxene from daciticpumice of the Cabrits Dome, Plat Pays Volcanic Complex in southernDominica reveal a complexity of element behavior and Li–Bisotope variations in a single volcanic center that would gounnoticed in a whole-rock study. Inclusions and matrix glassesare high-silica rhyolite with compositions consistent with about50% fractional crystallization of the observed phenocrysts.Estimated crystallization conditions are 760–880°C,200 MPa and oxygen fugacity of FMQ + 1 to +2 log units (whereFMQ is the fayalite–magnetite–quartz buffer). Manyinclusion glasses are volatile-rich (up to 6 wt % H2O and 2900ppm Cl), but contents range down to 1 wt % H2O and 2000 ppmCl as a result of shallow-level degassing. Sulfur contents arelow throughout, with <350 ppm S. The trace element compositionof inclusion glasses shows enrichment in light rare earth elements(LREE; (La/Sm)n = 2·5–6·6) and elevatedBa, Th and K contents compared with whole rocks and similaror lower Nb and heavy REE (HREE; (Gd/Yb)n = 0·5–1·0).Lithium and boron concentrations and isotope ratios in meltinclusions are highly variable (20–60 ppm Li with 7Li= +4 to +15 ± 2; 60–100 ppm B with 11B = +6 to+13 ± 2) and imply trapping of isotopically heterogeneous,hybrid melts. Multiple sources and processes are required toexplain these features. The mid-ocean ridge basalt (MORB)-likeHREE, Nb and Y signature reflects the parental magma(s) derivedfrom the mantle wedge. Positive Ba/Nb, B/Nb and Th/Nb correlationsin inclusion glasses indicate coupled enrichment in stronglyfluid-mobile (Ba, B) and less-mobile (Th, Nb) trace elements,which can be explained by fractional crystallization of plagioclase,orthopyroxene and Fe–Ti oxides. The 7Li and 11B valuesare at the high end of known ranges for other island arc magmas.We attribute the high values to a 11B and 7Li-enriched slabcomponent derived from sea-floor-altered oceanic crust and possiblyfurther enriched in heavy isotopes by dehydration fractionation.The heterogeneity of isotope ratios in the evolved, trappedmelts is attributed to shallow-level assimilation of older volcanicrocks of the Plat Pays Volcanic Complex. KEY WORDS: subduction; volcanic arcs; igneous processes; melt inclusions; SIMS; trace elements; lithium and boron isotopes; diffusion  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号