首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地质学   5篇
天文学   1篇
自然地理   2篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2007年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
Gentoso, M. J., Evenson, E. B., Kodama, K. P., Iverson, N. R., Alley, R. B., Berti, C. & Kozlowski, A. 2012 (January): Exploring till bed kinematics using AMS magnetic fabrics and pebble fabrics: the Weedsport drumlin field, New York State, USA. Boreas, Vol. 41, pp. 31–41. 10.1111/j.1502‐3885.2011.00221.x. ISSN 0300‐9483. Thick, relatively homogeneous basal tills exposed in the drumlins and flutes of the Weedsport drumlin and flute field in New York State exhibit anisotropy of magnetic susceptibility (AMS) and pebble fabrics that are consistently oriented parallel to the streamlined bedforms. The pebble fabrics and AMS fabrics are concordant. In this study, six drumlins and five flutes were sampled. Thermally induced, incremental reduction of isothermal remanent magnetization indicates that AMS is caused by primarily elongate maghaemite grains. The orientations of principal axes of maximum susceptibility (k1) are generally parallel to pebble long‐axis orientations, and tend to plunge mildly up‐glacier. Fabric directions are generally parallel to drumlin long‐axis orientations, but deviate by 12°–23° from flute directions. Fabrics of the flutes are stronger and more unidirectional than those of the drumlins. These results support the use of AMS as a fast and objective method for characterizing fabrics in tills, and suggest hypotheses about basal processes linked to glacially streamlined landforms.  相似文献   
2.
Abstract— We report data on three new iron meteorites from Northern Chile and propose names. All are unnamed iron meteorites from the meteorite collection at the Universidad de La Serena. For two, the provenance is unknown; for the third, the presumed discovery site is in the countryside east of Iquique. The three meteorites have been analyzed by instrumental neutron activation analysis (INAA) and their structures examined with a binocular microscope. La Serena is a complete 663 g iron, a new member of group IIICD; it is not paired with any other iron. Elqui has a mass of 260 g; two faces are fractures, possibly produced by human actions, but fusion crust appears to be present on some of the remaining surface. It is a hexahedrite and a member of group IIAB, but its composition differs from that of all other Chilean hexahedrites. The third iron, Pozo Almonte, is a medium octahedrite member of group IIIAB, one of the most common meteorite groups. To find out whether it is paired, we assembled a full set of IIIAB iron meteorites from Northern Chile. Our compositional data show that Pozo Almonte is not paired with any other IIIAB iron, and that there are no pairings within the full set with the possible exception of Joel's Iron and Sierra Sandon, which differ only in their contents of Ir, 0.39 and 0.34 μg/g, respectively. However, Buchwald's (1975) structural observations rule out this possible pairing. We find appreciable differences in Cu, As and Au between the previously paired IIIAB irons Chañaral and Ilimaës and conclude that these should not be paired.  相似文献   
3.
Dolomitization of a carbonate platform can occur at different times and in different diagenetic environments, from synsedimentary to deep burial settings. Numerical simulations are valuable tools to test and select the model that, among different hypotheses compatible with field and geochemical data, best honour mass balance, kinetic and thermodynamic constraints. Moreover, the simulation can predict the distribution of the dolomitized bodies in the subsurface and evaluate porosity changes; valuable information for the oil industry. This study is the first attempt to reproduce and investigate the compaction dolomitization model. The diagenetic study of the Jurassic carbonate basin and palaeohigh system of the Po Plain indicates that the carbonates of the palaeohighs were dolomitized by basin compaction fluids. The main goal of the simulations is to evaluate the origin and evolution of the dolomitizing fluids and to provide insights regarding the distribution of the potential reservoir‐dolomitized bodies in the Po Plain. The modelling process is subdivided into two steps: basin modelling and reactive transport modelling. The SEBE3 basin simulator (Eni proprietary) was used to create a three‐dimensional model of the compacting system. The results include compaction fluid flow rate from the basin to the palaeohigh, compaction duration and a determination of the total amount of fluid introduced into the palaeohigh. These data are then used to perform reactive transport modelling with the TOUGHREACT code. Sensitivities on dolomite kinetic parameters suggest that dolomitization was an efficient process even at low temperatures, with differences mainly related to the dynamics of the process. Fluid composition is one of the main constraints, the sea water derived compaction fluid is proven to be efficient for dolomitization due to its relatively high Mg content. Simulations also confirmed that permeability is the most important factor influencing fluid flow and, consequently, the dolomite distribution in the formation. Permeable fractured zones have a strong influence, diverting the dolomitizing fluids from their normal path towards overlying or lateral zones. Moreover, the simulations showed that, after dolomite replacement is complete, the dolomitizing fluids can precipitate dolomite cement, causing over‐dolomitization, with related localized plugging effects in the zone of influx. Mass balance calculations indicate that in the dolomitization compaction model, the amount of compaction water fluxed from the basin to the carbonate is the main constraint on dolomitization efficiency. This observation implies that the ratio between the volume of the basin undergoing compaction and the volume of the palaeohigh is a limiting factor on the final size of the dolomitized bodies. An isolated palaeohigh could be an ideal site for pervasive replacement dolomitization due to the large volume of compaction fluids available compared with the carbonate rock volume. In the case of large platforms, the more permeable margin lithofacies are the most likely sites for compaction model dolomitization. The combined use of a basin simulator and reactive transport modelling has proved to be a successful method to verify model reliability and it provides insights into the volumetric distribution of diagenetic products.  相似文献   
4.
This paper describes the recent evolution of Italian glaciers through an analysis of all available terminus fluctuation data that the authors have entered in a glaciers database (named GLAD) containing 883 records collected on glaciers from 1908 to 2002. Furthermore, a representative subset of data (249 glaciers located in Lombardy) was analysed regarding surface area changes. For the analysis of terminus fluctuations, the glaciers were sorted by size classes according to length. The data showed that during the 20th century Italian Alpine glaciers underwent a generalized retreat, with one distinct and well documented readvance episode that occurred between the 1970s and mid‐1980s, and a poorly documented one around the early 1920s. The rates of terminus advance and retreat have changed without significant delays for the larger glaciers with respect to the smaller ones. However, the smaller the glacier, the more limited the advance (if any) during the 1970s and early 1980s. The behaviour of glaciers shorter than 1 km appears to have changed in the last decade, and between 1993 and 2002 they retreated at a very high rate. The analysis of the subset of data led to a quanti‐fication of surface reduction of c. 10% from 1992 to 1999 for glaciers in Lombardy. Small glaciers proved to contribute strongly to total area loss: in 1999, 232 glaciers (c. 90% of the total) were smaller than 1 km2, covering 27.2 km2 (less than 30% of the total area), but accounted for 58% of the total loss in area (they had lost 7.4 km2).  相似文献   
5.
During the Messinian—Pleistocene, the Peninsular Tyrrhenian margin underwent a NE—SW orientated stretching regime, with the formation of a NW—SE normal fault system and basins which are linked by NE—SW transfer fault zones. These fault zones border narrow and deep asymmetric basins. This paper uses geological and geophysical analysis (structural and stratigraphical data, seismic lines and anisotropy of magnetic susceptibility (AMS) data) to look at the evolution of one of these transfer-related basins, located south of Rome (Ardea basin). Comparison with other similar features indicates that the common characteristics of these transfer structures are: (i) the slip vector along the transfer fault is mostly dip-slip, which means that the local extensional direction is orthogonal to the regional extensional direction; (ii) development of a narrow and deep half-graben basin.  相似文献   
6.
A multi‐disciplinary approach was followed to investigate two thick palaeosol strata that alternate with wind‐blown dominated deposits developed along the Alghero coast (North‐west Sardinia, Italy). Optically stimulated luminescence ages reveal that both palaeosols were developed during cooler drier periods: the first one at around 70 ka Marine Isotope Stage 4 and the latter around 50 ka (Marine Isotope Stage 3). In contrast, the pedological features indicate that the palaeosols underwent heavy weathering processes under warm humid to sub‐humid conditions, characteristic of the Sardinian climate during the last interglacial stage (Marine Isotope Stage 5e). To reconcile this apparent data discrepancy, a range of sedimentological and pedological analyses were conducted. These analyses reveal that the palaeosols possess a complex history, with accumulation and weathering occurring during Marine Isotope Stage 5e, and erosion, colluviation and final deposition taking place during the following cold stages. Thus, even if these reddish palaeosols were last formed during the glacial period, the sediments building up these strata probably record the climate of the last interglacial stage (Marine Isotope Stage 5e). Trace element and X‐ray diffraction analyses, together with scanning electron microscope images, reveal the presence of Saharan dust in the parent material of the palaeosols. However, no evidence of any far‐travelled African dust has been observed in the Marine Isotope Stage 4–3 aeolian deposits. It is possible to conclude that in the West Mediterranean islands, Saharan dust input, even if of modest magnitude, is preserved preferentially in soils accumulated and weathered during interglacial stages.  相似文献   
7.
Detailed petrographic and geochemical data and Sr and Nd isotopecompositions of enclaves and host-granite are reported for oneof the largest strongly peraluminous cordierite-bearing intrusionsof the Hercynian Sardinia-Corsica Batholith: the San BasilioGranite. Compared with other peraluminous series, the San BasilioGranite has a ‘non-minimum melt’ composition andshows variations primarily owing to fractionation of early-crystallizedplagioclase, quartz and biotite. Crystallization age is constrainedat 305 Ma, by Rb-Sr whole-rock age [30523 Ma with (87Sr/86Sr)i= 0.711050.00041], and occurred during late Hercynian tectonicevents. Nd(305Ma) values range from –7.8 to –7.5.The San Basilio Granite contains both magmatic and metamorphicenclaves. Magmatic enclaves, similar to mafic microgranularenclaves common in calc-alkaline granitoids, are tonalitic incomposition and show a variation in silica content from 60.3to 67.7 wt % correlating with a variation in (87Sr/86 Sr) (305Ma)and Nd (305 Ma) from 0.7092 to 0.7109 and from –6.6 to–7.4, respectively. Together with petrographic and othergeochemical data, the Sr and Nd isotopic data record differentstages in a complex homogenization process of an unrelated maficmagma with a crustal melt. A process of simple mixing may accountfor the variations of nonalkali elements and, to some extent,of Sr and Nd isotopes, whereas the distribution of alkali elementsrequires diffusioncontrolled mass transfer. Petrographic andmineralogical data on metamorphic enclaves and geochemical modellingfor trace elements in granite indicate melt generation by high-degreepartial melting involving biotite breakdown of a dominantlyquartzo-feldspathic protolith at about T>750–800Cand P>6 kbar leaving a granulite facies garnet-bearing residue,followed by emplacement at 3 kbar. Nd(305Ma) values of thegranite fall within the range defined by the pre-existing metamorphicrocks but (87Sr/86Sr) (305Ma) ratios are lower, indicating involvementof at least two distinct components: a dominant crustal componentand a minor well-mixed mafic end-member. These data point toa decoupling between the Sr-Nd isotope systematics and majorand trace element compositions, suggesting that the effect ofthe mafic component was minor on granite major and trace elementconcentrations, but significant on Sr and Nd isotopes. The studyof the magmatic enclaves and the isotopic evidence demonstratethat unrelated mafic magmas, probably derived from the mantle,had a close spatial and temporal association with the productionof ‘on-minimum melt’ strongly peraluminous granites,and support the proposal that heat from the mafic magma contributedto crustal melting. KEY WORDS: cordierite-bearing granite; enclaves; felsic-mafic interaction; Sardinia-Corsica Batholith; Sr and Nd isotopes *Corresponding author.  相似文献   
8.
The early Pleistocene clastic succession of the Peri‐Adriatic basin, eastern central Italy, records the filling of a series of piggyback sub‐basins that formed in response to the development of the eastward‐verging Apennine fold‐thrust belt. During the Gelasian (2·588 to 1·806 Ma), large volumes of Apennine‐derived sediments were routed to these basins through a number of slope turbidite systems. Using a comprehensive outcrop‐based dataset, the current study documents the depositional processes, stratigraphic organization, foraminiferal age and palaeodepth, and stratigraphic evolution of one of these systems exposed in the surroundings of the Castignano village. Analysis of foraminiferal assemblages consistently indicates Gelasian deposition in upper bathyal water depths. Sediments exposed in the study area can be broken into seven main lithofacies, reflecting specific gravity‐induced depositional elements and slope background deposition: (i) clast‐supported conglomerates (conglomerate channel‐fill); (ii) amalgamated sandstones (late stage sandstone channel‐fill); (iii) medium to thick‐bedded tabular sandstones (frontal splay sandstones); (iv) thin to thick‐bedded channelized sandstones (sandy channel‐fill); (v) medium to very thin‐bedded sandstones and mudstones (levée‐overbank deposits); (vi) pebbly mudstones and chaotic beds (mudstone‐rich mass‐transport deposits); and (vii) massive mudstones (hemipelagic deposits). Individual lithofacies combine vertically and laterally to form decametre‐scale, disconformably bounded, fining‐upward lithofacies successions that, in turn, stack to form slope valley fills bounded by deeply incised erosion surfaces. A hierarchical approach to the physical stratigraphy of the slope system indicates that it has evolved through multiple cycles of waxing then waning flow energy at multiple scales and that its packaging can be described in terms of a six‐fold hierarchy of architectural elements and bounding surfaces. In this scheme, the whole system (sixth‐order element) is comprised of three distinct fifth‐order stratigraphic cycles (valley fills), which define sixth‐order initiation, growth and retreat phases of slope deposition, respectively; they are separated by discrete periods of entrenchment that generated erosional valleys interpreted to record fifth‐order initiation phases. Backfilling of individual valleys progressed through deposition of two vertically stacked lithofacies successions (fourth‐order elements), which record fifth‐order growth and retreat phases. Fourth‐order initiation phases are represented by erosional surfaces bounding lithofacies successions. The component lithofacies (third‐order element) record fourth‐order growth and retreat phases. Map trends of erosional valleys and palaeocurrent indicators converge to indicate that the sea floor bathymetric expression of a developing thrust‐related anticline markedly influenced the downslope transport direction of gravity currents and was sufficient to cause a major diversion of the turbidite system around the growing structure. This field‐based study permits the development of a sedimentological model that predicts the evolutionary style of mixed coarse‐grained and fine‐grained turbidite slope systems, the internal distribution of reservoir and non‐reservoir lithofacies within them, and has the potential to serve as an analogue for seismic or outcrop‐based studies of slope valley fills developed in actively deforming structural settings and under severe icehouse regimes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号