首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Laboratory rainfall simulation experiments indicate greater splash losses for hydrophobic (water repellent) than for wettable sandy loam soils at different rainfall intensities, durations and soil surface inclinations. Using synchronized video cameras with different shutter speeds and stroboscopically illuminated 35 mm still photography, differences in splash droplets and ejection trajectory characteristics are examined. For hydrophobic soil, raindrop impact gives rise to fewer, larger, slower-moving daughter ejection droplets which carry more sediment and hence follow shorter range trajectories compared with wettable soil. Implications for erosion of hydrophobic soils are discussed.  相似文献   

2.
Laboratory experiments were performed with rain of uniform drop size (2·7 mm, 5·1 mm) impacting flows over non‐cohesive beds of uniform sized sand (0·11–0·9 mm) and coal (0·2–0·9 mm) particles with flow velocities (20 mm s?1, 40 mm s?1) that were insufficient for the flow to entrain the particles without the aid of raindrop impact. Measurement of particle travel distance under rain made up of 2·7 mm drops confirmed a theoretical relationship between settling velocity and the distance particles travel after being disturbed by drop impact. Although, in theory, a relationship between settling velocity and particle travel distance exists, settling velocity by itself was unable to account for the effect of changes in both particle size and density on sediment discharge from beds of uniform non‐cohesive material. Particle density was also a factor. Further study of how particle characteristics influence sediment discharge will aid modelling of the impact of the soil in process‐based models of erosion by rain‐impacted flow. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
A model has been developed which predicts the dispersion of splash droplets produced by the impact of a water drop on a sloping soil surface. Experimental results of the ejection velocities and ejection angles of the splash droplets are generalized to a planar slope and the resulting splash distances are calculated taking into account the effects of air resistance. The predictions are presented in terms of the numbers of splash droplets from the impact point to surrounding squares arranged in a grid on the slope. The model explains many experimentally observed features of raindrop splash in terms of the mechanics of the processes involved and can make predictions of the effects of slope, wind, raindrop size, and soil properties on droplet dispersion. The component of the raindrop velocity parallel to the surface of the slope is identified as the main factor determining the degree and the direction of the asymmetry in the splash droplet dispersion. By combining the model with a theory of the entrapment of soil in the splash droplets it is possible to extend it to predict the dispersion of soil particles by raindrop impact, which is the basis of a model of soil erosion by rainsplash.  相似文献   

4.
The relevance of drop shape for erosivity was tested for different combinations of drop sizes and fall heights. For all test combinations together the introduction of the observed drop shape in erosivity parameters only produces minor improvements in the relation between erosivity and detachment and transport by splash. This result is attributed to the dominance of oblate shapes in high velocity conditions. Using small fall heights and low fall velocities as in many rainfall simulators and drop tests it is shown that prolate drops produce a splash detachment which is 2 to 3 times higher than that produced by drops with an oblate shape at impact. As drop production in rainulators or for aggregate stability drop tests may result in more or less uncontrolled variations of drop shape, it is concluded that in addition to other test conditions drop shape should be specified. Moreover it is noted that the erosive capability of prolate drops can explain partly the high splash erosion amounts below vegetation.  相似文献   

5.
6.
Wischmeier's soil erodibility factor K calculated for 10 surface soils in the Hornos area, S. Spain, is compared with 3 aspects of aggregate stability. A significant correlation is found with the percentage of particles < 100 μm after aggregate breakdown, which is used as a measure of the vulnerability of the soil to erosion by overland flow. No significant correlation exists with the number of water drops required to cause breakdown of the aggregates nor with the mean size of the shattered aggregates, both being aspects of the resistance of aggregates to splash erosion. Of the micromorphological and analytical soil properties explaining aggregate stability, only the clay and silt content and the number of closed voids are significantly correlated with the factor K. The aggregate stability of the investigated soils is mainly determined by soil properties inherited from the parent material; the stabilizing effect of pedological features is small.  相似文献   

7.
A model of the dispersion of splash droplets from a single raindrop impact on a sloping soil surface is combined with a theory of the entrainment of mineral particles from a disaggregated mixture in splash droplets to obtain a model of the dispersion of such particles by a raindrop impact. Stochastic modelling techniques extend this further to a model of the spatial redistribution of soil on a plot after a period of rainfall. Since the model is probabilistic and physically based it enables the incorporation of further advances in the understanding of splash erosion at all stages and can simulate the effect of the stochastic nature of rainfall and soil properties on the process. Several different situations are simulated. These include the movement of marked soil particles from point sources and the spatial patterns of erosion on a sloping plot. The model can also simulate the differential erosion of different soil particle size fractions.  相似文献   

8.
P. I. A. Kinnell 《水文研究》2005,19(14):2815-2844
Raindrop‐impact‐induced erosion is initiated when detachment of soil particles from the surface of the soil results from an expenditure of raindrop energy. Once detachment by raindrop impact has taken place, particles are transported away from the site of the impact by one or more of the following transport processes: drop splash, raindrop‐induced flow transport, or transport by flow without stimulation by drop impact. These transport processes exhibit varying efficiencies. Particles that fall back to the surface as a result of gravity produce a layer of pre‐detached particles that provides a degree of protection against the detachment of particles from the underlying soil. This, in turn, influences the erodibility of the eroding surface. Good understanding of rainfall erosion processes is necessary if the results of erosion experiments are to be properly interpreted. Current process‐based erosion prediction models do not deal with the issue of temporal variations in erodibility during a rainfall event or variabilities in erodibility associated with spatial changes in dominance of the transport processes that follow detachment by drop impact. Although more complex erosion models may deal with issues like this, their complexity and high data requirement may make them unsuitable for use as general prediction tools. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The persistence of soil compaction, caused by farmers' vehicles (tractors wheelings) during the dry season, can affect splash distribution and soil erosion so that surface flow starts at an earlier stage than between the wheelings. To investigate the effects of soil compaction on splash distribution, a dry clayey agricultural soil was compacted in steel cups with a hydraulic piston, and the shear strength was measured with a fall‐cone penetrometer. Two cups were compacted in the same manner, using one to measure the shear strength and the second for splash erosion measurements. A laboratory splash board of 1 m radius, divided into 13 concentric compartments, was used to collect the splashed particles. The water drop diameter used was 4·9 mm falling onto a soil splash cup of 50·2 cm2 area from 8 m height with a terminal velocity of 8·8 m s?1. The spatial distribution of the splashed particles, for different soil compactions, fitted the fundamental splash distribution function (FSDF) model better than the exponential function. The shapes of the curves of this function demonstrated the importance of the source area size; the smaller the cup diameter the better the spatial distribution is expressed by an exponential function. In addition, variability in soil surface conditions contributes to variation in splash characteristics. Detachment rates and average radial distance followed second degree relationships in terms of shear strength. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Field studies of rainsplash erosion   总被引:1,自引:0,他引:1  
Studies on sandy soils of the Cottenham Series in mid-Bedfordshire confirm in the field the relationships between splash erosion, rainfall energy and ground slope obtained in the laboratory experiments of other workers. Only 0·06 per cent of the rainfall energy contributes to splash erosion and rates are low, attaining a maximum of 0·082 kg m?2 y?1 on a slope of 11°. The major role of splash action is in the detachment of soil particles prior to their removal by overland flow.  相似文献   

11.
A new approach is proposed to simulate splash erosion on local soil surfaces. Without the effect of wind and other raindrops, the impact of free‐falling raindrops was considered as an independent event from the stochastic viewpoint. The erosivity of a single raindrop depending on its kinetic energy was computed by an empirical relationship in which the kinetic energy was expressed as a power function of the equivalent diameter of the raindrop. An empirical linear function combining the kinetic energy and soil shear strength was used to estimate the impacted amount of soil particles by a single raindrop. Considering an ideal local soil surface with size of 1 m × 1 m, the expected number of received free‐falling raindrops with different diameters per unit time was described by the combination of the raindrop size distribution function and the terminal velocity of raindrops. The total splash amount was seen as the sum of the impact amount by all raindrops in the rainfall event. The total splash amount per unit time was subdivided into three different components, including net splash amount, single impact amount and re‐detachment amount. The re‐detachment amount was obtained by a spatial geometric probability derived using the Poisson function in which overlapped impacted areas were considered. The net splash amount was defined as the mass of soil particles collected outside the splash dish. It was estimated by another spatial geometric probability in which the average splashed distance related to the median grain size of soil and effects of other impacted soil particles and other free‐falling raindrops were considered. Splash experiments in artificial rainfall were carried out to validate the availability and accuracy of the model. Our simulated results suggested that the net splash amount and re‐detachment amount were small parts of the total splash amount. Their proportions were 0·15% and 2·6%, respectively. The comparison of simulated data with measured data showed that this model could be applied to simulate the soil‐splash process successfully and needed information of the rainfall intensity and original soil properties including initial bulk intensity, water content, median grain size and some empirical constants related to the soil surface shear strength, the raindrop size distribution function and the average splashed distance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
This paper deals with the effect of rainfall on the process of wind erosion of beach sands and presents results from both field and wind tunnel experiments. Although sediment transport by splash is of secondary importance on coastal dunes, splash–saltation processes can move sediments in conditions where no motion is predicted by aeolian processes. The effect of raindrop impact on the movement of soil particles by wind was measured on a sand beach plain using an acoustic sediment sampler. In general, an increase of particle movement by wind at the sensor heights was observed during rainfall. Rainfall also affected the wind erosion process during and after rain by changing the cohesive conditions of the surface. The influence of the surface moisture content on the initiation of wind erosion and on the vertical distribution of transported sand particles was studied in a wind tunnel. Moisture significantly increased threshold wind velocities for the initiation of sediment transport and modified vertical sediment profiles.  相似文献   

13.
During 1974 and 1975, measurements of splash and wash were carried out in the cultivated area, in a station installed on 6·5 per cent slope covered with a loess in which a grey-brown podzolic soil has developed. Splash has been measured using an apparatus prepared for this purpose and wash has been measured on plots of standard length (22·13m). The splash is some tens t/ha.year but the splash loss calculated using the results of the measurements of splash is only a few tens kg/ha.year. Splash is positively correlated with the erosion index of the rains and with the structural stability but negatively with the crop cover. As splash, wash is positively correlated with the erosion index of the rains and negatively with the crop cover, but unlike splash it is negatively correlated with structural stability. The mean value of the wash loss is a few t/ha.year but very important differences are observed from one plot to another with regard to the structural stability. However, on a given plot wash loss and splash are positively correlated because the particles of soil detached by splash are easily carried off by runoff, but the relation between wash loss and splash is very different from one plot to another because splash is positively and wash loss negatively correlated with the structural stability of soils.  相似文献   

14.
The bulk of eroded soils measured at the outlets of plots, slopes and watersheds are suspended sediments, splash‐induced sheet erosion. It is depending on rainfall intensity and antecedent soil moisture contents and contributes to a significant proportion of soil loss that usually is ignored in soil erosion and sediment studies. A digital image processing method for tracing and measuring non‐suspended soil particles detached/transported by splash/runoff was therefore used in the present study. Accordingly, fine mineral pumice grains aggregated with white cement and coloured with yellow pigment powder, with the same size, shape and specific gravity as those of natural soil aggregates, called synthetic color‐contrast aggregates, were used as tracers for detecting soil particle movement. Subsequently, the amount of non‐suspended soil particles detached and moved downward the slope was inferred with the help of digital image processing techniques using MATLAB R2010B software (Mathworks, Natick, Massachusetts, USA). The present study was conducted under laboratory conditions with four simulated rainfall intensities between 30–90 mm h‐1, five antecedent soil moisture contents between 12–44 % v v‐1 and a slope of 30%, using sandy loam soils taken from a summer rangeland in the Alborz Mountains, Northern Iran. A range of total transported soil between 90.34 and 1360.93 g m‐2 and net splash erosion between 36.82 and 295.78 g m‐2were observed. The results also showed the sediment redeposition ratio ranging from 87.27% [sediment delivery ratio (SDR) = 12.73%] to 96.39% (SDR = 3.61%) in various antecedent soil moisture contents of rainfall intensity of 30 mm h‐1 and from 80.55% (SDR = 19.45%) to 89.42% (SDR = 10.58%) in rainfall intensity of 90 mm h‐1. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Soil loss continues to threaten Java's predominantly bench‐terraced volcanic uplands. Sediment transport processes on back‐sloping terraces with well‐aggregated clay‐rich oxisols in West Java were studied using two different techniques. Splash on bare, cropped, or mulched sub‐horizontal (2–3°) terrace beds was studied using splash cups of different sizes, whereas transport of sediment on the predominantly bare and steep (30–40/deg ) terrace risers was measured using a novel device combining a Gerlach‐type trough with a splash box to enable the separate measurement of transport by wash and splash processes. Measurements were made during two consecutive rainy seasons. The results were interpreted using a recently developed splash distribution theory and related to effective rainfall erosive energy. Splash transportability (i.e. transport per unit contour length and unit erosive energy) on the terrace risers was more than an order of magnitude greater than on bare terrace beds (0·39–0·57 versus 0·013–0·016 g m J?1). This was caused primarily by a greater average splash distance on the short, steep risers (>11 cm versus c. 1 cm on the beds). Splashed amounts were reduced by the gradual formation of a protective ‘pavement’ of coarser aggregates, in particular on the terrace beds. Soil aggregate size exhibited an inverse relationship with detachability (i.e. detachment per unit area and unit erosive energy) and average splash length, and therefore also with transportability, as did the degree of canopy and mulch cover. On the terrace risers, splash‐creep and gravitational processes transported an additional 6–50% of measured rain splash, whereas transport by wash played a marginal role. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
In recent years, high‐molecular‐weight anionic polyacrylamides (PAMs) have been tested on a variety of soils, primarily in temperate climates. However, little information is available regarding the effectiveness of PAM for preventing soil loss through runoff in tropical settings. Screening tests were performed using three negatively charged PAMs and one positively charged PAM on five Hawaii soils (two Oxisols, one Vertisol, and two Aridisols) to determine erosion loss, sediment settling, and aggregate stability. A laboratory‐scale rainfall simulator was used to apply erosive rainfall at intensities from 5 to 8·5 cm h?1 at various PAM doses applied in both dry and solution forms. Soil detachment due to splash and runoff, as well as the runoff and percolate water volumes, were measured for initial and successive storms. The impact of PAM on particle settling and aggregate stability was also evaluated for selected soil‐treatment combinations. Among the PAMs, Superfloc A‐836 was most effective, and significantly reduced runoff and splash sediment loss for the Wahiawa Oxisol and Pakini Andisol at rates varying between 10 and 50 kg ha?1. Reduced runoff and splash sediment loss were also noted for PAM Aerotil‐D when applied in solution form to the Wahiawa Oxisol. Significant reductions in soil loss were not noted for either the Lualualei Vertisol or the Holomua Oxisol. It is believed that the high montmorillonite content of the Lualualei Vertisol and the low cation‐exchange capacity of the Holomua Oxisol diminished the effectiveness of the various PAMs tested. The polymers were also found to enhance sediment settling of all soils and helped improve their aggregate stability. This screening study shows the potential use of PAM for tropical soils for applications such as infiltration enhancement, runoff reduction, and enhanced sedimentation of detention ponds. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Field‐ and laboratory‐scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi‐arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h?1 with a duration of 1 to 2 hours. Time‐series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size‐selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport‐limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size‐selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Physical soil crusts likely have significant effects on infiltration and soil erosion, however, little is known on whether the effects of the crusts change during a rainfall event. Further, there is a lack of discussions on the differences among the crusting effects of different soil types. The objectives of this study are as follows: (i) to study the effects of soil crusts on infiltration, runoff, and splash erosion using three typical soils in China, (ii) to distinguish the different effects on hydrology and erosion of the three soils and discuss the primary reasons for these differences, and (iii) to understand the variations in real soil shear strength of the three soils during rainfall events and mathematically model the effects of the crusts on soil erosion. This study showed that the soil crusts delayed the onset of infiltration by 5 to 15 min and reduced the total amount of infiltration by 42.9 to 53.4% during rainfall events. For a purple soil and a loess soil, the initial crust increased the runoff by 2.8% and 3.4%, respectively, and reduced the splash erosion by 3.1% and 8.9%, respectively. For a black soil, the soil crust increased the runoff by 42.9% and unexpectedly increased the splash erosion by 95.2%. In general, the effects of crusts on the purple and loess soils were similar and negligible, but the effects were significant for the black soil. The soil shear strength decreased dynamically and gradually during the rainfall events, and the values of crusted soils were higher than those of incrusted soils, especially during the early stage of the rainfall. Mathematical models were developed to describe the effects of soil crusts on the splash erosion for the three soils as follows: purple soil, Fc= 0.002t- 0.384 ; black soil, Fc. =-0.022t + 3.060 ; and loess soil, Fc = 0.233 In t- 1.239 . Combined with the equation Rc= Fc (Ruc - 1), the splash erosion of the crusted soil can be predicted over time.  相似文献   

19.
Aggregate disintegration is a critical process in soil splash erosion. However, the effect of soil organic carbon (SOC) and its fractions on soil aggregates disintegration is still not clear. In this study, five soils with similar clay contents and different contents of SOC have been used. The effects of slaking and mechanical striking on splash erosion were distinguished by using deionized water and 95% ethanol as raindrops. The simulated rainfall experiments were carried out in four heights (0.5, 1.0, 1.5 and 2.0 m). The result indicated that the soil aggregate stability increased with the increases of SOC and light fraction organic carbon (LFOC). The relative slaking and the mechanical striking index increased with the decreases of SOC and LFOC. The reduction of macroaggregates in eroded soil gradually decreased with the increase of SOC and LFOC, especially in alcohol test. The amount of macroaggregates (>0.25 mm) in deionized water tests were significantly less than that in alcohol tests under the same rainfall heights. The contribution of slaking to splash erosion increased with the decrease of heavy fractions organic carbon. The contribution of mechanical striking was dominant when the rainfall kinetic energy increased to a range of threshold between 9 J m−2 mm−1 and 12 m−2 mm−1. This study could provide the scientific basis for deeply understanding the mechanism of soil aggregates disintegration and splash erosion.  相似文献   

20.
Sedimentation – including erosion, transport, and deposition of coarse-grained particles – is a primary and growing environmental, engineering, and agricultural issue around the world. Soil erosion occurs when the hydrodynamic force induced by flowing water exceeds the geotechnical resistance of soils, as measured by critical shear stress for initiation of soil-particle motion. Even though various quantitative methods have been suggested with respect to different types of soil, the most widely accepted formula to estimate critical shear stress for coarse-grained soil is a direct function of the median grain size of the soil particles; however, the erosion resistance of soils also varies with other geotechnical properties, such as packing density, particle shape, and uniformity coefficient. Thus, in this study, a combined rolling–lift model for particle detachment was derived based on theoretical analysis. A series of experimental flume tests were conducted with specimens prepared with standard soil types, as well as laboratory-prepared mixtures of coarse-grained soil to validate the theoretical model and determine the effect of other geotechnical properties on the erosion characteristics of coarse grains, coupled with the effect of median particle size. The results indicated that the median grain size is the primary variable determining the resistance of coarse grains, but the critical shear stress also varies with the packing density of the soil matrix. In addition, angular particles show more erosion resistance than rounded particles, and the erosion potential of a soil decreased when the grain is well graded (higher value of uniformity coefficient). Additionally, regression analysis was performed to quantify the effect of each parameter on the critical shear stress of coarse grains. © 2020 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号