首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Non‐linear dynamic time‐history analyses conducted as part of a performance‐based seismic design approach often require that the ground motion records are scaled to a specified level of seismic intensity. Recent research has demonstrated that certain ground motion scaling methods can introduce a large scatter in the estimated seismic demands. The resulting demand estimates may be biased, leading to designs with significant uncertainty and unknown margins of safety, unless a relatively large ensemble of ground motion records is used. This paper investigates the effectiveness of seven ground motion scaling methods in reducing the scatter in estimated peak lateral displacement demands. Non‐linear single‐degree‐of‐freedom systems and non‐linear multi‐degree‐of‐freedom systems are considered with different site conditions (site soil profile and epicentral distance) and structural characteristics (yield strength, period, and hysteretic behavior). It is shown that scaling methods that work well for ground motions representative of stiff soil and far‐field conditions lose their effectiveness for soft soil and near‐field conditions for a wide range of structural characteristics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The seismic performance of conventional wood‐frame structures in south‐western British Columbia is analytically investigated through incremental dynamic analysis by utilizing available UBC‐SAWS models, which were calibrated based on experimental test results. To define an adequate target response spectrum that is consistent with information from national seismic hazard maps, record selection/scaling based on the conditional mean spectrum (CMS) is implemented. Furthermore, to reflect complex seismic hazard contributions from different earthquake sources (i.e. crustal events, interface events, and inslab events), we construct CMS for three earthquake types, and use them to select and scale an adequate set of ground motion records for the seismic performance evaluation. We focus on the impacts of adopting different record selection criteria and of using different shear‐wall types (Houses 1–4; in terms of seismic resistance, House 1>House 2>House 3>House 4) on the nonlinear structural response. The results indicate that the record selection procedures have significant influence on the probabilistic relationship between spectral acceleration at the fundamental vibration period and maximum inter‐story drift ratio, highlighting the importance of taking into account response spectral shapes in selecting and scaling ground motion records. Subjected to ground motions corresponding to the return period of 2500 years, House 1 is expected to experience very limited extent of damage; Houses 2 and 3 may be disturbed by minor damage; whereas House 4 may suffer from major damage occasionally. Finally, we develop statistical models of the maximum inter‐story drift ratio conditioned on a seismic intensity level for wood‐frame houses, which is useful for seismic vulnerability assessment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
After briefly reviewing the history of the development of design codes and the contemporary performance based objectives for earthquake-resistant structures, this paper considers the linear elastic design spectra exemplified by the Eurocode 8. The amplitudes and shapes of the spectra are examined relative to what is known about strong ground motion and its empirical scaling equations. The estimation of seismic hazard is then discussed, and it is shown that hazard mapping in terms of one scaling parameter (e.g., peak ground acceleration) is neither reliable nor uniformly conservative, and is also in contradiction with the performance based design objectives. It is suggested that a reliable and robust seismic hazard mapping for use with national earthquake-resistant design guidelines (e.g. Eurocode 8) can be carried out using the Anderson–Trifunac Uniform Hazard Spectrum method.  相似文献   

4.
To verify the importance of the non‐stationary frequency characteristic of seismic ground motion, a joint time–frequency analysis technique of time signals, called chirplet‐based signal approximation, is developed to extract the non‐stationary frequency information from the recorded data. The chirplet‐based signal approximation is clear in concept, similar to Fourier Transform in mathematical expressions but with different base functions. Case studies show that the chirplet‐based signal approximation can represent the joint time–frequency variation of seismic ground motion quite well. Both the random models of uniform modulating process and evolutionary process are employed to generate artificial seismic waves. The joint time–frequency modulating function in the random model of evolutionary process is determined by chirplet‐based signal approximation. Finally, non‐linear response analysis of a SODF system and a frame structure is performed based on the generated artificial seismic waves. The results show that the non‐stationary frequency characteristic of seismic ground motion can significantly change the non‐linear response characteristics of structures, particularly when a structure goes into collapse phase under seismic action. It is concluded that non‐stationary frequency characteristic of seismic ground motion should be considered for the assessment of seismic capacity of structures. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
The estimation of peak linear response via elastic design (response) spectra continues to form the basis of earthquake‐resistant design of structural systems in various codes of practice all over the world. Many response spectrum‐based formulations of peak linear response require an additional input of the spectral velocity (SV) ordinates consistent with the specified seismic hazard. SV ordinates have been conventionally approximated by pseudo spectral velocity (PSV) ordinates, which are close to the SV ordinates only over the intermediate frequency range coinciding with the velocity‐sensitive region. At long periods, PSV ordinates underestimate the SV ordinates, and this study proposes a formulation of a correction factor (>1) that needs to be multiplied by the PSV ordinates in order to close the gap between the two sets of ordinates. A simple model is proposed in the form of a power function in oscillator period to estimate this factor in terms of two governing parameters which are in turn estimated from two single‐parameter scaling equations. The parameters considered for the scaling equations are (1) the period at which the PSV spectrum is maximized and (2) the rate of decay of the pseudo spectral acceleration (PSA) amplitudes at long periods. For a given damping ratio, four regression coefficients are determined for the scaling equations with the help of 205 ground motions recorded in western USA. A numerical study undertaken with the help of several design PSA spectra and ensembles of spectrum‐compatible ground motions illustrates the effectiveness of the proposed correction factor, together with the proposed scaling models, in comparison with the PSV approximation in a variety of design situations. Both the input parameters mentioned above can be easily obtained from the specified design spectrum, and thus the proposed model is convenient to use.  相似文献   

6.
A process is outlined and evaluated for the estimation of seismic roof and storey drift demands for frame structures from the spectral displacement demand at the first mode period of the structure. The spectral displacement demand is related to the roof drift demand for the multi‐degree‐of‐freedom (MDOF) structure using three modification factors, accounting for MDOF effects, inelasticity effects, and P‐delta effects. Median values and measures of dispersion for the factors are obtained from elastic and inelastic time history analyses of nine steel moment resisting frame structures subjected to sets of ground motions representative of different hazard levels. The roof drift demand is related to the storey drift demands, with the results being strongly dependent on the number of stories and the ground motion characteristics. The relationships proposed in this paper should prove useful in the conceptual design phase, in estimating deformation demands for performance assessment, and in improving basic understanding of seismic behaviour. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
The modal pushover analysis (MPA) procedure, presently restricted to one horizontal component of ground motion, is extended to three‐dimensional analysis of buildings—symmetric or unsymmetric in plan—subjected to two horizontal components of ground motion, simultaneously. Also presented is a variant of this method, called the practical modal pushover analysis (PMPA) procedure, which estimates seismic demands directly from the earthquake response (or design) spectrum. Its accuracy in estimating seismic demands for very tall buildings is evaluated, demonstrating that for nonlinear systems this procedure is almost as accurate as the response spectrum analysis procedure is for linear systems. Thus, for practical applications, the PMPA procedure offers an attractive alternative whereby seismic demands can be estimated directly from the (elastic) design spectrum, thus avoiding the complications of selecting and scaling ground motions for nonlinear response history analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A rocking podium structure is a class of structures consisting of a superstructure placed on top of a rigid slab supported by free‐standing columns. The free‐standing columns respond to sufficiently strong ground motion excitation by uplifting and rocking. Uplift works as a mechanical fuse that limits the forces transmitted to the superstructure, while rocking enables large lateral displacements. Such ‘soft‐story’ system runs counter to the modern seismic design philosophy but has been used to construct several hundred buildings in countries of the former USSR following Polyakov's rule‐of‐thumb guidelines: (i) that the superstructure behave as a rigid body and (ii) that the maximum lateral displacement of the rocking podium frame be estimated using elastic earthquake displacement response spectra. The objectives of this paper are to present a dynamic model for analysis of the in‐plane seismic response of rocking podium structures and to investigate if Polyakov's rule‐of‐thumb guidelines are adequate for the design of such structures. Examination of the rocking podium structure response to analytical pulse and recorded ground motion excitations shows that the rocking podium structures are stable and that Polyakov's rule‐of‐thumb guidelines produce generally conservative designs. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
This paper concerns the design of passive base isolation systems characterized by a bilinear hysteretic behaviour. The study refers to the case where the structure to be isolated (superstructure) vibrates according to the first mode. In this case the whole isolated structure can be modelled by a two‐degree‐of‐freedom system. The base isolation effectiveness has been evaluated for different characteristics of the device, namely mass, strength, elastic and plastic stiffness, by using mainly energetic quantities. The optimum values for the base device have been obtained by minimizing the input energy and the displacement of the superstructure. Conclusions are drawn for superstructures with a fundamental period of 0.5s, a damping ratio of 5% and for three different kinds of earthquake ground motions. The study showed that the seismic input greatly affects the behaviour of the isolated structure, and therefore the design ground motion must be carefully chosen, dependent on the characteristics of the site. A simple procedure that involves mainly linear dynamic analyses is proposed for the design of base devices used in conjunction with superstructures of any fundamental vibration period. The procedure produces good results in spite of its simplicity, and therefore it is suitable for practical use by design engineers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Predictors (or estimates) of seismic structural demands that are less computationally time‐consuming than non‐linear dynamic analysis can be useful for structural performance assessment and for design. In this paper, we evaluate the bias and precision of predictors that make use of, at most, (i) elastic modal vibration properties of the given structure, (ii) the results of a non‐linear static pushover analysis of the structure, and (iii) elastic and inelastic single‐degree‐of‐freedom time‐history analyses for the specified ground motion record. The main predictor of interest is an extension of first‐mode elastic spectral acceleration that additionally takes into account both the second‐mode contribution to (elastic) structural response and the effects of inelasticity. This predictor is evaluated with respect to non‐linear dynamic analysis results for ‘fishbone’ models of steel moment‐resisting frame (SMRF) buildings. The relatively small number of degrees of freedom for each fishbone model allows us to consider several short‐to‐long period buildings and numerous near‐ and far‐field earthquake ground motions of interest in both Japan and the U.S. Before doing so, though, we verify that estimates of the bias and precision of the predictor obtained using fishbone models are effectively equivalent to those based on typical ‘full‐frame’ models of the same buildings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
The original structural design of this case study consisted of five basement floors and a 34‐story hotel tower in Kaohsiung, Taiwan. The construction started in 1993, and the erection of the entire steel frame and the pouring of concrete slabs up to the 26th floor were completed before 1996. However, construction of the original hotel was subsequently suspended for 10 years. Recently, this building has been retrofitted for residential purposes. Buckling restrained braces (BRBs) and eccentrically braced frames were incorporated into the seismic design of the new residential tower. This paper presents the seismic resisting structural system, seismic design criteria, full‐scale test results of one BRB member and the as‐built welded moment connections. Test results confirm that the two side web‐plate stiffening details can effectively improve the rotational capacity of welded moment connection. The paper also discusses the analytical models for simulating the experimental responses of the BRB members and the welded moment connections. Nonlinear response history analyses (NLRHA) indicate that the inelastic deformational demands of the original and the redesigned structures induced by the maximum considered earthquakes are less than those found in the seismic building codes or laboratory tests. This paper also proposes a ground motion scaling method considering multi‐mode effects for NLRHA of the example building. It is shown that the proposed scaling method worked well in reducing the scatter in estimated peak seismic demands. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
合成地震动方法用于研究强地震动长周期特性的探讨   总被引:1,自引:0,他引:1  
王彬  李文艺 《地震研究》2000,23(1):44-50
合成地震动一直是地震学研究中一个非常跃的领域。针对2长周期结构物抗震设计缺少宽频带强震记录的现状,利用“反射率法”和“围道积分法”等合成地震动方法对地震动长周期特性进行了探讨。结果表明:合成地震动方法是研究地震动长周特性的一个有效方法;在地震动长周期成份中,面波起着重要作用。因此长周期结构物的抗震设计必须考虑面波的影响。  相似文献   

13.
A simplified design procedure (SDP) for preliminary seismic design of frame buildings with structural dampers is presented. The SDP uses elastic‐static analysis and is applicable to structural dampers made from viscoelastic (VE) or high‐damping elastomeric materials. The behaviour of typical VE materials and high‐damping elastomeric materials is often non‐linear, and the SDP idealizes these materials as linear VE materials. With this idealization, structures with VE or high‐damping elastomeric dampers can be designed and analysed using methods based on linear VE theory. As an example, a retrofit design for a typical non‐ductile reinforced concrete (RC) frame building using high‐damping elastomeric dampers is developed using the SDP. To validate the SDP, results from non‐linear dynamic time history analyses (NDTHA) are presented. Results from NDTHA demonstrate that the SDP estimates the seismic response with sufficient accuracy for design. It is shown that a non‐ductile RC frame building can be retrofit with high‐damping elastomeric dampers to remain essentially elastic under the design basis earthquake (DBE). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The prediction of non-linear seismic demand using linear elastic behavior for the determination of peak non-linear response is widely used for seismic design as well as for vulnerability assessment. Existing methods use either linear response based on initial period and damping ratio, eventually corrected with factors, or linear response based on increased equivalent period and damping ratio. Improvements to the original EC8 procedure for displacement demand prediction are proposed in this study. Both propositions may be graphically approximated, which is a significant advantage for practical application. A comparison with several other methods (equal displacement rule, EC8 procedure, secant stiffness and empirical equivalent period methods) is performed. The study is based on non-linear SDOF systems subjected to recorded earthquakes, modified to match design response spectra of different ground types, and focuses on the low frequency range that is of interest for most European buildings. All results are represented in the spectral displacement/fundamental period plane that highlights the predominant effect of the fundamental period on the displacement demand. This study shows that linearized methods perform well at low strength reduction factors but may strongly underestimate the displacement demand at strength reduction factors greater than 2. This underestimation is an important issue, especially for assessment of existing buildings, which are often related with low lateral strength. In such cases, the corresponding strength reduction factors are therefore much larger than 2. The new proposals significantly improve the reliability of displacement demand prediction for values of strength reduction factors greater than 2 compared to the original EC8 procedure. As a consequence, for the seismic assessment of existing structures, such as unreinforced masonry low-rise buildings, the current procedure of EC8 should be modified in order to provide accurate predictions of the displacement demand in the domain of the response spectrum plateau.  相似文献   

15.
This article documents the analytical study and feasibility of placing a tuned mass damper in the form of a limber rooftop moment frame atop relatively stiff structures to reduce seismic acceleration response. Six existing structures were analytically studied using a suite of time history and response spectra records. The analyses indicate that adding mass in conjunction with a limber frame results in an increase in the fundamental period of each structure. The fundamental period increase generally results in a decrease in seismic acceleration response for the same time history and response spectra records. Owing to the limber nature of the rooftop frames, non‐linear analysis methods were required to evaluate the stability of the rooftop tuned mass damper frame. The results indicate the addition of a rooftop tuned mass damper frame reduces the seismic acceleration response for most cases although acceleration response can increase if the rooftop frame is not tuned to accommodate the specific structure's dynamic behaviour and localized soil conditions. Appropriate design of the rooftop tuned mass damper frame can result in decreased seismic acceleration response. This translates to safer structures if used as a retrofit measure or a more economical design if used for new construction. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The response of an elasto‐plastic single degree of freedom (SDOF) system to ground motion is estimated based on wavelet coefficients calculated by discrete wavelet transform. Wavelet coefficients represent both the time and frequency characteristics of input ground motion, and thus can be considered to be directly related to the dynamic response of a non‐linear system. This relationship between the energy input into an elastic SDOF system and wavelet coefficients is derived based on the assumption that wavelets deliver energy to the structure instantaneously and the quantity of energy is constant regardless of yielding. These assumptions are shown to be valid when the natural period of the system is in the predominant period range of the wavelet, the most common scenario for real structures, through dynamic response analysis of a single wavelet. The wavelet‐based estimation of elastic and plastic energy transferred by earthquake ground motion is thus shown to be in good agreement with the dynamic response analysis when the natural period is in the predominant range of the input. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
以汶川地震为研究背景,针对震后典型钢筋混凝土框架结构进行地震易损性研究。基于Cornell理论框架结合汶川地质资料,拟合出考虑场地特点的地震危险性模型,同时定义损伤水平状态及限值指标,以概率解析易损性研究方法为基础,运用考虑地震动参数的解析易损性评估方法绘制汶川地区钢筋混凝土框架建筑的地震易损性曲线。研究结果表明:考虑地震动参数的概率解析易损性研究方法是一种有效的地震易损性评估方法;以PGA作为地震强度输入指标的结构反应,随自振周期的增大体系最大响应的相关性降低,结构各个损伤状态的失效概率均随之增大。  相似文献   

18.
Recent researches have revealed that the seismic ground response above tunnels can be different from the free-field motion during earthquakes. Nevertheless, to the best of the authors׳ knowledge, neither building codes nor seismic microzonation guidelines have yet considered this matter. In the present study, the seismic response of a linear elastic medium including a buried unlined tunnel subjected to vertically propagating incident SV and P waves are addressed. For analysis purposes, a numerical time-domain analysis is performed by utilizing a robust numerical algorithm working based on the boundary element method. It is observed that the amplification of the ground surface underlain by a tunnel is increased in long periods. The variation of the amplification factor and characteristic period of the medium versus the buried depth of the tunnel are depicted as the major results of this study. Some simple and useful relations are proposed for estimating the seismic microzonation of the areas underlain by tunnels. These relations can also be used for the preliminary seismic design of structures located on underground structures.  相似文献   

19.
The estimation of cyclic deformation demand resulting from earthquake loads is crucial to the core objective of performance‐based design if the damage and residual capacity of the system following a seismic event needs to be evaluated. A simplified procedure to develop the cyclic demand spectrum for use in preliminary seismic evaluation and design is proposed in this paper. The methodology is based on estimating the number of equivalent cycles at a specified ductility. The cyclic demand spectrum is then determined using well‐established relationships between seismic input energy and dissipated hysteretic energy. An interesting feature of the proposed procedure is the incorporation of a design spectrum into the proposed procedure. It is demonstrated that the force–deformation characteristics of the system, the ductility‐based force‐reduction factor Rμ, and the ground motion characteristics play a significant role in the cyclic demand imposed on a structure during severe earthquakes. Current design philosophy which is primarily based on peak response amplitude considers cyclic degradation only in an implicit manner through detailing requirements based on observed experimental testing. Findings from this study indicate that cumulative effects are important for certain structures, classified in this study by the initial fundamental period, and should be incorporated into the design process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
An Erratum has been published for this article in Earthquake Engineering and Structural Dynamics 2003; 32:1795. The recently developed modal pushover analysis (MPA) has been shown to be a significant improvement over the pushover analysis procedures currently used in structural engineering practice. None of the current invariant force distributions accounts for the contribution of higher modes—higher than the fundamental mode—to the response or for redistribution of inertial forces because of structural yielding. By including the contributions of a sufficient number of modes of vibration (generally two to three), the height‐wise distribution of responses estimated by MPA is generally similar to the ‘exact’ results from non‐linear response history analysis (RHA). Although the results of the previous research were extremely promising, only a few buildings were evaluated. The results presented below evaluate the accuracy of MPA for a wide range of buildings and ground motion ensembles. The selected structures are idealized frames of six different heights: 3, 6, 9, 12, 15, and 18 stories and five strength levels corresponding to SDF‐system ductility factor of 1, 1.5, 2, 4, and 6; each frame is analysed for 20 ground motions. Comparing the median values of storey‐drift demands determined by MPA to those obtained from non‐linear RHA shows that the MPA predicts reasonably well the changing height‐wise variation of demand with building height and SDF‐system ductility factor. Median and dispersion values of the ratios of storey‐drift demands determined by MPA and non‐linear‐RHA procedures were computed to measure the bias and dispersion of MPA estimates with the following results: (1) the bias and dispersion in the MPA procedure tend to increase for longer‐period frames and larger SDF‐system ductility factors (although these trends are not perfect); (2) the bias and dispersion in MPA estimates of seismic demands for inelastic frames are usually larger than for elastic systems; (3) the well‐known response spectrum analysis (RSA), which is equivalent to the MPA for elastic systems, consistently underestimates the response of elastic structures, e.g. up to 18% in the upper‐storey drifts of 18‐storey frames. Finally, the MPA procedure is simplified to facilitate its implementation in engineering practice—where the earthquake hazard is usually defined in terms of a median (or some other percentile) design spectrum for elastic systems—and the accuracy of this simplified procedure is documented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号