首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of large‐scale real‐time hybrid simulations (RTHSs) are conducted on a 0.6‐scale 3‐story steel frame building with magneto‐rheological (MR) dampers. The lateral force resisting system of the prototype building for the study consists of moment resisting frames and damped brace frames (DBFs). The experimental substructure for the RTHS is the DBF with the MR dampers, whereas the remaining structural components of the building including the moment resisting frame and gravity frames are modeled via a nonlinear analytical substructure. Performing RTHS with an experimental substructure that consists of the complete DBF enables the effects of member and connection component deformations on system and damper performance to be accurately accounted for. Data from these tests enable numerical simulation models to be calibrated, provide an understanding and validation of the in‐situ performance of MR dampers, and a means of experimentally validating performance‐based seismic design procedures for real structures. The details of the RTHS procedure are given, including the test setup, the integration algorithm, and actuator control. The results from a series of RTHS are presented that includes actuator control, damper behavior, and the structural response for different MR control laws. The use of the MR dampers is experimentally demonstrated to reduce the response of the structure to strong ground motions. Comparisons of the RTHS results are made with numerical simulations. Based on the results of the study, it is concluded that RTHS can be conducted on realistic structural systems with dampers to enable advancements in resilient earthquake resistant design to be achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Guo  Wei  Wu  Jun  Hu  Yao  Li  Yunsong  Yang  T. Y. 《地震工程与工程振动(英文版)》2019,18(2):433-446
Adding dampers is a commonly adopted seismic risk mitigation strategy for modern buildings, and the corresponding design procedure of dampers has been well established by the Chinese Building Code. Even though all types of dampers are designed by the same procedure, actual seismic performance of the building may differ from one to the others. In this study, a nine-story benchmark steel building is established, and three different and typical types of dampers are designed according to the Chinese Building Code to realize structural vibration control under strong earthquake excitation. The seismic response of the prototype building equipped with a viscoelastic damper, viscous damper and buckling-restrained brace(BRB) subjected to 10 earthquake records are calculated, and Incremental Dynamic Analysis(IDA) is performed to describe progressive damage of the structure under increasing earthquake intensity. In the perspective of fragility, it shows that the viscoelastic damper has the highest collapse margin ratio(CMR), and the viscous damper provides the best drift control. Both the BRB and viscoelastic dampers can effectively reduce the floor acceleration responses in the mid-rise building.  相似文献   

3.
粘弹性阻尼器(ved)是抗震被动控制中一种十分有效的耗能减震装置。本文根据粘弹性阻尼材料的应力-应变关系,推导了粘弹性阻尼器和人字型支撑的组合层间单元刚度矩阵及单元控制力向量;并基于框架结构的空间特性,建立了设置斜撑Ved框架结构在考虑空间协同分析的基础上地震反应时程分析的控制方法;最后,应用本文的方法,对设置Ved斜支撑后钢筋混凝土框架结构进行了结构地震反应时程分析,并根据计算结果对其减震效果进行了分析讨论。  相似文献   

4.
The potential of post‐tensioned self‐centering moment‐resisting frames (SC‐MRFs) and viscous dampers to reduce the economic seismic losses in steel buildings is evaluated. The evaluation is based on a prototype steel building designed using four different seismic‐resistant frames: (i) conventional moment resisting frames (MRFs); (ii) MRFs with viscous dampers; (iii) SC‐MRFs; or (iv) SC‐MRFs with viscous dampers. All frames are designed according to Eurocode 8 and have the same column/beam cross sections and similar periods of vibration. Viscous dampers are designed to reduce the peak story drift under the design basis earthquake (DBE) from 1.8% to 1.2%. Losses are estimated by developing vulnerability functions according to the FEMA P‐58 methodology, which considers uncertainties in earthquake ground motion, structural response, and repair costs. Both the probability of collapse and the probability of demolition because of excessive residual story drifts are taken into account. Incremental dynamic analyses are conducted using models capable to simulate all limit states up to collapse. A parametric study on the effect of the residual story drift threshold beyond which is less expensive to rebuild a structure than to repair is also conducted. It is shown that viscous dampers are more effective than post‐tensioning for seismic intensities equal or lower than the maximum considered earthquake (MCE). Post‐tensioning is effective in reducing repair costs only for seismic intensities higher than the DBE. The paper also highlights the effectiveness of combining post‐tensioning and supplemental viscous damping by showing that the SC‐MRF with viscous dampers achieves significant repair cost reductions compared to the conventional MRF. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A new earthquake resistant structural system for multi‐storey frame structures, based on a dual function of its bracing components, is developed. This consists of a hysteretic damper device and a cross‐bracing mechanism with a kinetic closed circuit, working only in tension, so that cable members can be used for this purpose. Solutions are presented regarding the connections' design of three types of structural frame system, that are concerned throughout the study: braced moment free frame, braced moment resisting frame with moment free supports, and with moment resisting supports. The dynamic behaviour of the system is investigated on the basis of an SDOF model, and based on the response spectra method an approximate design approach of the controlled structures is shown. From the time history analysis of the structural systems for the El Centro earthquake the areas of appropriate stiffness relations of the frames to the hysteretic dampers and the cable braces are deduced, so that the energy dissipation of the system may be controlled by the damper‐cable bracing mechanism. Based on the results of these studies, a predesign approach is developed for the implementation of the control system in frame structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Shear‐type buildings with Maxwell model‐based brace–damper systems are studied in this paper with a primary emphasis on the effects of brace stiffness. A single‐story building with a viscous damper installed on top of a Chevron‐brace is first investigated. Closed‐form solutions are derived for the simple structure, relating the brace stiffness and damper coefficient to the targeted reduction in response displacement or acceleration. For a given brace stiffness, the solution is minimized to give a set of formulae that will allow the optimal damper coefficient to be determined, assuring the desired performance. The model is subsequently extended to multistory buildings with viscous dampers installed on top of Chevron‐braces. For a targeted reduction in the mean square of the interstory drift, floor acceleration or base shear force, the minimum brace stiffness and optimal damper coefficients are obtained through an iterative procedure. The response reduction, which signifies the improved performance, is achieved by a combination of brace stiffness and viscous damper coefficients, unlike conventional approaches where damper coefficients are typically optimized independent of brace stiffnesses. Characteristics of multi‐degree‐of‐freedom systems are studied using a 2‐story and a 10‐story buildings where the effects of brace stiffness on the overall performance of the building can be quantified. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A damper system that absorbs energy over a wide range of displacement amplitudes during building vibration was proposed. This system uses a serial connection of a metallic yielding component and viscoelastic damper with a displacement limit mechanism. Three types of the system were developed and tested: a diagonal bracing type, inverted V bracing type, and wall type. The test results showed that all these systems have damping ratios higher than 8% at small vibration amplitudes on the order of 0.1 mm. For a large vibration, a displacement limit mechanism with two pins limited the displacement of the viscoelastic damper as designed. Analytical simulations established that the system reduced the acceleration and the story drift to 60–70% and 80%, respectively, during a small earthquake compared with a conventional metallic yielding damper system. Furthermore, it showed an equivalent control performance during a severe earthquake. The damper system requires that a clearance be maintained for the displacement limit mechanism. However, this may be lost through construction error, residual displacement after an earthquake, and temperature effects. The changes in the clearance due to these effects were discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Investigated are earthquake responses of one‐way symmetric‐plan, one‐storey systems with non‐linear fluid viscous dampers (FVDs) attached in series to a linear brace (i.e. Chevron or inverted V‐shape braces).Thus, the non‐linear damper is viscous when the brace is considered rigid or viscoelastic (VE) when the brace is flexible. The energy dissipation capacity of a non‐linear FVD is characterized by an amplitude‐dependent damping ratio for an energy‐equivalent linear FVD, which is determined assuming the damper undergoes harmonic motion. Although this formulation is shown to be advantageous for single‐degree‐of‐freedom (SDF) systems, it is difficult to extend its application to multi‐degree‐of‐freedom (MDF) systems for two reasons: (1) the assumption that dampers undergo harmonic motion in parameterizing the non‐linear damper is not valid for its earthquake‐induced motion of an MDF system; and (2) ensuring simultaneous convergence of all unknown amplitudes of dampers is difficult in an iterative solution of the non‐linear system. To date, these limitations have precluded the parametric study of the dynamics of MDF systems with non‐linear viscous or VE dampers. However, they are overcome in this investigation using concepts of modal analysis because the system is weakly non‐linear due to supplemental damping. It is found that structural response is only weakly affected by damper non‐linearity and is increased by a small amount due to bracing flexibility. Thus, the effectiveness of supplemental damping in reducing structural responses and its dependence on the planwise distribution of non‐linear VE dampers were found to be similar to that of linear FVDs documented elsewhere. As expected, non‐linear viscous and VE dampers achieve essentially the same reduction in response but with much smaller damper force compared to linear dampers. Finally, the findings in this investigation indicate that the earthquake response of the asymmetric systems with non‐linear viscous or VE dampers can be estimated with sufficient accuracy for design applications by analysing the same asymmetric systems with all non‐linear dampers replaced by energy‐equivalent linear viscous dampers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
A series of large‐scale dynamic tests was conducted on a passively controlled five‐story steel building on the E‐Defense shaking table facility in Japan to accumulate knowledge of realistic seismic behavior of passively controlled structures. The specimen was tested by repeatedly inserting and replacing each of four damper types, that is, the buckling restrained braces, viscous dampers, oil dampers, and viscoelastic dampers. Finally, the bare steel moment frame was tested after removing all dampers. A variety of excitations was applied to the specimen, including white noise, various levels of seismic motion, and shaker excitation. System identification was implemented to extract dynamic properties of the specimen from the recorded floor acceleration data. Damping characteristics of the specimen were identified. In addition, simplified estimations of the supplemental damping ratios provided by added dampers were presented to provide insight into understanding the damping characteristics of the specimen. It is shown that damping ratios for the specimen equipped with velocity‐dependent dampers decreased obviously with the increasing order of modes, exhibiting frequency dependency. Damping ratios for the specimen equipped with oil and viscoelastic dampers remained constant regardless of vibration amplitudes, whereas those for the specimen equipped with viscous dampers increased obviously with an increase in vibration amplitudes because of the viscosity nonlinearity of the dampers. In very small‐amplitude vibrations, viscous and oil dampers provided much lower supplemental damping than the standard, whereas viscoelastic dampers could be very efficient. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Braced frames are one of the most economical and efficient seismic resisting systems yet few full‐scale tests exist. A recent research project, funded by the National Science Foundation (NSF), seeks to fill this gap by developing high‐resolution data of improved seismic resisting braced frame systems. As part of this study, three full‐scale, two‐story concentrically braced frames in the multi‐story X‐braced configuration were tested. The experiments examined all levels of system performance, up to and including fracture of multiple braces in the frame. Although the past research suggests very limited ductility of SCBFs with HSS rectangular tubes for braces recent one‐story tests with improved gusset plate designs suggest otherwise. The frame designs used AISC SCBF standards and two of these frames designs also employed new concepts developed for gusset plate connection design. Two specimens employed HSS rectangular tubes for bracing, and the third specimen had wide flange braces. Two specimens had rectangular gusset plates and the third had tapered gusset plates. The HSS tubes achieved multiple cycles at maximum story drift ratios greater than 2% before brace fracture with the improved connection design methods. Frames with wide flange braces achieved multiple cycles at maximum story drift greater than 2.5% before brace fracture. Inelastic deformation was distributed between the two stories with the multi‐story X‐brace configuration and top story loading. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
利用形状记忆合金(SMA)材料的超弹性,本文提出了一种放大位移型SMA阻尼器,建立了装有该阻尼器的框架有限元模型并对该框架的地震反应实施了模拟减震控制。分不安装阻尼器、安装不放大位移阻尼器和安装放大2倍层间位移阻尼器三种工况,输入El Centro和Taft地震动,对比研究了阻尼器的减震控制效果。分析结果表明:(1)放大位移型SMA阻尼器的控制效果优于不放大位移型SMA阻尼器;(2)该放大位移型SMA阻尼器对位移的控制效果优于对加速度的控制效果。  相似文献   

12.
This paper describes an analytical investigation on a reinforced concrete lateral load resisting structural system comprising a pin‐supported (base‐rocking) shear wall coupled with a moment frame on 1 or both sides of the wall. Yielding dampers are used to provide supplemental energy dissipation through the relative displacements at the vertical connections between the wall and the frames. The study extends a previous linear‐elastic model for pin‐supported wall‐frame structures by including the effects of the dampers. A closed‐form solution of the lateral load behavior of the structure is derived by approximating the discrete wall‐frame‐damper interactions with distributed (ie, continuous) properties. The validity of the model is verified by comparing the closed‐form results with computational models using OpenSees program. Then, a parametric analysis is conducted to investigate the effects of the wall, frame, and damper stiffness on the behavior of the structure. It is found that the damper stiffness significantly affects the distribution of shear forces and bending moments over the wall height. Finally, the performance‐based plastic design approach extended to the wall‐frame‐damper system is proposed. Case studies are carried out to design 2 damped pin‐supported wall‐frame structures using the proposed approach. Nonlinear dynamic time‐history analyses are conducted to verify the effectiveness of this method. Results indicate that the designed structures can achieve the performance level with the story drift ratios less than target values, and weak‐story failure mechanism is not observed. The approach can be used in engineering applications.  相似文献   

13.
The concept of the hybrid passive control system is studied analytically by investigating the seismic response of steel frame structures. Hybrid control systems consist of two different passive elements combined into a single device or system. The hybrid systems investigated in this research consist of a rate‐dependent damping device paired with a rate‐independent energy dissipation element. The innovative configurations exploit individual element strengths and offset their weaknesses through multiphased behavior. A nine‐story, five‐bay steel moment‐frame was used for the analysis. Six different seismic resisting systems were analyzed and compared. The conventional systems included a special moment‐resisting frame (SMRF) and a dual SMRF–buckling‐restrained brace (BRB) system. The final four configurations are hybrid passive systems. The different hybrid configurations utilize a BRB and either a high‐damping rubber damper or viscous fluid damper. The analyses were run in the form of an incremental dynamic analysis. Several damage measures were calculated, including maximum roof drift, base shear, and total roof acceleration. The results demonstrate the capability of hybrid passive control systems to improve structural response compared with conventional lateral systems and to be effective for performance‐based seismic design. Each hybrid configuration improved some aspect of structural response with some providing benefits for multiple damage measures. The multiphased nature provides improved response for frequent and severe seismic events. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
This paper summarizes the results of an extensive study on the inelastic seismic response of X‐braced steel buildings. More than 100 regular multi‐storey tension‐compression X‐braced steel frames are subjected to an ensemble of 30 ordinary (i.e. without near fault effects) ground motions. The records are scaled to different intensities in order to drive the structures to different levels of inelastic deformation. The statistical analysis of the created response databank indicates that the number of stories, period of vibration, brace slenderness ratio and column stiffness strongly influence the amplitude and heightwise distribution of inelastic deformation. Nonlinear regression analysis is employed in order to derive simple formulae which reflect the aforementioned influences and offer a direct estimation of drift and ductility demands. The uncertainty of this estimation due to the record‐to‐record variability is discussed in detail. More specifically, given the strength (or behaviour) reduction factor, the proposed formulae provide reliable estimates of the maximum roof displacement, the maximum interstorey drift ratio and the maximum cyclic ductility of the diagonals along the height of the structure. The strength reduction factor refers to the point of the first buckling of the diagonals in the building and thus, pushover analysis and estimation of the overstrength factor are not required. This design‐oriented feature enables both the rapid seismic assessment of existing structures and the direct deformation‐controlled seismic design of new ones. A comparison of the proposed method with the procedures adopted in current seismic design codes reveals the accuracy and efficiency of the former. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Semi‐active control of buildings and structures for earthquake hazard mitigation represents a relatively new research area. Two optimal displacement control strategies for semi‐active control of seismic response of frame structures using magnetorheological (MR) dampers or electrorheological (ER) dampers are proposed in this study. The efficacy of these displacement control strategies is compared with the optimal force control strategy. The stiffness of brace system supporting the smart damper is also taken into consideration. An extensive parameter study is carried out to find the optimal parameters of MR or ER fluids, by which the maximum reduction of seismic response may be achieved, and to assess the effects of earthquake intensity and brace stiffness on damper performance. The work on example buildings showed that the installation of the smart dampers with proper parameters and proper control strategy could significantly reduce seismic responses of structures, and the performance of the smart damper is better than that of the common brace or the passive devices. The optimal parameters of the damper and the proper control strategy could be identified through a parameter study. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
A control strategy for semi-active friction devices leading to efficient hysteretic dissipaters is proposed. The control algorithm makes the contact force between the sliding surfaces of the damper proportional to the absolute value of the prior local peak of the damper deformation. This control logic leads to a non-linear force–deformation relation that satisfies homogeneity of degree one; this means that, like in a linear viscoelastic damping model, when the deformation is scaled by a constant, the force results are scaled by the same constant. The closed-loop system shows rectangular hysteresis loops which enclose an area proportional to the square of the deformation of the damper. Some characteristics of the dynamic response of structures incorporating this type of semi-active damper are investigated. It is demonstrated that in the case of single-degree-of-freedom models, the period of vibration and decay ratio are independent of the amplitude of vibration. In the case of multi-degree-of-freedom models with this type of nonlinearity, the free-vibration response can exhibit natural modes of vibration. A linearization method is proposed and modelling tools for the delay associated with actuator dynamics and for the flexibility of the brace connecting the damper to the structure are presented. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
Centralized semi‐active control is a technique for controlling the whole structure using one main computer. Centralized control systems introduce better control for relatively short to medium high structures where the response of any story cannot be separated from the adjacent ones. In this paper, two centralized control approaches are proposed for controlling the seismic response of post‐tensioned (PT) steel frames. The first approach, the stiffness control approach, aims to alter the stiffness of the PT frame so that it avoids large dynamic amplifications due to earthquake excitations. The second approach, deformation regulation control approach, aims at redistributing the demand/strength ratio in order to provide a more uniform distribution of deformations over the height of the structure. The two control approaches were assessed through simulations of the earthquake response of semi‐actively and passively controlled six‐story post‐tensioned steel frames. The results showed that the stiffness control approach is efficient in reducing the frame deformations and internal forces. The deformation regulation control approach was found to be efficient in reducing the frame displacements and generating a more uniform distribution of the inter‐story drifts. These results indicate that centralized semi‐active control can be used to improve the seismic performance of post‐tensioned steel frames. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
阻尼器是一种效果良好的减震装置,将阻尼器安装于结构中能够适时为结构体系提供阻尼力,从而减小地震作用对结构的破坏。黏滞阻尼器对振动的反应比较敏感,在结构受到较小振动时就可以发挥其减震效果,其阻尼力会随着振动周期和使用状态温度的不同而变化。当地震发生时,安装在结构中的阻尼器会消减地震作用,降低传导到主结构体系的地震能量,减小结构相对位移。本文介绍了黏滞阻尼器的工作原理和安装有黏滞阻尼器的结构体系的阻尼比的计算方法,对减震结构的减震效果的评析方法做出探讨,并以一安装有黏滞阻尼器的台湾某既有钢框架结构为例,分析了(1)该结构在遭受地震作用时的地震反应;(2)该结构体系在不同地震作用水平时的阻尼比,包括主体结构阻尼比和黏滞阻尼器阻尼比;(3)结构安装黏滞阻尼器后的减震效果。实例对本文的减震评析方法和减震效果进行了说明和分析,计算及分析结果表明利用黏滞阻尼器加固既有结构能够取得较好的减震效果,本文所提减震效果评析方法是一种实用有效的评析方法,对类似工程的减震评析具有一定的参考价值。  相似文献   

19.
Two linear optimal control laws and a non-linear control strategy are critically evaluated. They are implemented in a ten-story frame structure. For the linear control laws, both an active bracing system and a hybrid mass damper are considered as control devices, while the non-linear control law can be implemented with either an active or semi-active bracing system. The active and semi-active systems are compared to a passive bracing system with linear viscous dampers and to a hybrid system consisting of a passive bracing and a hybrid mass damper. Dimensionless indices based on the reduction of the maximum story drift and on the maximum control force required are introduced to compare the efficiencies of different control strategies. While the linear optimal control laws exhibit an excellent performance, the non-linear control law, in addition to its simplicity and robustness, appears to be more efficient when the allowable control force is within a certain limit. Furthermore, one attractive feature of the latter is that it can be implemented with semi-active devices to minimize the power requirement.  相似文献   

20.
In conventional modal analysis procedures, usually only a few dominant modes are required to describe the dynamic behavior of multi-degrees-of-freedom buildings. The number of modes needed in the dynamic analysis depends on the higher-mode contribution to the structural response, which is called the higher-mode effect. The modal analysis approach, however, may not be directly applied to the dynamic analysis of viscoelastically damped buildings. This is because the dynamic properties of the viscoelastic dampers depend on their vibration frequency. Therefore, the structural stiffness and damping contributed from those dampers would be different for each mode. In this study, the higher-mode effect is referred to as the response difference induced by the frequency-dependent property of viscoelastic dampers at higher modes. Modal analysis procedures for buildings with viscoelastic dampers distributed proportionally and non-proportionally to the stiffness of the buildings are developed to consider the higher-mode effect. Numerical studies on shear-type viscoelastically damped building models are conducted to examine the accuracy of the proposed procedures and to investigate the significance of the higher-mode effect on their seismic response. Two damper models are used to estimate the peak damper forces in the proposed procedures. Study results reveal that the higher-mode effect is significant for long-period viscoelastically damped buildings. The higher-mode effect on base shear is less significant than on story acceleration response. Maximum difference of the seismic response usually occurs at the top story. Also, the higher-mode effect may not be reduced by decreasing the damping ratio provided by the viscoelastic dampers. For practical application, it is realized that the linear viscous damping model without considering the higher-mode effect may predict larger damper forces and hence, is on the conservative side. Supported by: Science Council, Chinese Taipei, grant no. 88-2625-2-002-006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号