首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tell es‐Sâfi/gath is situated in the semiarid foothills of central Israel, adjacent to the coastal . plain. An enigmatic landscape feature, noted on aerial photographs, encircles the tell on three sides. This unique feature, unknown from other Near Eastern tells, was investigated. Methods of analysis include aerial photographs, field surveys, excavations, soil analyses, chronotypological ceramic classification, and radiocarbon dating. We concluded that (1) the peculiar landscape feature is a huge human‐made trench, over 2 km long, 5–6 m deep, and more than 8 m wide, cut through bedrock; (2) the trench was excavated during the Iron Age IIA (ca. 1000–800 B.C.E.), apparently as part of a siege system; (3) the extracted rock and soil material was dumped on the Iron Age landscape surface on one side of the trench, forming an elevated “berm”; (4) erosion processes transformed this landscape scar, as the trench filled with sediment; (5) stratigraphic analysis indicates two major phases of filling, separated by a period of landscape stability and soil formation (A horizon); (6) the two filling phases, exhibiting Iron Age IIA and Byzantine pottery (ca. 324—638 C.E.), appear to coincide with more intense human activity; and (7) the possible effect of climatic variations seems less obvious. © 2005 Wiley Periodicals, Inc.  相似文献   

2.
The stratigraphy and landscape evolution of the Lodbjerg coastal dune system record the interplay of environmental and cultural changes since the Late Neolithic. The modern dunefield forms part of a 40 km long belt of dunes and aeolian sand‐plains that stretches along the west coast of Thy, NW Jutland. The dunefield, which is now stabilized, forms the upper part of a 15–30 m thick aeolian succession. The aeolian deposits drape a glacial landscape or Middle Holocene lake sediments. The aeolian deposits were studied in coastal cliff exposures and their large‐scale stratigraphy was examined by ground‐penetrating radar mapping. The contact between the aeolian and underlying sediments is a well‐developed peaty palaeosol, the top of which yields dates between 2300 BC and 600 BC . Four main aeolian units are distinguished, but there is some lateral stratigraphic variation in relation to underlying topography. The three lower aeolian units are separated by peaty palaeosols and primarily developed as 1–4 m thick sand‐plain deposits; these are interpreted as trailing edge deposits of parabolic dunes that moved inland episodically. Local occurrence of large‐scale cross‐stratification may record the head section of a migrating parabolic dune. The upper unit is dominated by large‐scale cross‐stratification of various types and records cliff‐top dune deposition. The nature of the aeolian succession indicates that the aeolian landscape was characterized by alternating phases of activity and stabilization. Most sand transported inland was apparently preserved. Combined evidence from luminescence dating of aeolian sand and radiocarbon dating of palaeosols indicates that phases of aeolian sand movement were initiated at about 2200 BC , 700 BC and AD 1100. Episodes of inland sand movement were apparently initiated during marked climate shifts towards cooler, wetter and more stormy conditions; these episodes are thought to record increased coastal erosion and strong‐wind reworking of beach and foredune sediments. The intensity, duration and areal importance of these sand‐drift events increased with time, probably reflecting the increasing anthropogenic pressure on the landscape. The formation of the cliff‐top dunes after AD 1800 records the modern retreat of the coastal cliffs.  相似文献   

3.
K‐Ar age measurements using the 40Ar/39Ar total fusion technique on nephrite from two occurrences in the Great Serpentine Belt southeast of Tamworth yielded ages of 273 ± 5.8 and 280 ± 5.6 m.y. The K‐Ar ages indicate that tectonic emplacement, during which the nephrite was produced as a reaction product between ultra‐mafic rock and country rock, occurred early in the Permian about 275–280 m.y. ago.  相似文献   

4.
During the Cainozoic there was widespread volcanism, mainly basaltic, in eastern New South Wales. Numerous new K‐Ar ages, together with previously published results, provide information on the age of virtually all the main volcanic provinces, and indicate that the volcanism started about 70 m.y. ago in the Late Cretaceous, and was continuous from about 60 m.y. ago (Palaeocene) until about 10 m.y. ago (middle Miocene). There has been no volcanic activity since 10 m.y. ago.

The ages of uplift of the Eastern Highlands are estimated from the relationship of the dated basaltic flows to the topography. A major uplift is deduced some time between the mid‐Cretaceous and late Oligocene, followed by a quiescent period. A further uplift started some time after the middle Miocene, and it continues to the present day. The highland was uplifted differentially both along and transverse to the axis.  相似文献   

5.
区域变质作用过程中,矿物受到热力与动力作用,相应地发生结晶、重结晶与变形两个方面的变化,产生出多种型式的变质结构。依据变质结构的特点,矿物本身的变化和共生矿物之间的相互关系,可以分析多期变质作用的期次、顺序,也可以鉴别结晶作用与变形作用的先后关系,因此能够通过这种研究来复原变质地体的变质变形历史。本文研究河北省迁西县太平寨地区及附近各地的古老变质地体的变质结构特点,并研讨其地质意义。  相似文献   

6.
Quarry faces several kilometers long in the Glesborg area in Denmark show that Bronze Age farmers used a sustainable land‐use system. Despite nutrient‐poor soils, the Glesborg area was under a rotation system in which cropland alternated with grassland. Soil fertility was improved by the addition of household waste and probably also by locally obtained inorganic fertilizer. The soil surface was very stable, and local drift sand movement was limited. Toward the end of the Bronze Age, the landscape changed dramatically with the arrival of overwhelming amounts of drift sand, and farmsteads were abandoned. Subsequent land use on these poor fine sandy soils was no longer capable of maintaining a stable soil surface, and frequent erosion/sedimentation events of more local importance took place. The post‐Bronze Age landscape may have been mainly a shifting mosaic of heathland with some temporary arable fields and deflation/accumulation areas. This landscape persisted up to about 200 years ago, when afforestation programs started. © 2007 Wiley Periodicals, Inc.  相似文献   

7.
Stratigraphic and structural observations indicate that the Encounter Bay Granites concordantly intruded the youngest formations of the Kanmantoo Group in the Mount Lofty Ranges metamorphic belt prior to the culmination of the first phase of folding and associated schistosity development recorded during the early Palaeozoic Delamerian Orogeny. Metamorphic textures in the metasediments of the Kanmantoo Group suggest that cordierite crystallized locally near the granites prior to and during the F 1 folding, whereas andalusite crystallized on a regional scale during the F 1 folding and in the post‐F 1 and pre‐F 2 static phase.

Rb‐Sr isotope data for total‐rock, feldspar, and muscovite samples of the meta‐sediment‐contaminated border facies and the uncontaminated inner facies of the Encounter Bay Granites indicate that the granites were emplaced between 515 ± 8 m.y. and 506 ± 6 m.y. ago in the Late Cambrian epoch. Rb‐Sr and K‐Ar data for biotite from the granites record variable radiogenic Sr loss until about 469 m.y. ago and comparatively uniform radiogenic Ar loss until 460–475 m.y. ago. Rb‐Sr data for Kanmantoo Group metasediments and a metamorphic pegmatite indicate crystallization ages between 459–463 m.y. ago. Thus the regional andalusite‐grade temperatures and pressures, which appear responsible for the leakage of radiogenic Sr and Ar from biotite in the granites and the redistribution of Rb and Sr in the metasediments, seem to have persisted for some 50 m.y. after emplacement of the granites until the Early Ordovician epoch. There is evidence for further leakage of Sr and Ar from biotite in deformed granites from the margins of the intrusion more than 50 m.y. afterwards in the Late Silurian or Early Devonian, possibly during the F 2 folding.

Geological observations and radiometric data for other granitic rocks in southeastern South Australia, including the Palmer Granite, are consistent with this structural and metamorphic history of the Encounter Bay region.  相似文献   

8.
Palaeoshorelines, highstand lacustrine sediments and lakeshore terraces are preserved around saline lakes in the arid Qaidam Basin. Previous research indicates that the chronology of a mega‐paleolake in the Qaidam Basin during the late Pleisotocene is controversial. Here we report quartz optically stimulated luminescence (OSL) age estimates of highstand lacustrine sediments, shoreline features and geomorphic exposures that contribute to a revision of the lake level history of Gahai and Toson lakes in the north‐eastern Qaidam Basin, on the northeastern Qinghai–Tibetan Plateau (QTP) margin. The results imply that: (i) high lake levels at Gahai and Toson lakes based on quartz OSL dating occurred at 85–72, 63–55, 31, 5.4 and 0.9–0.7 ka, probably corresponding to periods of warm and wet climate; (ii) periods of high lake levels are almost synchronous with other lakes on the QTP (e.g. Qinghai and Namco lakes), with the highest late Pleistocene levels occurring during Marine Oxygen Isotope Stage 5; and (iii) highstand phases on the QTP are out of phase with those of low‐latitude lakes in the southern hemisphere, possibly driven by solar insolation variability in the low‐latitude region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP.  相似文献   

10.
A palaeomagnetic study of the 100 to 90 m.y. old alkaline igneous rocks of the French Pyrenees has in part revealed large between-site scatter caused by highly variable declination. Magnetomineralogical evidence suggests that the original titano-magnetite has undergone variable low-temperature oxidation through martitization and maghemitization processes, suggesting that the rocks have been remagnetized. When viewed in the context of the Upper Cretaceous–Lower Tertiary inclination pattern based on Portuguese palaeomagnetic data, it is concluded that the rocks most likely acquired their present magnetization during early Campanian–Maastrichtian time, i.e. 20-30 m.y. after their original cooling. On the other hand, this magnetization postdates a major phase of late Cretaceous compressive deformation. Subsequent strike-slip movement along the Pyrenean zone in the Lower Tertiary led to variable rotation of cover units along the orogenic belt, producing the inconsistent palaeomagnetic declination picture presently observed. It is concluded that the geological history of the alkaline rocks of the French Pyrenees, from the magmatic stage to the subsequent events of remagnetization and tectonic deformation, is strongly associated with the Alpine-age rotational instability of Iberia. The principal kinematic history of the Peninsula comprised ca. 40° counterclockwise rotation (relative to Europe) during Cenomanian– Turonian time (100–90 m.y. ago) followed by ca. 70° clockwise rotation in the early Campanian (ca. 75 m.y. ago).  相似文献   

11.
The Pampa de Chaparrí (Pampa) in hyperarid northwest coastal Peru is an ideal area to study late prehispanic agricultural technology and production because irrigation canals and furrowed fields have been preserved since abandonment approximately 500 years ago. We collected 55 samples for soil characterization, fertility, and micromorphic analyses and compared these results to a noncultivated control soil previously sampled in an adjacent valley. Natural soil fertility levels for maize, cotton, and bean production were generally high during late prehispanic cultivation in the Pampa. Maintaining adequate nitrogren levels for production, however, would have required external inputs from livestock manure, guano, or leguminous plants. The management of low soil salinity levels was possible because of rapidly permeable soils and irrigation waters low in salt. Based on available water capacity and climate conditions, the Blaney‐Criddle Equation yields evapotranspiration rates indicating that irrigation frequency was necessary in a range of every 10–16 days during the growing season. © 2004 Wiley Periodicals, Inc.  相似文献   

12.
To obtain a better understanding of climate change in south China in the Quaternary, a clay mineralogical study was undertaken on the red earth profile at Jiujiang, using X‐ray diffraction (XRD) and particle‐size distribution analysis methods. The XRD results showed that the clay minerals of the Jiujiang red earth were mainly mixed‐layer illite–smectite (I/S), illite, kaolinite and vermiculite, with trace amounts of mixed‐layer kaolinite–smectite (K/S). Changes in clay mineral composition displayed a trend of three‐stage evolution. The higher mixed‐layer I/S clays and kaolinite contents in the lower portion suggest extremely warm and humid climates over the period c. 700 to c. 350 ka ago. A gradual decrease in I/S clays and kaolinite reveals a gradual climate change from warm/humid to cool/dry during the period c. 350 to c. 130 ka ago. The higher illite and vermiculite contents indicate a relatively cool and dry climate during the period since c. 130 ka ago. The particle‐size distribution pattern of the upper section was similar to that of the Xiashu loess, while that of the middle to lower section was similar to those of fluvially reworked red earth. A rapid increase in the abundance of large grain‐size components at 2.6 m depth indicates an intensification of the winter monsoon and a cool and dry climate during the period, in good agreement with results from the clay mineral composition and homogeneous structure. The red earth sequences in south China could probably be used to test the response of tropical to subtropical regions to global climate changes.  相似文献   

13.
Present estimates of the age of volcanic activity in the eastern Azores group are based on shelly fauna in a coquina zone separating the two basaltic sequences on Santa Maria. A Vindobonian (Middle Miocene) age has been assigned to the coquina zone. Our K-Ar data suggests that it was deposited 4–6 m.y. ago, i.e. Mio-Pliocene in age.The basaltic series exposed below the coquina zone on Santa Maria is 6–8 m.y. old and probably much older. The post-coquina basaltic complex is 4 m.y. old and younger. The Nordeste basaltic complex in the NE part of São Miguel and the basaltic flows of the Formigas Bank are also 4 m.y. old and younger. We suggest that the three latter basaltic sequences are chronostratigraphic equivalents.  相似文献   

14.
Excavations were made in the colluvial deposits of seven kettleholes in a sandy esker at Kuttanen, northwestern Finnish Lapland. The Holocene history of forest fires and the associated colluvial activity initiated on the slopes of the kettleholes were reconstructed based on 131 radiocarbon dates from charcoal layers. These dates were supplemented by luminescence dating of colluvial sand layers. The first forest fires occurred ~9000 years ago following the immigration of Pinus sylvestris about 1000 years after deglaciation. Evidence of forest fires and colluvial activity increased with the density of the pine forest, reaching a maximum during the Holocene Thermal Maximum between ~8000 and 4000 cal. a BP, declining thereafter to a minimum in the last ~500 years. This multimillennial‐scale pattern corresponds with forest fires being triggered by lightning strikes during the warmest summer weather of the Holocene, which also produced heavy rain and slope wash from convective storms. The 50 forest fires identified over the Holocene indicate a long cycle in fire frequency of 1 in ~200 years, which appears to reflect the average successional recovery time of the forest. Complex interactions amongst vegetation, fire and climate may account for little or no association between 23 centennial‐ to millennial‐scale clusters of forest fires/colluvial events and Holocene temperature or precipitation anomalies. Buried podzols indicate five phases of soil formation and hence low levels of landscape disturbance. The kettleholes and their colluvial deposits therefore provide a unique geo‐ecological archive that has led to new insights into the geo‐ecological interactions that affect environmental change in the sub‐arctic landscape.  相似文献   

15.
The stratigraphy of a trench excavated through a solifluction lobe lying at an altitude of 860 m a.s.l. on the eastern flank of the Okstindan mountains is described. Sedimentological evidence suggests that the movement was probably dominated by a flow process, with silty sands episodically bursting‐out through a thinly vegetated lobe front in the spring and early summer thaw phases, when pore‐water pressures were likely to be increased. A continuous buried soil extends for some 14 m. Fourteen new radiocarbon age estimates from thin‐slice samples of this buried soil and organic fractions derived from laboratory pre‐treatment procedures are discussed. These data indicate that the solifluction probably commenced in the mid‐Holocene and continued throughout the Neoglacial. The slope instability may be correlated tentatively with the record of glacial variations, shifts in tree lines and archaeological evidence, supporting a link with regional climatic deterioration. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Late Quaternary landscape development along the Rancho Marino coastal range front in the central‐southern Pacific Coast Ranges of California has been documented using field mapping, surveying, sedimentary facies analysis and a luminescence age determination. Late Quaternary sediments along the base of the range front form a single composite marine terrace buried by alluvial fans. Marine terrace sediments overlie two palaeoshore platforms at 5 m and 0 m altitude. Correlation with the nearby Cayucos and San Simeon sites links platform and marine terrace development to the 125 ka and 105 ka sea‐level highstands. Uplift rate estimates based on the 125 ka shoreline angle are 0.01–0.09 m ka?1 (mean 0.04 m ka?1), and suggest an increase in regional uplift along the coast towards the NW where the San Simeon fault zone intersects the coastline. Furthermore, such low rates suggest that pre‐125 ka uplift was responsible for most of the relief generation at Rancho Marino. The coastal range front landscape development is, thus, primarily controlled by post 125 ka climatic and sea‐level changes. Post 125 ka sea‐level lowering expanded the range front piedmont area to a width of 7.5 km by the 18 ka Last Glacial Maximum lowstand. This sea‐level lowering created space for alluvial fan building along the range front. A 45 ± 3 ka optically stimulated luminescence (OSL) age provides a basal age for alluvial fan building or marks the time by which distal alluvial fan sedimentation has reached 300 m from the range front slope. Fan sedimentation is related to climatic change, with increased sediment supply to the range front occurring during (1) glacial period cold stage maxima and/or (2) the Late Pleistocene–Holocene transition, when respective increases in precipitation and/or storminess resulted in hillslope erosion. Sea‐level rise after the 18 ka lowstand resulted in range front erosion, with elevated localised erosion linked to the higher relief and steeper slopes in the SE. This study demonstrates that late Quaternary coastal range front landscape development is driven by interplay of tectonics, climatic and sea‐level change. In areas of low tectonic activity, climatic and sea‐level changes dominate coastal landscape development. When the sea‐level controlled shoreline is in close proximity to the coastal range front, localised patterns of sedimentation and erosion are passively influenced by the pre‐125 ka topography. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A detailed Rb‐Sr total‐rock and mineral and U‐Pb zircon study has been made on suites of Proterozoic silicic volcanic rocks and granitic intrusions, from near Mt Isa, northwest Queensland. Stratigraphically consistent U‐Pb zircon ages within the basement igneous succession show that the oldest recognized crustal development was the outpouring of acid volcanics (Leichhardt Metamorphics) 1865 ± 3 m.y. ago, which are intruded by coeval, epizonal granites and granodiorites (Kalkadoon Granite) whose pooled U‐Pb age is 1862 +27 ‐21 m.y. A younger rhyolitic suite (Argylla Formation) within the basement succession has an age of 1777 ± 7 m.y., and a third acid volcanic unit (Carters Bore Rhyolite), much higher again in the sequence, crystallized 1678 ± 1 m.y. ago.

All of these rocks are altered in various degrees by low‐grade metamorphic events, and in at least one area, these events were accompanied by, and can be partly related to, emplacement of a syntectonic, foliated granitic batholith (Wonga Granite) between 1670 and 1625 m.y. ago. Rocks that significantly predate this earliest recognized metamorphism, have had their primary Rb‐Sr total‐rock systematics profoundly disturbed, as evidenced by 10 to 15% lowering of most Rb‐Sr isochron ages, and a general grouping of many of the lowered ages (some of which are in conflict with unequivocal geological relationships) within the 1600–1700 m.y. interval. Such isochrons possess anomalously high initial 87Sr/86Sr ratios, and some have a slightly curved array of isotopic data points. Disturbance of the Rb‐Sr total‐rock ages is attributed primarily to mild hydrothermal leaching, which resulted in the loss of Sr (relatively enriched in 87Sr in the Sr‐poor (high Rb/Sr) rocks as compared with the Sr‐rich rocks).  相似文献   

18.
The Sanyangzhuang site, Henan Province, China, has a 12‐m‐deep stratigraphic sequence with remains from the Tang (A.D. 618–907), late Western Han (ca. 140 B.C.–A.D. 23), Warring States (475–221 B.C.), Late Neolithic or Early Bronze Age (ca. 5000–1500 B.C.), Middle Holocene, and Early Holocene times. All of the paleosols are deeply buried. We investigate four issues relevant to the archaeology of the lower Yellow River Valley. First, we confirm that the Yellow River flowed north toward Bohai Bay throughout most of the Holocene. Second, we expand understanding of Holocene paleoenvironments. Long episodes of landscape stability punctuated by brief periods of Yellow River flooding represent the dominant environmental pattern. Third, we investigate how the complex relationships between climate, culture, and the environment affect Yellow River flooding, which in turn shapes Chinese civilization and history. Flooding in late Western Han times affected a vast area of north‐central China; this catastrophe contributed to the downfall of the late Western Han Dynasty. Finally, this research sheds light on the role of Yellow River alluviation in site burial and preservation. Rapid alluviation in the region has buried many archaeological sites. Settlement pattern research needs to take seriously the limitations placed on site visibility in quickly aggrading floodplains. However, gentle alluviation has also preserved settlements and entire landscapes providing unparalleled opportunities to explore the archaeological and historical record of the lower Yellow River Valley.  相似文献   

19.
We describe a geoarchaeological survey of a 5‐km reach of the Rio Puerco channel and its tributaries, centered on the Guadalupe Ruin, a pueblo of the late 10th–12th centuries A.D. in north‐central New Mexico, with associated pollen, charcoal, micromorphological, and radiocarbon analyses. Severe erosion has drastically bisected the Puerco valley with four primary arroyos entering the western side of the Guadalupe reach of the valley: Tapia, Salado, Guadalupe and “No Name.” We recorded an 11‐m‐tall alluvial sequence marked by four phases of cumulic soil development, interrupted by six major periods of channel entrenchment that occurred at about 4100–3700 B.C. and 2900–2400 B.C., between 2200 B.C. and ca. A.D. 400, pre‐ and post‐ca. A.D. 900–1300, and in the late A.D. 1800s. Relative floodplain stability and associated cumulic soil development occurred prior to ca. 5700 B.C., between ca. 2600 to 2200 B.C. and A.D. 350 and 550, and ca. A.D. 900–1300. Multiple signatures of fires (oxidized sediment and charcoal) were observed in the Arroyo Tapia tributary sequence, especially in deposits dated ca. 6000 and 2600 B.C. These fires may have helped to enhance food resources for game animals by encouraging grass and shrub growth and/or to increase the growth of wild plants and eventually cultigens such as maize. Palynological evidence of maize in the Arroyo Tapia, dated ca. 2600–2200 B.C. may be the earliest thus far identified in the Southwest. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
K‐Ar and Rb‐Sr isotopic measurements have been made on the north‐south belt of igneous and metamorphic rocks from the Peninsula Ridge and Yambo Inlier of Cape York Peninsula. Four periods of Palaeozoic igneous activity appear to have been denned. These are (87’Rbλ = 1.39 X 10–11y–1) about 415 m.y., about 400 m.y., 385–390 m.y., and 255–280 m.y., with the youngest dates to the north and northeast. The largest volume of magma, the Kintore Adamellite was emplaced during the 285–390 m.y. period. Initial 87Sr/86Sr ratios range from 0.715 (a granodiorite) through 0.72–0.74 (muscovite adamellite) to 0.76 (leuco‐adamellite), which suggests a high component of old crustal material in the latter types.

The host metamorphics grade from greenschist facies in the west to almandine‐amphibolite facies in the centre and south. Limited direct data suggest that the greenschists are older than 1400 m.y. This is supported by intrusive dolerite dating greater than 1800 m.y. Rocks possibly 2000 m.y. old are thus adjacent to the Australian northeast coast and place drastic limitations on the possibility of continual continental growth to the east.

Rb/Sr measurements on minerals of the almandine amphibolite rocks record the major Kintore event. Total rock measurements have high uncertainties but give only slightly older figures. Initial 87Sr/86Sr ratios of these apparent total rock isochrons are high, 0.735–0.745. Gross isotopic redistribution must have occurred during the Palaeozoic metamorphism.

The Rb/Sr isotopic and geochemical relationships suggest that some of the granitic rocks have been derived from the equivalent of the present greenschist facies suite, and that the almandine amphibolite facies was, in part, remetamorphosed during the Palaeozoic and is possibly partly residual after metamorphic segregation.

The region has been examined from the plate tectonic point of view and shows that many of the requirements of a cordilleran‐type mountain belt of Dewey & Bird (1970) existed during the mid‐upper Palaeozoic. The Palmerville Fault and the Hodgkinson Basin are key units in this interpretation.

Dolerite, possibly 2000 m.y. old, could be contemporaneous with voluminous dolerites of similar age from the Kimberley region (Australia) and of Venezuela and Guyana. They may be a useful continental breakup indicator, as are the Gondwana dolerites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号