首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Proterozoic Soldiers Cap Group, a product of two major magmatic rift phases separated by clastic sediment deposition, hosts mineralised (e.g. Pegmont Broken Hill‐type deposit) and barren iron oxide‐rich units at three main stratigraphic levels. Evaluation of detailed geological and geochemical features was carried out for one lens of an apatite‐garnet‐rich, laterally extensive (1.9 km) example, the Weatherly Creek iron‐formation, and it was placed in the context of reconnaissance studies of other similar units in the area. Chemical similarities with iron‐formations associated with Broken Hill‐type Pb–Zn deposit iron‐formations are demonstrated here. Concordant contact relationships, mineralogy, geochemical patterns and pre‐deformational alteration all indicate that the Soldiers Cap Group iron‐formations are mainly hydrothermal chemical sediments. Chondrite normalised REE patterns display positive Eu and negative Ce anomalisms, are consistent with components of both high‐temperature, reduced, hydrothermal fluid (≥250°C) and cool oxidised seawater. Major element data suggest a largely mafic provenance for montmorillonitic clays and other detritus during chemical sedimentation, consistent with westward erosion of Cover Sequence 2 volcanic rocks, rather than local mafic sources. Ni enrichment is most consistent with hydrogenous uptake by Mn‐oxides or carbonates. Temperatures inferred from REE data indicate that although they are not strongly enriched, base metals such as Pb and Zn are likely to have been transported and deposited prior to or following iron‐formation deposition. Most chemical sedimentation pre‐dated emplacement of the major mafic igneous sill complexes present in the upper part of the basin. Heating of deep basinal brines in a regional‐scale aquifer by deep‐seated mafic magma chambers is inferred to have driven development of hydrothermal fluids. Three major episodes of extension exhausted this aquifer, but were succeeded by a final climactic extensional phase, which produced widespread voluminous mafic volcanism. The lateral extent of the iron‐formations requires a depositional setting such as a sea‐floor metalliferous sediment blanket or series of brine pools, with iron‐formation deposition likely confined to much smaller fault‐fed areas surrounded by Fe–Mn–P–anomalous sediments. These relationships indicate that in such settings, major sulfide deposits and their associated chemical sediment marker horizons need not overlie major igneous sequences. Rather, the timing of expulsion of hydrothermal fluid reflects the interplay between deep‐seated heating, extension and magmatism.  相似文献   

2.
A detailed Rb‐Sr total‐rock and mineral and U‐Pb zircon study has been made on suites of Proterozoic silicic volcanic rocks and granitic intrusions, from near Mt Isa, northwest Queensland. Stratigraphically consistent U‐Pb zircon ages within the basement igneous succession show that the oldest recognized crustal development was the outpouring of acid volcanics (Leichhardt Metamorphics) 1865 ± 3 m.y. ago, which are intruded by coeval, epizonal granites and granodiorites (Kalkadoon Granite) whose pooled U‐Pb age is 1862 +27 ‐21 m.y. A younger rhyolitic suite (Argylla Formation) within the basement succession has an age of 1777 ± 7 m.y., and a third acid volcanic unit (Carters Bore Rhyolite), much higher again in the sequence, crystallized 1678 ± 1 m.y. ago.

All of these rocks are altered in various degrees by low‐grade metamorphic events, and in at least one area, these events were accompanied by, and can be partly related to, emplacement of a syntectonic, foliated granitic batholith (Wonga Granite) between 1670 and 1625 m.y. ago. Rocks that significantly predate this earliest recognized metamorphism, have had their primary Rb‐Sr total‐rock systematics profoundly disturbed, as evidenced by 10 to 15% lowering of most Rb‐Sr isochron ages, and a general grouping of many of the lowered ages (some of which are in conflict with unequivocal geological relationships) within the 1600–1700 m.y. interval. Such isochrons possess anomalously high initial 87Sr/86Sr ratios, and some have a slightly curved array of isotopic data points. Disturbance of the Rb‐Sr total‐rock ages is attributed primarily to mild hydrothermal leaching, which resulted in the loss of Sr (relatively enriched in 87Sr in the Sr‐poor (high Rb/Sr) rocks as compared with the Sr‐rich rocks).  相似文献   

3.
Sedimentological, geochemical and tectonic studies have been carried out on the Glyde Sub‐basin, a fault‐bounded depocentre adjacent to the margin of the Batten Trough, 80 km south of the HYC Pb‐Zn‐Ag ore deposit, in the mid‐Proterozoic McArthur Basin. Although it is unmineralized, the basin is, in some aspects, morphologically similar to the HYC Sub‐basin and provides an insight into processes which occurred coevally along strike from a giant shale‐hosted base‐metal deposit. The geometry of the sub‐basin supports an origin in a releasing bend of the Emu Fault during oblique right‐lateral extension of the Emu Fault Zone, resulting in the deposition of a very thick sequence of below wave‐base Barney Creek Formation carbonaceous siltstone. Prior to sub‐basin development the area was covered by hypersaline carbonate tidal flats of the Coxco Dolomite Member of the Teena Dolomite.

Internal syn‐sedimentary normal faulting fractured the sub‐basin into seven major blocks, establishing a basic geometry of northern and southern depressions, into which the W‐Fold and HYC Pyritic Shale Members were successively deposited, separated by a non‐depositional horst. During the subsequent deposition of undivided Barney Creek Formation the horst was submerged and greater water circulation was established. The horst continued to be an east‐west barrier to clastic and volcaniclastic gravity flows, evidenced by the confinement to the northern depocentre of prograding easterly‐derived carbonate‐dominated turbidites.

Rhyolitic volcanism in the Glyde Sub‐basin commenced in the W‐Fold Shale Member, and became common in the overlying Barney Creek Formation. The measurable volcanic component increases from 4.4 to 17.5% of the total sediment package southwards over 18 km, implying a southern rhyolitic source within 6–30 km. A geochemical comparison of these relatively unaltered tuffs with those intercalated in the HYC ore sequence identified a comagmatic relationship on the basis of immobile element contents, supporting a common volcanic source. This conclusion was only possible after a preliminary study found Ti, Zr, Y and Nb to be relatively immobile in the severely potassium‐altered tuff of the HYC hydrothermal ore environment. Low‐grade (as distinct from high temperature hydrothermal) potassium‐alteration of felsic tuff throughout the McArthur Basin may have resulted from diagenetic interaction with very evolved lacustrine saline brines, whereas brines in the diagenetic environment of the Glyde Sub‐basin, in which unaltered or sodically‐altered tuff predominates, were comparatively less evolved.  相似文献   

4.
Investigations described from three Victorian damsites indicate that weathering of Ordovician bedrock is increased where it is overlain by basalt, even though the basalt is little weathered. Sub‐basaltic weathering may account for the fact that weathered rock beneath a Jurassic lava flow gives a weathering remagnetization age of Mid‐Cainozoic, consistent with palaeomagnetically determined ages of lateritization from elsewhere in Australia.  相似文献   

5.
The rare calc‐silicate minerals cuspidine, bultfonteinite, foshagite and xonotlite occur in a calcsilicate skarn zone near Chesney Vale, in northern Victoria. They are associated with andradite-grossular garnet, vesuvianite, diopside, wollastonite, prehnite, epidote, fluorite, calcite, perovskite,sphene and possibly tobermorite. The calc‐silicate skarn zone has formed in thermally meta‐morphosed, Ordovician, deep‐marine sediments adjacent to an Early Devonian aplitic granite pluton. The assemblages are estimated to have formed at low pressure (<100 MPa) at temperaturesnot exceeding 600°C in the presence of a low‐Xco2 fluorine‐bearing fluid. The occurrence is the firstrecord of bultfonteinite and foshagite in Australia and the first record of cuspidine and xonotlite inVictoria.  相似文献   

6.
The characteristics of Bedded Cherts and Banded Iron‐Formations are summarised. As, following O'Rourke's work, the latter are considered as not confined to the Precambrian, the only significant difference between the two formations is shown to be the low iron content of Bedded Cherts. This difference it is suggested is due to Bedded Cherts having been deposited in a virtually continuously acid to weakly alkaline environment, whereas Banded Iron‐Formation was precipitated under an alternation of acid and alkaline conditions yielding siliceous and iron‐rich layers respectively. Such chemical precipitation of either Bedded Chert or Banded Iron‐Formation was in some examples of each type of formation rhythmically interrupted by the deposition of clastic sediment.  相似文献   

7.
The nomenclature of replacement deposits is reviewed in terms of two processes, namely those involving the reaction between: (a) carbonate and siliceous rocks and (b) carbonate and unusual solutions, commonly, but not always, related to granitoids. ‘Wrigglite’ skarn is an example of a replacement deposit produced by process (b). It is highly characteristic rock consisting of alternating light layers of fluorite ± other F‐rich minerals and dark layers composed usually of Fe‐rich minerals or, rarely, Be‐rich minerals. The layers formed parallel or sub‐parallel to fractures, which are now veins, by a Leisegang‐type diffusion process. Repeated periods of fracturing, with growth away from sequentially produced fractures, produced an apparently chaotic ‘wrigglite’ skarn. The skarn is invariably enriched in Fe, F, Sn, Be, W, Bi and Zn. For ‘wrigglite’ to form, fluorine must be greater than 9 weight percent in the rock, and the intrusion of a Sn‐leucogranite ('A‐type') high into the crust is needed. Recognition of ‘wrigglite’ is important because (1) in some areas it is an ore of Sn (Mt Bischoff, Tas.), rare earth metals (Bayan Obo, China) or Be (Lost River, Alaska); (2) it indicates a high‐level environment of emplacement of a Sn‐granitoid; and (3) it indicates clearly that intricate layering can be produced by a diffusional process and not only by primary sedimentation.  相似文献   

8.
Woodlark Island, the largest above‐sea portion of the Woodlark Rise, has an exposed basement of pre‐Miocene (?Cretaceous‐Eocene) low‐K tholeiitic basalt and dolerite, and minor sediments. The basement is unconformably overlain by Early Miocene limestone and volcaniclastic sediments and later Miocene high‐K volcanics and comagmatic intrusives. Pleistocene to Recent sediments partly blanket the Tertiary sequence. Basement low‐K tholeiites vary only slightly in composition and are interpreted as ocean floor or possible marginal basin material. The high‐K suite appears to be chemically similar to late Tertiary to Recent high‐K igneous rocks of mainland Papua New Guinea. It includes porphyritic hornblende‐, clinopyroxene‐, biotite‐ and magnetite‐bearing shoshonite, latite and toscanite, and intrusive equivalents that range from olivine normative to strongly quartz normative compositions (S1Q2 46% to 75%). Computer mixing models indicate that separation of the pheno‐crysts in the shoshonites, particularly pargasitic hornblende, is a feasible mechanism for producing the more silica‐rich monzonites and latites.

The low‐K tholeiitic basement rocks of Woodlark Island are inferred to be part of an ophiolitic slab en echelon with the Papuan Ultramafic Belt, thrust over equivalents of the Cretaceous Owen Stanley Metamorphics or, in part, onto existing oceanic crust. High‐K igneous rocks on Woodlark Island appear to form an eastward extension of a province of calcalkaline to shoshonitic volcanic and intrusive rocks, which stretches from Mount Lamington to the Louisiade Archipelago. Late‐middle Miocene high‐K magmatism at Woodlark Island is consistent with the observation that activity commenced earlier in the E and became progressively younger westwards towards mainland Papua New Guinea. Periodicity in the magmatism was apparently synchronous with major rifting episodes that formed the Woodlark Basin. The data on the Woodlark Island high‐K suite support the currently accepted. concept of delayed partial melting of a mantle source previously modified by the introduction of water and LILE from an earlier subduction zone (Johnson et al., 1978b).  相似文献   

9.
Hydrogen‐ and oxygen‐isotope analyses of biotite (19), sericite (8), chlorite (2), quartz (27), and total rocks (37) from the Panguna porphyry‐copper deposit on Bougainville Island, place important constraints on the origin of the hydrothermal fluids responsible for mineralization and alteration in the mine region. Early high‐temperature amphibole‐magnetite alteration resulted from magmatic‐hydrothermal fluids. Several lines of evidence indicate 500°C as a realistic average temperature for mineralization, development of quartz veins, and biotitization processes. On the basis of mineral isotope data, responsible fluids could represent either 18O‐shifted ground‐waters or magmatic‐hydrothermal fluids at submagmatic temperatures. Independent evidence, as well as total‐rock 18O data, support the magmatic‐hydrothermal model.

Late‐stage sericitization processes probably resulted from fluids produced by 18O shifting of groundwaters during the evolution of the propylitic zone. Outermost quartz veins and biotitization conceivably resulted from fluids similar to those that caused sericitization, indicating that some interaction between relatively cool, 18O‐poor meteoric waters and the ore fluids occurred near the margins of the deposit. The origin of the chlorite‐sericite alteration cannot be resolved solely by isotope studies.  相似文献   

10.
The Hongcheon area in the central Gyeonggi massif is a unique carbonatite locality in South Korea. The age and petrogenesis of this uncommon rock type and associated rare earth element (REE) mineralization still remain uncertain. The NNE trending, 20–50 m wide and ~ 2 km long Fe-REE ore bodies are hosted within a swarm of carbonatite dykes intruding Precambrian basement gneisses. The intrusive nature of the dykes, fenite alteration halos, exsolution intergrowths of constituent minerals and stable isotope data in the literature collectively attest to the ore formation by crystallization of carbonatite magma. The carbonatites are composed primarily of dolomite, ankerite, siderite, magnetite, monazite, apatite, strontianite and pyrite with subordinate quartz, barite, columbite, fergusonite and calcite. The principal carrier phase of REEs is monazite. The REE contents of monazite vary narrowly (TREO = 66.1–69.4 wt.%) irrespective of the textural occurrence. Although the monazite shows a sample-to-sample variation in La/Nd ratio, the textural varieties from each rock sample are similar with respect to this ratio. Thorium contents in monazite are consistently low (average = ca. 2500 ppm) with unusually high (average = ca. 2200) Th/U ratios. Sensitive high-resolution ion microprobe (SHRIMP) dating of monazite yielded a weighted mean 208Pb/232Th age of 232.9 ± 1.6 Ma, which agrees with a weighted mean 206Pb/238U age of 227.2 ± 8.3 Ma within uncertainties. This age, coupled with comparable intrusion ages documented for kimberlites and monzonite-syenite-gabbro-mangerite suite from central Korea, demonstrates the occurrence of mantle-derived alkaline igneous activities and associated REE mineralization following the North and South China collision. The intrusion of the Hongcheon carbonatite and potassic or ultrapotassic suite in central Korea may have resulted from the post-collisional detachment of the subducted slab and consequent upwelling of hot asthenosphere and melting of the overriding lithospheric mantle. Initial Nd‐Sr isotopic ranges of the Hongcheon carbonatite (εNd = ca. − 26, 87Sr/86Sr = 0.703–0.706) and previous trace element data deny a petrogenetic linkage with the coeval silicate magmas. The metasomatism in the lithospheric mantle source of the Hongcheon carbonatite must have occurred in the distant past (> 1.7 Ga) to generate significantly negative εNd values.  相似文献   

11.
The Alagoinhas pluton is a member of the widespread high‐K calc‐alkaline association of northeastern Brazil. Some authors suggest that this region represents an amalgamation of distinct tectonic terranes assembled during the Brasiliano (Pan‐African) orogeny. Our work compares geochemical data (major, trace and REE) of the Alagoinhas with other plutons of same petrotectonic association (Caruaru‐Arcoverde batholith). These plutons apparently intrude several distinct tectonic terranes, separated by a major E‐W dextral transcurrent system, the East Pernambuco shear zone (EPSZ). Anisotropy of magnetic susceptibility and structural data for the Alagoinhas pluton are used to compare tectonic regimes across the EPSZ. The results indicate that the Caruaru‐Arcoverde batholith and the Alagoinhas pluton evolved from similar sources and were subjected to the same tectonic regime during emplacement, placing severe restrictions on use of the EPSZ as a suture zone between distinct tectonic terranes.  相似文献   

12.
Ground‐penetrating radar surveys across the southern end of the Boco Plain, western Tasmania, revealed a complex sequence of Quaternary glacial and non‐glacial sediments. The subsurface imaging supported previous suggestions of a complex Boco Plain palaeotopography that incorporates a range of depositional environments and multiple constructional events. The ground‐penetrating radar technique enabled imaging of the sediments to 20 m depth, and permitted identification of different sedimentary facies and constructional events due to the significant contrast in dielectric constant within and between the sediments and bedrock. The bedrock and sediment stratigraphy are in broad agreement with drillcore records from the southern end of the Boco Plain and indicate the utility of the method in the initial stages in the investigation of Pleistocene sedimentary sequences of this type.  相似文献   

13.
In the Lycian Basin (SW Turkey), the Miocene Karabay?r and Karaku?tepe formations consist of algal limestone, conglomerate, sandstone, shale and limestone. Total organic carbon (TOC) analysis of the Miocene units show that these formations are poor in organic matter. TOC values are generally between 0.02 and 0.51%, but reach 3.47% in the Karabay?r Formation. Hydrogen indices (HI) are mostly below 600 mgHC/gTOC, increasing to 1200 mgHC/gTOC in the Karabay?r Formation. S2 vs. TOC diagrams are used to evaluate the sedimentary environments and hydrocarbon potential of the Lower–Middle Miocene sediments (the Isparta, Bucak and Korkuteli‐Elmal? areas). The organic material contains about 63 (type I), 35 (type II) and 29 (type II/III) pyrolysable hydrocarbons, respectively. The dominant organic matter is type II kerogens, and hydrocarbon generating potential is quite low. A positive x‐intercept has been calculated in analysed samples according to S2 vs. TOC diagrams; this value shows a rock‐matrix effect. Clay is the main agent of adsorption. Biomarker characteristics also verify these results. Isoprenoid rates are Pr/Ph: 2, Pr/n‐C17: 1.9, and Pr/n‐C18: 0.5, and a high Pr/Ph ratio (pristane/phytane) indicates an oxic environment; the terpane C29 NH/C30 H ratio is >1 for the Karabay?r Formation, and this value indicates a carbonate lithology. On the other hand, the C25 NH/C30 H ratio is <1 for the Karaku?tepe Formation; this indicates that the hydrocarbons were derived from terrestrial organic matter. According to m/z 191 mass fragmentograms, the Miocene units contain oleanane, indicating a Tertiary age. The abundance of sterane C29>C28>C27 shows that the kerogens formed from algal organic matter.  相似文献   

14.
The volcanogenic Woodlawn Cu‐Pb‐Zn sulphide mineralization occurs within a low‐grade metamorphosed sequence of Middle to Upper Silurian felsic volcanics and fine‐grained sedimentary rocks. Studies on a total of 234 rock samples from diamond drill holes have delineated zones of hydrothermally altered rocks extending more than ~500 m laterally from the main ore lens, at least ~100 m into the foot wall and up to ~200 m into the hanging wall. These altered rocks contain virtually no remnants of primary feldspars and ferromagnesian minerals, and they are variably chloritized, sericitized and silicified. Chlorite and disseminated sulphide minerals are most abundant in zone I, a restricted zone of intense alteration immediately around the main ore lens, whereas sericitic muscovite is most abundant in the relatively extensive zone II, further from the ore. Silicification is also a feature of volcanics well beyond the limits of observed phyllosilicate‐rich alteration zones. Chemical changes within the hydrothermally altered rocks include major enrichment of Fe, Mg, S, Si and H2O, more sporadic enrichment of Ag, Ba, Bi, Cd, Cu, Mn, Pb, Sn and Zn, and major depletion of Ca, Na and Sr. K is depleted in zone I and shows considerable variation, but no overall depletion or enrichment, in zone II.

Lithological, mineralogical and geochemical features around the Woodlawn orebody are basically similar to those associated with the younger, unmetamorphosed Kuroko deposits.  相似文献   

15.

An overturned angular fold in the Currabubula Formation at Tulcumba Ridge has a north‐south axial trace exposed along the western side of this ridge. The geometry and position of this fold adjacent to the Mooki Thrust is consistent with its formation as a fault‐propagation fold involving a thrust step‐up angle of ~ 30° from a décollement. Overturned strata also occur adjacent to the Mooki Thrust near the Rocky Creek Syncline to the north and to the south on Gunnan Ridge and in the Werrie Syncline. Overturning of strata in these areas may be the result of fault‐propagation folding. It is suggested that folding in the Tamworth Belt involves thin‐skinned deformation that is dominantly fault‐related.  相似文献   

16.
The Coolgarra Batholith in north‐east Queensland is composed of the Go Sam and Nettle granite suites which were emplaced approximately 314 Ma ago. Initial 87Sr/86Sr ratios of the Nettle Suite appear to be marginally above 0.710, a value characteristic of a wide range of Late Palaeozoic felsic igneous rocks in the region. This suite appears to have been derived from an extensive isotopically homogeneous crustal source distinct from rocks which crop out in the Palaeozoic Hodgkinson Basin or Precambrian Georgetown Inlier. Higher and more variable initial 87Sr/86Sr ratios (0.727–0.744) of the Go Sam Suite are attributed to a combination of magmatic and hydrothermal processes. Isotopic data, thus, cannot be used to constrain the nature of the Go Sam source rocks. Tungsten (with or without tin) mineralization is associated with the Nettle Suite plutons, with which it shares a common age, whereas the Go Sam Suite is characterized by prominent tin mineralization. One tin occurrence is the same age as, or only slightly younger than, the Nettle Suite tungsten (with or without tin) mineralization. Another tin deposit yields an age of 301 Ma, suggesting the presence of a significantly younger granite at depth.  相似文献   

17.
Thirty K‐Ar dates on Cainozoic volcanic rocks lying at the north end of the Bowen Basin suggest that several episodes of volcanism took place at major structural weaknesses. The oldest volcanism (ca 54 m.y.) was located outside the basin structure. The main volcanism (Nebo and East Clermont Provinces) extended from early Oligocene (34–35 m.y.) to mid‐Cainozoic time (21–22 m.y.?). Isolated Pliocene activity is tentatively suggested by dates on Mt St Martin (ca 3 m.y.).

Dating of the Nebo central volcano (31–33 m.y.) supports the model of Wellman &; McDougall, with volcanic activity related to migration of Australia northwards over a mantle magma source. Consideration of the Nebo dates with those of other central volcanoes in north Queensland, suggests that central felsic activity was surrounded by broad zones of peripheral eruptives, petrologically zoned from outer undersaturated basalts to inner saturated basalts. These zones (super provinces) delineate the size and profile of underlying magma sources and appear to trend back in time and space to sea‐floor spreading episodes in the Coral Sea—southeastern Papua region (55 m.y.).

The basalt dates also assist in fixing periods of lateritization (mid‐Oligocene) and in determining approximate minimum erosion rates in the northern Bowen Basin since the Eocene (3–5m/m.y.).  相似文献   

18.
19.
The central, northwestern and western Anatolian magmatic provinces are defined by a large number of late Mesozoic to late Cenozoic collision‐related granitoids. Calc‐alkaline, subalkaline and alkaline intrusive rocks in central Anatolia are mainly metaluminous, shoshonitic, I‐ to A‐types. They cover a petrological range from monzodiorite through quartz monzonite to granite/syenite, and are all enriched in LILE. Their geochemical characteristics are consistent with formation from a subduction‐modified mantle source. Calc‐alkaline plutonic rocks in northwestern Anatolia are mainly metaluminous, medium‐ to high‐K and I‐types. They are monzonite to granite, and all are enriched in LILE and depleted in HFSE, showing features of arc‐related intrusive rocks. Geochemical data reveal that these plutons were derived from partial melting of mafic lower crustal sources. Calc‐alkaline intrusive rocks in western Anatolia are metaluminous, high‐K and I‐types. They have a compositional range from granodiorite to granite, and are enriched in LILE and depleted in HFSE. Geochemical characteristics of these intrusive rocks indicate that they could have originated by the partial melting of mafic lower crustal source rocks.  相似文献   

20.
The Cape Hoskins volcanoes form part of the Quaternary volcanic island arc that extends from Rabaul in the east to the Schouten Islands in the west, and they overlie the northerly dipping New Britain Benioff Zone. The products of the volcanoes range in composition from basalt to rhyolite, and are normative in quartz and hypersthene. They contain phenocrysts of plagioclase and subordinate augite, hypersthene, and in most samples iron‐titanium oxides; some samples also contain olivine or quartz or both, and some pumice contains hornblende and, rarely, biotite.

Chemical analyses of 29 volcanic rocks are presented; 22 were also analysed for 17 minor elements — Rb, Ba, Sr, Pb, Zn, Cu, Zr, Y, Ni, Co, Sc, Cr, V, Ga, B, U, and Th.

Chemically the rocks have many of the characteristics of the ‘island arc tholeiitic series’, but do not show a pronounced relative enrichment in iron and appear to be relatively enriched in Sr. Compared with volcanic rocks from the northern part of the Willaumez Peninsula, they are lower in K (but not Na), Ti, Rb, Ba, Zr, Pb, Th, Ni, and probably also V, Cu, and Zn: these differences are attributed to the greater depth of the Benioff Zone beneath the Willaumez Peninsula. The more basic of the Cape Hoskins rocks are similar in most respects to lavas of comparable composition from Ulawun volcano to the east.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号