首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Al‐Jawf area of northern Saudi Arabia provides spectacular outcrops of Early Devonian carbonate bioherms in the Wadi Murayr and Dumat Al‐Jandal areas. These carbonate bioherms belong to the Qasr Member of the Late Pragian–Early Emsian Jauf Formation (~405 Ma) and are surrounded by a bioclastic carbonate succession. The Qasr Member is the first major carbonate unit of the Palaeozoic succession in Saudi Arabia that mainly consists of microbialite carbonates and metazoan reefs exhibiting distinct mound features. These bioherm complexes and their associated carbonate facies are pervasively dolomitized. Stratigraphic, petrographic and geochemical analyses were conducted to determine the facies distribution and interpret their depositional and diagenetic processes. A total of 11 facies are identified from a range of depositional environments within a carbonate platform system, ranging from tidal flats, lagoon, shoal, patch reefs to reef front. The main diagenetic processes are carbonate cementation and dolomitization. Dolomitization occurred as both fabric preserved (mostly in grain‐dominated facies) and fabric destructive (mud‐dominated facies). The microbialites and coralline sponges facies show poor reservoir with visual porosity less than 5%, but this succession may have a potential to serve as a good source for the underlying and overlying facies. Ooid and peloidal grainstone facies show fair to good visual porosity that locally exceeds 10% with intergranular porosity as the dominant type. However, in the most studied samples, vuggy and intraparticle porosities are observed as the dominant type. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Lithofacies analysis is fundamental to unravelling the succession of depositional environments associated with sea‐level fluctuations. These successions and their timing are often poorly understood. This report defines lithofacies encountered within the north‐eastern North Carolina and south‐eastern Virginia Quaternary section, interprets their depositional environments, presents a model for coastal depositional sequence development in a passive margin setting and uses this understanding to develop the stratigraphy and Quaternary evolutionary history of the region. Data were obtained from numerous drill cores and outcrops. Chronology was based on age estimates acquired using optically stimulated luminescence, amino acid racemization, Uranium series and radiocarbon dating techniques. Geomorphic patterns were identified and interpreted using light detection and ranging imagery. Since lithofacies occurrence, distribution and stratigraphic patterns are different on interfluves than in palaeo‐valleys, this study focused on interfluves to obtain a record of highstand sea‐level cycles with minimal alteration by fluvial processes during subsequent lowstands. Nine primary lithofacies and four diagenetic facies were identified in outcrops and cores. The uppermost depositional sequence on interfluves exhibits an upward succession from shelly marine lithofacies to tidal estuarine lithofacies and is bounded below by a marine ravinement surface and above by the modern land surface. Older depositional sequences in the subsurface are typically bounded above and below by marine ravinement surfaces. Portions of seven depositional sequences were recognized and interpreted to represent deposition from late middle Pleistocene to present. Erosional processes associated with each successive depositional sequence removed portions of older depositional sequences. The stratigraphic record of the most recent sea‐level highstands (Marine Isotope Stage 5a and Marine Isotope Stage 3) is best preserved. Glacio‐isostatic adjustment has influenced depositional patterns so that deposits associated with late Quaternary sea‐level highstands (Marine Isotope Stages 5c, 5a and 3), which did not reach as high as present sea‐level according to equatorial eustatic records, are uplifted and emergent within the study area.  相似文献   

3.
With continuous outcrops, developed shoal fades rocks, complete types of diagenesis and changeable diagenetic environments, Cambrian strata are well developed in the Xiadong area, Yichang, Hubei Province. Under the combined influence of numerous diageneses, secondary pores can be formed, which result in better reservoir properties of the rock strata.The Cambrian rocks in this area consist of mainly carbonate rocks and secondarily detrital rocks. The carbonate rocks are dominated by grainstones including wormkalk, calcirudite-calcarenite, oolitic limestone and oncolitic limestone. Graded bedding and cross bedding are well developed in the strata, which indicates that the formation environment is of a high-energy shoal facies.In this area, there has developed a sequence of stable Cambrian platform carbonate deposition. The evolution trend is as follows: open sea shelf facies→intertidal low-energy restricted sea facies→Hntertidal high-energy shoal facies→coastal shoal facies→evaporite tidal-flat facies  相似文献   

4.
中下扬子区广泛分布着三叠纪滩相、潮坪相和岩溶带三类碳酸盐岩。根据成岩作用类型、成岩组构、孔隙类型和成岩环境等特征对三类岩石进行比较。滩相碳酸盐岩主要成岩作用是在海水渗流、潜流和淡水渗流、潜流成岩环境下产生的胶结、云化和溶解作用。潮坪相交代白云岩和富含石膏的蒸发岩则以高盐度的海水渗流带的准同生毛细管蒸发浓缩云化作用为主。在大气淡水渗流或潜流成岩环境下则以去云化、去膏化和溶解作用为主。岩溶带碳酸盐岩-蒸发盐岩及其岩溶堆积角砾岩主要经历早期海水强烈蒸发作用下准同生云化作用和晚期表生淡水环境下的岩溶作用。上述主要成岩作用使三类岩石次生孔隙率增加。因此,成岩作用对其成为有希望的储层起到了主导作用。  相似文献   

5.
The study area is located in the east Tabas Block in Central Iran. Facies analysis of the Qal’eh Dokhtar Formation (middle Callovian to late Oxfordian) was carried out on two stratigraphic sections and applied to depositional environment and sequence stratigraphy interpretation. This formation conformably overlies and underlies the marly-silty Baghamshah and the calcareous Esfandiar formations, respectively. Lateral and vertical facies changes documents low- to high energy environments, including tidal-flat, beach to intertidal, lagoon, barrier, and open-marine. According to these facies associations and absence of resedimentation deposits a depositional model of a mixed carbonate–siliciclastic ramp was proposed for the Qal’eh Dokhtar Formation. Seven third-order depositional sequences were identified in each two measured stratigraphic sections. Transgressive systems tracts (TSTs) show deepening upward trends, i.e. shallow water beach to intertidal and lagoonal facies, while highstand systems tracts (HST) show shallowing upward trends in which deep water facies are overlain by shallow water facies. All sequence boundaries (except at the base of the stratigraphic column) are of the no erosional (SB2) types. We conclude eustatic rather than tectonic factors played a dominant role in controlling carbonate depositional environments in the study area.  相似文献   

6.
《China Geology》2020,3(3):425-444
Increasing interests in hydrocarbon resources at depths have drawn greater attentions to the deeply-buried carbonate reservoirs in the Tarim Basin in China. In this study, the cyclic dolomite rocks of Upper Cambrian Lower Qiulitag Group from four outcrop sections in northwestern Tarim Basin were selected to investigate and evaluate the petrophysical properties in relation to depositional facies and cyclicity. The Lower Qiulitag Group includes ten lithofacies, which were deposited in intermediate to shallow subtidal, restricted shallow subtidal, intertidal, and supratidal environments on a carbonate ramp system. These lithofacies are vertically stacked into repeated shallowing-upward, meter-scale cycles which are further grouped into six third-order depositional sequences (Sq1 to Sq6). There are variable types of pore spaces in the Lower Qiulitag Group dolomite rocks, including interparticle, intraparticle, and fenestral pores of primary origin, inter crystal, and vuggy pores of late diagenetic modification. The porosity in the dolomites is generally facies-selective as that the microbially-originated thrombolites and stromatolites generally yield a relatively high porosity. In contrast, the high-energy ooidal grainstones generally have very low porosity. In this case, the microbialite-based peritidal cycles and peritidal cycle-dominated highstand (or regressive) successions have relatively high volumes of pore spaces, although highly fluctuating (or vertical inhomogeneous). Accordingly, the grainstone-based subtidal cycles and subtidal cycle-dominated transgressive successions generally yield extremely low porosity. This scenario indicates that porosity development and preservation in the thick dolomite successions are primarily controlled by depositional facies which were influenced by sea-level fluctuations of different orders and later diagenetic overprinting.  相似文献   

7.
The relationship between diagenetic chlorite rims and depositional facies in deltaic strata of the Lower Cretaceous Missisauga Formation was investigated using a combination of electron microprobe, bulk geochemistry and X‐ray diffraction data. The succession studied comprises several stacked parasequences. The delta progradational facies association includes: (i) fluvial or distributary channel sandstones (some with tidal influence); (ii) thick‐bedded delta‐front graded beds of sandstone interpreted as resulting from fluvial hyperpycnal flow during floods and storms; and (iii) more distal muddier delta‐front and prodeltaic facies. The transgressive facies association includes lag conglomerate, siderite‐cemented muddy sandstone and mudstone, and bioclastic sandy limestone. Chlorite rims are absent in the fluvial facies and best developed in thick sandstones lacking mudstone baffles. Good quality chlorite rims are well correlated with Ti in bulk geochemistry. Ti is a proxy for Fe availability, principally from the breakdown of abundant detrital ilmenite (FeTiO3). Under conditions of sea floor diagenesis, the abrupt decrease in sedimentation rate at transgressive surfaces caused progressive shallowing of the sulphate‐depletion level and of the overlying Eh‐controlled diagenetic zones, resulting in conditions suitable for diagenetic formation of berthierine to migrate upwards through the packet of reservoir sandstones. This early diagenetic berthierine suppressed silica cementation and later recrystallized to chlorite. Thick euhedral outer chlorite rims were precipitated from formation water in sandstone lacking muddy baffles on this chlorite substrate and inhibited late carbonate cementation. This study thus shows that the preservation of porosity by chlorite rims is a two‐stage process. Rapidly deposited delta‐front turbidite facies create early diagenetic conditions that eventually lead to the formation of chlorite rims, but the best quality chlorite rims are restricted to sandstones with high permeability during burial diagenesis.  相似文献   

8.
The Early Cretaceous Fahliyan Formation (middle part of the Khami Group), is one of the important reservoir rocks in the Zagros Fold-Thrust Belt. The Zagros Fold-Thrust Belt is located on the boundary between the Arabian and Eurasian lithospheric plates and formed from collision between Eurasia and advancing Arabia during the Cenozoic. In this study area, the Fahliyan Formation with a thickness of 325 m, consists of carbonate rocks (limestone and dolomite). This formation overlies the Late Jurassic Surmeh Formation unconformably and underlies the Early Cretaceous Gadvan Formation conformably at Gadvan Anticline. The formation was investigated by a detailed petrographic analysis to clarify the depositional facies, sedimentary environments and diagenetic features in the Gadvan Anticline. Petrographic studies led to recognition of the 12 microfacies that were deposited in four facies belts: tidal flat, lagoon, and shoal in inner ramp and shallow open marine in mid-ramp environments. The absence of turbidite deposits, reefal facies, and gradual facies changes show that the Fahliyan Formation was deposited on a carbonate ramp. Calcareous algae and benthic foraminifera are abundant in the shallow marine carbonates of the Fahliyan Formation. The diagenetic settings favored productioning a variety of features which include cements from early to late marine cements, micritization, dolomitization, compaction features, dissolution fabric, and pores. The diagenetic sequence can be roughly divided into three stages: (1) eugenic stage: marine diagenetic environment, (2) mesogenic stage: burial environment, and (3) telogenic stage: meteoric diagenetic environment.  相似文献   

9.
Upper Callovian to Tithonian (late Jurassic) sediments represent an important hydrocarbon reservoir in the Kopet‐Dagh Basin, NE Iran. These deposits consist mainly of limestone, dolostone, and calcareous mudstone with subordinate siliciclastic interbeds. Detailed field surveys, lithofacies and facies analyses at three outcrop sections were used to investigate the depositional environments and sequence stratigraphy of the Middle to Upper Jurassic interval in the central and western areas of the basin. Vertical and lateral facies changes, sedimentary fabrics and structures, and geometry of carbonate bodies resulted in recognition of various carbonate facies related to tidal flats, back‐barrier lagoon, shelf‐margin/shelf‐margin reef, slope and deep‐marine facies belts. These facies were accompanied by interbedded beach and deep marine siliciclastic petrofacies. Field surveys, facies analysis, parasequences stacking patterns, discontinuity surfaces, and geometries coupled with relative depth variation, led to the recognition of six third‐order depositional sequences. The depositional history of the study areas can be divided into two main phases. These indicate platform evolution from a rimmed‐shelf to a carbonate ramp during the late Callovian–Oxfordian and Kimmeridgian–Tithonian intervals, respectively. Significant lateral and vertical facies and thickness changes, and results obtained from regional correlation of the depositional sequences, can be attributed to the combined effect of antecedent topography and differential subsidence related to local tectonics. Moreover, sea‐level changes must be regarded as a major factor during the late Callovian–Tithonian interval. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The present study deals with the depositional facies, diagenetic processes and sequence stratigraphy of the shallow marine carbonates of the Samana Suk Formation, Kohat Basin, in order to elucidate its reservoir quality. The Samana Suk Formation consists of thin to thick-bedded, oolitic, bioclastic, dolomitic and fractured limestone. Based on the integration of outcrop, petrographic and biofacies analyses, the unit is thought to have been deposited on a gentle homoclinal ramp in peritidal, lagoonal and carbonate shoal settings. Frequent variations in microfacies based sea-level curve have revealed seven Transgressive Systems Tracts (TSTs) and six Regressive Systems Tracts (RSTs). The unit has undergone various stages of diagenetic processes, including mechanical and chemical compaction, cementation, micritization, dissolution and dolomitization. The petrographic analyses show the evolution of porosity in various depositional and diagenetic phases. The fenestral porosity was mainly developed in peritidal carbonates during deposition, while the burial dissolution and diagenetic dolomitization have greatly enhanced the reservoir potential of the rock unit, as is further confirmed by the plug porosity and permeability analyses. The porosities and permeabilities were higher in shoal facies deposited in TSTs, as compared to lagoonal and peritidal facies, except for the dolomite in mudstone, deposited during RSTs. Hence good, moderate and poor reservoir potential is suggested for shoal, lagoonal and peritidal facies, respectively.  相似文献   

11.
The Maastrichtian Patti Formation, which consists of shale - claystone and sandstone members, constitutes one of the three Upper Cretaceous lithostratigraphic units of the intracratonic southeastern Bida Basin, in central Nigeria. Well exposed outcrops of this formation were investigated at various locations around the confluence of the Niger and Benue Rivers. The lithostratigraphic sections were measured and their peculiar sedimentological features such as textures, physical and biogenic sedimentary structures, facies variations and associations were documented and used to interpret the depositional environments and develop a paleogeographic model. Some selected representative samples of the sedimentary depositional facies were also subjected to grain size analysis.Three shoreline sedimentary depositional facies composed of shoreface, tidal channel, and tidal marsh to coastal swamp facies were recognized in the study area. Continental sedimentary depositional facies such as fluvial channel, swamp, and overbank were also documented. The sandstones of the shoreface and tidal channel facies are medium- to coarse-grained, moderately sorted (standard deviation ranges from 0.45–1.28 averaging 0.72), and quartzarenitic. The fluvial channel sandstone facies are coarse- to very coarse-grained, mostly poorly sorted (standard deviation ranges from 0.6–1.56 averaging 1.17), and subarkosic. Typical sedimentary structures displayed by the shoreface and tidal channel facies include burrows, clay drapes, hummocky and herringbone cross stratifications, whereas the fluvial channel sandstone facies are dominated by massive and planar cross beddings. The tidal marsh to coastal swamp shales and ferruginised siltstone facies are fossiliferous and bioturbated, whereas the nonmarine swamp siltstones contain vegetal imprints and lignite interbeds. The overbank claystone facies are massive and kaolinitic.In the study area, a regressive to transgressive model is proposed for the Patti Formation. This model correlates with stratigraphically equivalent sediments of the Ajali and Mamu Formations in the adjacent Anambra Basin to a great extent.  相似文献   

12.
The primary goals of seismic interpretation and quantification are to understand and define reservoir architecture and the distribution of petrophysical properties. Since seismic interpretation is associated with major uncertainties, outcrop analogues are used to support and improve the resulting conceptual models. In this study, the Miocene carbonates of Cerro de la Molata (Las Negras, south‐east Spain) have been selected as an outcrop analogue. The heterogeneous carbonate rocks of the Cerro de la Molata Platform were formed by a variety of carbonate‐producing factories, resulting in various platform morphologies and a wide range of physical properties. Based on textural (thin sections) and petrophysical (porosity, density, carbonate content and acoustic properties) analyses of the sediments, eleven individual facies types were determined. The data were used to produce synthetic seismic profiles of the outcrop. The profiles demonstrate that the spatial distribution of the facies and the linked petrophysical properties are of key importance in the appearance of the synthetic seismic sections. They reveal that carbonate factory and facies‐specific reflection patterns are determined by porosity contrasts, diagenetic modifications and the input of non‐carbonate sediment. The reflectors of the seismograms created with high‐frequency wavelets are coherent with the spatial distribution of the predefined facies within the depositional sequences. The synthetic seismograms resulting from convolution with lower frequency wavelets do not show these details – the major reflectors coincide with: (i) the boundary between the volcanic basement and the overlying carbonates; (ii) the platform geometries related to changes in carbonate factories, thus sequence boundaries; and (iii) diagenetic zones. Changes in seismic response related to diagenesis, switching carbonate producers and linked platform geometries are important findings that need to be considered when interpreting seismic data sets.  相似文献   

13.
Hybrid depositional systems are created by the interaction of two or more hydrodynamic processes that control facies distribution and their characteristics in terms of sedimentary structures and depositional geometry. The interaction of wave and tide both in the geological sedimentary record and modern environments has been rarely described in the literature. Mixed coastal environments are identified by the evidence of wave and tidal structures and are well identified in nearshore environments, while their recognition in lower shoreface–offshore environments lacks direct information from modern settings. Detailed field analyses of 10 stratigraphic sections of the Lower Ordovician succession (Fezouata and Zini formations; Anti‐Atlas, Morocco) have allowed the definition of 14 facies, all grouped in four facies zones belonging to a storm‐dominated, wave‐dominated sedimentary siliciclastic system characterized by symmetrical ripples of various scales. Peculiar sedimentary organization and sedimentary structures are observed: (i) cyclical changes in size of sedimentary structures under fair‐weather or storm‐weather conditions; (ii) decimetre‐deep erosional surfaces in swaley cross‐stratifications; (iii) deep internal erosion within storm deposits; (iv) discontinuous sandstone layers in most depositional environments, and common deposition of sandstones with a limited lateral extension, interpreted to indicate that deposition at all scales (metric to kilometric) is discontinuous; (v) combined flow–oscillation ripples showing aggrading–prograding internal structures alternating with purely aggrading wave ripples; and (vi) foreshore environments characterized by alternating phases of deposition of parallel stratifications, small‐scale and large‐scale ripples and tens of metres‐wide reactivation surfaces. These characteristics of deposition suggest that wave intensity during storm‐weather or fair‐weather conditions was continuously modulated by another controlling factor of the sedimentation: the tide. However, tidal structures are not recognized, because they were probably not preserved due to dominant action of storms and waves. A model of deposition is provided for this wave‐dominated, tide‐modulated sedimentary system recording proximal offshore to intertidal–foreshore environments, but lacking diagnostic tidal structures.  相似文献   

14.
碳酸盐岩成岩作用与孔隙演化   总被引:20,自引:1,他引:20  
王英华 《沉积学报》1992,10(3):85-95
在总结我国碳酸盐岩沉积和成岩基本特征的基础上,阐明有利于孔隙形成的白云石化、去膏、去云化、淡水和埋藏溶解等作用,以及破坏性成岩作用的特征和识别标志。成岩地质体是成岩环境的产物,可根据成岩组构、地球化学和发光特征等加以鉴别。成岩模式是成岩组合、成岩特征和孔隙演化的总概括,以滩相成岩模式展示了成岩相与孔隙的关系。  相似文献   

15.
Modern and ancient tidal straits are the least well understood of all tide‐dominated depositional systems. To provide an increased understanding of these systems, a facies‐based depositional model is assessed by comparing multibeam surveys of three present‐day tidally dominated seaways with a number of superbly exposed Neogene‐to‐Quaternary strait‐fill successions of Calabria (south Italy). The model points out the existence of four depositional zones, laterally adjacent from the narrowest strait centre to its terminations, distributed along symmetrical or asymmetrical seaways. These zones, whose signature is recorded in four facies associations in the Calabrian tidal straits, are as follows: (i) the strait‐centre zone, associated with the tidal current maxima and where sediments are scarce or absent; (ii) the dune‐bedded zone, where sediments form dune complexes due to tidal flow expansion; (iii) the strait‐end zone, where currents decelerate accumulating thinly bedded, fine‐grained deposits; and (iv) the strait‐margin zone, where sediment massflows descend tectonically active, steep margins towards the strait axis. In ancient, tectonically confined, narrow seaways, these facies generate a distinctive deepening‐upward vertical succession, where tidal currents are the dominant process in the sediment distribution.  相似文献   

16.
Interaction of metalliferous continental brines with biogenic sulphide is the basis of some syngenetic and early diagenetic models for the formation of Cu‐(Pb‐Zn) sulphides during a depositional cycle of carbonates in restricted marine environments. A variation of these models (an ‘evaporative concentration‐lateral groundwater flow’ model) is proposed, using hydrological, geochemical and biological data from low metal, but otherwise pertinent redbed‐associated, sabkha, tidal flat and subtidal environments at Nilemah Embayment, in Hamelin Pool (Shark Bay, Western Australia).

The model is constrained by: (i) the short time available for ore accumulation during a single depositional cycle; (ii) limitation of adequate rates of bacterial sulphate reduction for the formation of an ore deposit to near‐surface sediments; (iii) restriction of the most favourable ore‐forming sites to the intertidal zone and the littoral shelf; (iv) coincidence in these sites of laterally‐flowing marine/meteoric groundwater brine, and mosaics of in situ cyanobacterial mats and shallow erosional depressions containing detrital organic matter eroded from the mats. Under these conditions the metalliferous fluid would have to contain about 1000 ppm Cu and flow for 1000 years at a rate of 5 m/a through the intertidal/littoral shelf environment to produce an ore deposit.

Critical features of a model that could generate this combination of very high metal concentrations and flow rates are: (i) a highly permeable unconfined aquifer system comprising alluvial fans at the base of basaltic mountain ranges and continental redbeds beneath a broad coastal plain; (ii) mobilization, concentration and transport of the metals in this aquifer to intertidal/littoral shelf sites of ore deposition; (iii) effective concentration processes in the aquifer, involving evaporation and reflux of brines in groundwater discharge areas on the coastal plain and evaporation in marine‐continental and marine sabkhas bordering the sites of deposition; (iv) rapid lateral groundwater flow of the concentrated metalliferous brines under a strong seawards‐directed hydraulic gradient; and (v) discharge of the metalliferous brines into or through topographic depressions generated by erosion and shoaling in the peritidal and littoral shelf environments.

The model hydrodynamic processes and their magnitude are within the range observed in modern environments but they are most likely to be effective in coarse‐grained, topographically irregular carbonate sabkhas and tidal flats, which usually form under high‐energy conditions. Even under these conditions, the individual ore‐forming processes must combine in an optimum manner before the highly demanding metal concentrations and flow rates required for ore formation in a single marine depositional cycle can be met.  相似文献   

17.
The depositional facies and environments were unraveling by studying 21 subsurface sections from ten oilfields in the central and southern Iraq and a large number of thin sections of the Nahr Umr (siliciclastic deposit) Formation (Albian). This formation is mainly composed of sandstone interlaminated with minor siltstone and shale, with occurrence of thin limestone beds. Nahr Umr Formation is subdivided into three lithostratigraphic units of variable thicknesses on the basis of lithological variations and log characters. Mineralogically and texturally, mature quartz arenite and sandstones are the common type of the Nahr Umr Formation. The sandstones are cemented by silica and calcite material and have had a complex digenetic history. Compaction, dissolution, and replacements are the main diagenetic processes. Prodelta, distal bar, distributary mouth bar, distributary channel, over bank, and tidal channel are the main depositional environments recognized for the Nahr Umr Formation, within the studied wells. This formation was deposited in shallow marine and fluvial–deltaic environments and exhibit progradational succession of facies. Eight sedimentary facies that have been identified in the Nahr Umr Formation include claystone lithofacies, claystone siltstone lithofacies, lenticular-bedded sandstone–mudstone lithofacies, wavy-bedded sandstone–mudstone lithofacies, flaser-bedded sandstone–mudstone lithofacies, parallel and cross lamination sandstone lithofacies, trough cross-bedded sandstone lithofacies, and planar cross-bedded sandstone lithofacies. The depositional model of the Nahr Umr Formation environment was built based on the lithofacies association concepts.  相似文献   

18.
鸳鸯沟洼陷西斜坡成岩作用定量表征及有利区带预测   总被引:3,自引:0,他引:3  
储层实测孔隙度、普通薄片、铸体薄片和扫描电镜的资料表明,辽河坳陷鸳鸯沟洼陷西斜坡新生界储层在纵向上发育三个次生孔隙带。从而在一个普遍低孔渗背景下,形成了孔隙度相对较高的优质储层。优质储层的形成和分布主要受沉积微相和成岩作用的双重影响与控制。它们形成于辫状分流河道、河口坝+席状砂沉积微相,目前处于早成岩阶段B期—中成岩阶段A1亚期,发育溶蚀成岩相。该文通过成岩作用定量表征方法,预测了鸳鸯沟洼陷西斜坡成岩阶段和成岩相的横向展布。通过成岩相图和沉积微相图的叠合,预测了沙三中上亚段优质储层的分布。预测结果表明,优质储层主要发育于斜坡区的中部。  相似文献   

19.
Late Palaeozoic‐age strata from the Capitan Reef in west Texas show facies‐dependent heterogeneity in the sulphur isotopic composition of carbonate‐associated sulphate, which is trace sulphate incorporated into carbonate minerals that is often used to reconstruct the sulphur isotopic composition of ancient seawater. However, diagenetic pore fluid processes may influence the sulphur isotopic composition of carbonate‐associated sulphate. These processes variously modify the sulphur isotopic composition of incorporated sulphate from syndepositional seawater in shelf crest, outer shelf, shelf margin and slope depositional settings. This study used a new multicollector inductively‐coupled plasma mass spectrometry technique to determine the sulphur isotopic composition of samples of individual depositional and diagenetic textures. Carbonate rocks representing peritidal facies in the Yates and Tansill formations preserve the sulphur isotopic composition of Guadalupian seawater sulphate despite alteration of the carbon and oxygen isotopic compositions by meteoric and dolomitizing diagenetic processes. However, sulphur isotopic data indicate that limestones deposited in reef and slope facies in the Capitan and Bell Canyon formations largely incorporate sulphate from anoxic marine‐phreatic pore fluids isotopically modified from seawater by microbial sulphate reduction, despite generally preserving the carbon and oxygen isotopic compositions of Permian seawater. Some early and all late meteoric calcite cements have carbonate‐associated sulphate with a sulphur isotopic composition distinct from that of Permian seawater. Detailed petrographic and sedimentary context for carbonate‐associated sulphate analyses will allow for improved reconstructions of ancient seawater composition and diagenetic conditions in ancient carbonate platforms. The results of this study indicate that carbonate rocks that diagenetically stabilize in high‐energy environments without pore fluid sulphate gradients can provide a robust archive of ancient seawater's sulphur isotopic composition.  相似文献   

20.
Spatial information on lithofacies from outcrops is paramount for understanding the internal dynamics, external controls and degree of predictability of the facies architecture of shallow‐water carbonate‐platform tops. To quantify the spatial distribution and vertical stacking of lithofacies within an outer‐platform shoal‐barrier complex, integrated facies analysis and digital field technologies have been applied to a high‐relief carbonate platform exposed in the Djebel Bou Dahar (Lower Jurassic, High Atlas, Morocco). The outer platform is characterized by subtidal, cross‐bedded, coarse grainstone to rudstone grading into supratidal, pisoidal packstone‐rudstone with tepees that together formed a 350 to 420 m wide shoal‐barrier belt parallel to the margin. This belt acted as a topographic high separating a restricted lagoon from the subtidal, open marine region. Low‐energy tidal flats developed on the protected flank of the barrier facing the lagoon. Lithofacies patterns were captured quantitatively from outcrop and integrated into a digital outcrop model. The outcrop model enabled rapid visualization of field data and efficient extraction of quantitative data such as widths of facies belts. In addition, the spatial heterogeneity was captured in multiple time slices, i.e. during different phases of cyclic base‐level fluctuations. In general, the lateral continuity of lithofacies is highest when relative water depth increased during flooding of the platform top, establishing low‐energy subtidal conditions across the whole platform, and when the accommodation space was filled with tidal flat facies. Heterogeneity increased during deposition of the relief‐building bar facies that promoted spatial diversification of depositional environments during the initial phases of accommodation space creation. Cycles commonly are composed of a thin transgressive tidal flat unit, followed by coated‐grain rudstone bar facies. Lateral to the bar facies, pisoidal‐grainstone beach deposits accumulated. These bar and beach deposits were overlain by subtidal lagoonal facies or would grow through the maximum flooding and highstand. There the bars either graded into supratidal pisoidal facies with tepees (when accommodation space was filled) or were capped by subaerial exposure (due to a sea‐level fall). Modified embedded Markov analysis was used to test the presence of common ordering in vertical lithofacies stacking in a stationary interval (constant depositional mode). Analysis of individual sections did not reveal any ordering, which may be related to the limited thickness of these sections. Composite sections, however, rejected the null hypothesis of randomness. The addition of stratigraphically significant information to the Markov analysis, such as exposure surfaces and lateral dimensions of facies bodies, strengthens the verdict of unambiguous preferential ordering. Through careful quantitative reconstruction of stratal geometry and facies relationships in fully integrated digital outcrop models, accurate depositional models could be established that enhanced the predictability of carbonate sediment accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号