首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Zircon fission track dating and track length analysis in the high‐grade part of the Asemigawa region of the Sanbagawa belt demonstrates a simple cooling history passing through the partial annealing zone at 63.2 ± 5.8 (2 σ) Ma. Combining this age with previous results of phengite and amphibole K–Ar and 40Ar/39Ar dating gives a cooling rate of between 6 and 13 °C Myr?1, which can be converted to a maximum exhumation rate of 0.7 mm year?1 using the known shape of the P–T path. This is an order of magnitude lower than the early part of the exhumation history. In contrast, zircon fission track analyses in the low‐grade Oboke region show that this area has undergone a complex thermal history probably related to post‐orogenic secondary reheating younger than c. 30 Ma. This event may correlate with the widespread igneous activity in south‐west Japan around 15 Ma. The age of subduction‐related metamorphism in the Oboke area is probably considerably older than the generally accepted range of 77–70 Ma.  相似文献   

2.
The fluorite of Santa Catarina that occurs in veins cutting Precambrian granitic rocks of coastal Brazil has been difficult to date by Rb/Sr, K/Ar and Sm/Nd methods. New fission track dating of apatite in granites next to the veins yields ages of 144–76 Ma, which are related to the opening of the South Atlantic Ocean. Four groups of fission track ages were identified: the ca 145 Ma group is a hydrothermal event that preceded fluorite mineralization; the second group of ages, 131–107 Ma, records the first hydrothermal mineralizing event; the third group, 98–93 Ma, represents the second hydrothermal mineralizing event; and the fourth group, 89–76 Ma, dates the last hydrothermal mineralizing event. As shown by previous studies, the temperatures of these events varied from 170° to 70°C, but the last hydrothermal event occurred during a gradual cooling. The smaller lengths of the confined fission tracks from the fourth event support this interpretation. These results are based on sixteen carefully selected samples from four veins ranging from 1 to 4 m in thickness. The ages of these samples were established using the standard methods of fission track dating. Our study clearly demonstrates the value of apatite fission track dating for deposits whose mineralization occurred over a long time span at a wide range of temperatures.  相似文献   

3.
Anorthositic series apatites of the Duluth Complex, Minnesota, USA, have high spontaneous fission‐track densities of up to ~107 cm–2 and a homogeneous age of ~900 Ma, allowing high‐precision fission‐track dating based on LA–ICP–MS U analysis. Absolute fission‐track dating, track‐length measurement and chemical composition analysis were performed to evaluate a cooling history, which is essential for age reference materials. Preliminary inverse modelling for a sample with a shortened track‐length distribution yielded a monotonic cooling history from ~100°C at 925 Ma. The apatites incur an over‐etching problem when employing the commonly used etching protocol involving 5.5 M HNO3.  相似文献   

4.
The existence of the Cretaceous-Tertiary (K/T) boundary in the non-marine succession is expected at Jiayin in the Heilongjiang River area, China. Zircons from a tuff sample from the Baishantou Member of Wuyun Formation in Jiayin were analyzed by the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating and fission-track dating methods. Ages of 64.1±0.7 Ma (U-Pb) and 61.7±1.8 Ma (fission-track dating) were obtained, which allow re-evaluation of a previously reported late Maastrichian age for the tuff layer that was in conflict with the paleontological evidence. These results confirm the Danian age of the section in agreement with the paleontological evidence.  相似文献   

5.
MINERALIZATION AGES OF GOLD-HYDROTHERMAL DEPOSITS IN NORTHERN ZONE OF EASTERN KUNLUN MOUNTAINS BASED ON FISSION TRACK ANALYSIStheOpenLaboratoryofNuclearAnalysisTechniques;;ChineseAcademyofSciences  相似文献   

6.
Five samples of muscovite from mylonites of the earlier Tanlu ductile shear zone on the eastern margin of the Dabie Mountains yield 40Ar/39Ar ages ranging from 178 Ma to 196 Ma. Three of them have reliable plateau ages of 188.7±0.7 Ma, 189.7±0.6 Ma and 192.5±0.7 Ma respectively, which indicates a syn-orogenic, sinistral strike-slip thermal event. This displacement movement derived from the continent-continent collision of the North and South China blocks took place in the Early Jurassic and after uplifting of high-pressure to ultrahigh-pressure slabs to the mid-crust. It is suggested that during the collision the Tanlu fault zone was an intracontinental transform fault caused by differential subduction speeds. The 40Ar/39Ar ages of mylonite whole-rock and muscovite from the later Tanlu ductile shear zone suggest another sinistral strike-slip cooling event at 128 Ma. During this strike-slip faulting, large-scale intrusion and doming uplift occurred in the eastern part of the Dabie orogenic belt. Data o  相似文献   

7.
By using the 40Ar-39Ar chronological method to date K-feldspar from K-feldspar granite in the Qiaohuote copper district, the authors obtained a plateau age of 274.78±0.44 Ma and an isochron age of 272.7±3.0 Ma. Because there is no tectonic deformation overprinted or hydrothermal alteration in the K-feldspar granite intrusion after its emplacement, the 40Ar-39Ar age represents the crystallization age of K-feldspar in K-feldspar granite, i.e. the late crystallization age of the K-feldspar granite intrusion, which indicates that the K-feldspar granite formed in the intraplate extensional stage during the Early Permian. Moreover, based on the spatial relationship between the K-feldspar granite intrusion and copper orebodies, variations of copper ore grade, REE characteristics of K-feldspar granite and copper ores, and H and O isotopic compositions of fluid inclusions in copper ores, the metallogenesis of the Qiaohuote copper deposit is directly related to intrusive activities of the K-feldspar granite, and  相似文献   

8.
Hornblende from the Lone Grove Pluton, Llano Uplift, Texas, has served as an irradiation reference material in 40Ar/39Ar studies for decades. In order to evaluate the apparent age bias that currently exists between the U‐Pb and 40Ar/39Ar systems, zircon and titanite were dated by isotope dilution‐thermal ionisation mass spectrometry (ID‐TIMS) from the same rock from which the hornblende 40Ar/39Ar reference material HB3gr is derived. Zircon U‐Pb data indicate initial crystallisation at 1090.10 ± 0.16 Ma (2s), a date that is 1.7% older than the accepted K‐Ar date (1072 ± 14 Ma, 2s) for HB3gr; an offset that exceeds the typical 0.5–1% bias between the two systems, though remaining within uncertainty due to the large uncertainties in the 40K decay constant. Zircon data are presented using both EARTHTIME tracers ET535 and ET2535 and are statistically indistinguishable. Single grain titanite analyses range between 1082 ± 0.75 and 1086 ± 0.81 Ma (2s) and are interpreted to record the subsequent cooling following crystallisation at rates between 30 and 50 °C Ma?1. This is supported by the observation that hornblende 40Ar/39Ar dates corrected for decay constant bias are resolvably younger than the zircon U‐Pb date and in good agreement with titanite U‐Pb dates, permitting the conclusion that both titanite U‐Pb and hornblende 40Ar/39Ar systems provide a record of cooling.  相似文献   

9.
Carboniferous‐Permian volcanic complexes and isolated patches of Upper Jurassic — Lower Cretaceous sedimentary units provide a means to qualitatively assess the exhumation history of the Georgetown Inlier since ca 350 Ma. However, it is difficult to quantify its exhumation and tectonic history for earlier times. Thermochronological methods provide a means for assessing this problem. Biotite and alkali feldspar 40Ar/39Ar and apatite fission track data from the inlier record a protracted and non‐linear cooling history since ca 750 Ma. 40Ar/39Ar ages vary from 380 to 735 Ma, apatite fission track ages vary between 132 and 258 Ma and mean track lengths vary between 10.89 and 13.11 μm. These results record up to four periods of localised accelerated cooling within the temperature range of ~320–60°C and up to ~14 km of crustal exhumation in parts of the inlier since the Neoproterozoic, depending on how the geotherm varied with time. Accelerated cooling and exhumation rates (0.19–0.05 km/106 years) are observed to have occurred during the Devonian, late Carboniferous‐Permian and mid‐Cretaceous — Holocene periods. A more poorly defined Neoproterozoic cooling event was possibly a response to the separation of Laurentia and Gondwana. The inlier may also have been reactivated in response to Delamerian‐age orogenesis. The Late Palaeozoic events were associated with tectonic accretion of terranes east of the Proterozoic basement. Post mid‐Cretaceous exhumation may be a far‐field response to extensional tectonism at the southern and eastern margins of the Australian plate. The spatial variation in data from the present‐day erosion surface suggests small‐scale fault‐bounded blocks experienced variable cooling histories. This is attributed to vertical displacement of up to ~2 km on faults, including sections of the Delaney Fault, during Late Palaeozoic and mid‐Cretaceous times.  相似文献   

10.
The stable magnetizations of the Tasmanian Dolerites are shown to fall into two distinct groups depending upon their directions and the geographical region of the dolerites. It has been suggested that this could be a result of significant age differences between the dolerites of these groups. A series of K‐Ar determinations indicates that there is no detectable systematic age differences and the average of the five bodies dated is 170.5 ± 8.0 m.y. (not significantly different from previous K‐Ar dates from a single body). A re‐appraisal of the palaeomagnetic data, in the light of the distinct groupings of the directions, yields two significantly different pole positions‐ Lat 50.7°S, Long. 174.5°E (A9r, = 5.2°) and Lat. 47.7 °S, Long. 123.5° (A95 = 9.5°)’. The former of these is in excellent agreement with pole positions from other Lower to Middle Jurassic rocks of Australia but the significance of the latter remains obscure.  相似文献   

11.
相山铀矿田铀多金属成矿时代与成矿热历史   总被引:1,自引:1,他引:0  
林锦荣  胡志华  王勇剑  张松  陶意 《岩石学报》2019,35(9):2801-2816
相山铀矿田的铀多金属矿化主要可划分为碱性铀矿化、酸性铀矿化、铅锌银铜矿化和金矿化四种类型。通过沥青铀矿和矿化岩石U-Pb等时线、黄铁矿Rb-Sr等时线、绢云母~(40)Ar-~(39)Ar同位素年龄测定,结合铀多金属成矿特征研究,厘定了相山铀矿田铀多金属成矿时代,确定铀多金属矿化的成矿时序为:碱性铀矿化、铅锌银铜矿化、金矿化、酸性铀矿化。锆石裂变径迹研究表明,相山矿田铀多金属矿化样品的锆石裂变径迹峰值年龄与U-Pb、Rb-Sr和~(40)Ar-~(39)Ar同位素年龄一致性良好,裂变径迹年龄(峰值年龄)可以限定热液铀多金属成矿热事件时代。碱性铀成矿热事件的锆石裂变径迹峰值年龄为119. 8~125. 6Ma;金成矿热事件和铅锌银铜多金属成矿热事件的锆石裂变径迹峰值年龄为106. 1~113. 8Ma;酸性铀成矿热事件的锆石裂变径迹峰值年龄为86. 7~100. 0Ma;新发现一期锆石裂变径迹峰值年龄为66. 4~78. 6Ma的热事件,该期热事件可能为相山矿田最晚一期酸性铀成矿热事件。相山矿田66. 4~78. 6Ma的铀成矿热事件,与华南花岗岩型热液铀矿床的区域成矿热事件时代耦合,该发现对华南火山岩型铀矿成矿时代的重新认识,对火山岩型、花岗岩型铀矿床成矿统一性认识具有重要意义。  相似文献   

12.
Petrological and geochronological investigations were carried out on metamorphic rocks of the Veporic unit (Inner Western Carpathians) in northern Hungary. K/Ar and Ar/Ar data on micas and amphibole show only Alpine ages (mostly in the range of 87-95 Ma) in this basement unit. Thermobarometric calculations yield lower amphibolite facies peak conditions (ca. 550냴 °C and 9ǃ kbar) for the Eoalpine metamorphic event. Complex evolution of gneissic rocks is reflected by the presence of discontinuously zoned garnets, the cores of which may represent relics of a pre-Alpine (presumably Variscan) thermal event. Zircon fission track (FT) data in the narrow range of 75-77.5 Ma indicate that this portion of the Veporic unit was emplaced to shallow crustal levels already during the Senonian time. The relative minor difference between zircon FT and K/Ar or Ar/Ar ages suggests very rapid cooling during the Late Cretaceous, most probably related to the extensional unroofing of the Veporic core complex. The obtained cooling ages do not support previous models of Tertiary uplift and exhumation of the Veporic unit along the Hurbanovo-Diósjeni Line.  相似文献   

13.
Life spans and thermal evolution of hydrothermal systems are of fundamental metallogenic importance. We were able to establish the chronology and cooling history of the Zaldívar porphyry copper deposit (Northern Chile) by applying a combination of different isotopic dating methods in minerals with different closure temperatures, including 40Ar/39Ar geochronology and zircon fission track thermochronology, together with fluid inclusion thermometry and previous published U–Pb zircon geochronology. The hydrothermal mineralization in the Zaldívar deposit is genetically related to the Llamo Porphyry unit. Samples of igneous biotites from this intrusion yielded 40Ar/39Ar plateau ages between 35.5 ± 0.7 and 37.7 ± 0.4 Ma defining a weighted average of 36.6 ± 0.5 Ma (2σ). In contrast, one sample from the Zaldívar porphyry, one from the andesites, and two from the Llamo porphyry yielded considerably younger fission track ages of approximately 29 Ma with a weighted mean for all ages of 29.1 ± 1.7 Ma (2σ). Thermal and compositional constraints for the hydrothermal system in the Zaldívar deposit from fluid inclusions thermometry show that at least three fluid types broadly characterize two main hydrothermal episodes during the evolution of the deposit. The main mineralization and alteration event is characterized by high temperature (above 320°C) hypersaline fluids (salinity between 30 and 56 wt.% NaCl equivalents) coexisting with low-density gas-rich inclusions (salinity less than 17 wt.% NaCl equivalents) that homogenizing into the gas phase at temperatures above 350°C. The second episode corresponds to a low-temperature event which is characterized by liquid-rich fluid inclusions that homogenize into the liquid phase at temperatures ranging from 200°C to 300°C with salinities lower than 10 wt.% NaCl equivalents. The 40Ar/39Ar data (36.6 ± 0.5 Ma, weighted average) obtained from igneous biotites represent the minimum age for the last high-temperature (above 300°C) hydrothermal pulse. When compared with previously published U–Pb ages (38.7 ± 1.3 Ma) in zircons from the Llamo porphyry, a close temporal relationship between crystallization of the parental intrusion and the thermal collapse of the last high-temperature hydrothermal event is evident. Cooling took place from approximately 800°C (crystallization of the intrusive complex defined by zircon U–Pb ages) to below 300 ± 50°C (biotite 40Ar/39Ar closure temperature) within approximately 1.5 m.y. Because the thermal annealing of fission tracks in zircons occurs at temperatures of 240 ± 30°, the zircon fission track (ZFT) ages of 29.1 ± 1.7 Ma (2σ) mark the end of the thermal activity in the Zaldívar area, specifically the time when the whole area cooled below this temperature, well after the collapse of the main hydrothermal event in the Zaldívar porphyry copper deposit. This cooling age roughly coincides with the age defined for the emplacement of dacitic dikes at 31 ± 2.8 Ma (2σ) (published K–Ar whole rock), 5 km south of the Zaldívar deposit, in the Escondida area. This late magmatic pulse probably is responsible for high heat flow in the Zaldívar deposit as late as 29 Ma. There is no evidence that the low temperature hydrothermal pulse recognized by fluid inclusion studies is related to this thermal event. The zircon fission track cooling ages are interpreted to be related to the time lag required for complete relaxation of the perturbation of the isotherms in the geothermal field imposed by the intrusion of magmatic bodies, with or without any association with low temperature hydrothermal activity.  相似文献   

14.
Abstract Recent investigations reveal that the ultrahigh‐pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile‐brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile‐brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite‐plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite‐facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1 ± 0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K‐feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K‐feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh‐pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3–4 km/Ma from the mantle (about 80–100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20‐30km at 220 Ma), and at the rate of 1–2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.  相似文献   

15.
40Ar/39Ar data from a profile across the Main Central Thrust in the eastern Bhutan Himalaya indicate muscovite cooling ages of 14.1±0.2 Ma from a sample in the immediate hanging wall of the thrust and 11.2 Ma from about 400 m structurally higher in the hanging wall. These two ages are repeated by two samples from 2.1 and 4.7 km vertical distance from the thrust within the hanging wall, respectively. A single apatite fission track age from the immediate hanging wall of the thrust gives an age of 3.1±0.6 Ma. Pressure–temperature estimates give temperatures around 650°C and 6.5 kbar for the highest sample collected. Samples closer to the Main Central Thrust give also temperatures between 600 and 650°C at the same pressure, indicating possibly a slight temperature decrease with proximity to the thrust. However, uncertainties are large and the parageneses are thermodynamically too highly variant to place much significance on their interpretation.The 40Ar/39Ar cooling age data are consistent with a repetition of the sequence in the hanging wall of the thrust. They confirm the data of Davidson et al. (1997; Metamorphic reactions related to decompression and synkinematic intrusion of leucogranite, High Himalayan Crystallines, Bhutan. Journal of Metamorphic Geology 15, 593–612) and are consistent with a more rapid exhumation of deeper levels towards the centre of the High Himalayan Crystalline Complex. Despite the large uncertainties, the PT data shown here are also consistent with this interpretation. The apatite fission track results reveal low-temperature cooling and final exhumation of the Main Central Thrust at the same time as in Nepal.  相似文献   

16.
The Bakony-Balaton Highland Volcanic Field (BBHVF) is located in the central part of Transdanubia, Pannonian Basin, with over 50 alkali basaltic volcanoes. The basanite plug of Hegyestu erupted in the first phase of volcanic activity. K/Ar and Ar/Ar ages were published for the BBHVF. K/Ar and Ar/Ar ages of the leucite-bearing basanite of Hegyestás were conflicting. This is caused by the special Ar retention feature of leucite in this basanite. K/Ar ages measured in the usual way were 25–45% younger, but after HCl treatment of the rock, or after reducing the baking temperature of the argon extraction line from 250°C to 150°C, they became similar to the Ar/Ar ages. All Ar/Ar determinations were performed after HF treatment. HCl treatment dissolved olivine, nepheline, leucite, magnetite and from 1-1 sample analcime or calcite. K dissolution studies from different locations of Hegyestü have shown that K content is mostly ≈2%, but it may decrease to ≈0.3%. HCl treatment dissolved 28.0–63.5% of the K content. The calculated K concentration for the dissolved part of samples with ~2%K was 4.02-6.42%: showing that leucite is responsible for the low temperature loss of 40Ar(rad). Ar may release at low temperature from very finegrained mineral, or when the Ar release mechanism changes. A 40Ar(rad) degassing spectrum has been recorded in the 55–295°C range of baking temperature and the data were plotted in the Arrhenius diagram. The diagram shows that a change of the structure in the 145–295°C range caused the loss of 40Ar(rad). On fractions of HCl treated rock 7.56±0.17 Ma isochron K/Ar age has been determined. This is regarded as minimum age of eruption and it is similar to the Ar/Ar isochron age (7.78±0.07 Ma).  相似文献   

17.
Apatite fission track thermochronology reveals that uplift and erosion occurred during the mid‐Cretaceous within the Bathurst Batholith region of the eastern highlands, New South Wales. Apatite fission track ages from samples from the eastern flank of the highlands range between ca 73 and 139 Ma. The mean lengths of confined fission tracks for these samples are > 13 μm with standard deviations of the track length distributions between 1 and 2 μm. These data suggest that rocks exposed along the eastern flank of the highlands were nearly reset as the result of being subjected to palaeotemperatures in the range of approximately 100–110°C, prior to being cooled relatively quickly through to temperatures < 50°C in the mid‐Cretaceous at ca 90 Ma. In contrast, samples from the western flank of the highlands yield apparent apatite ages as old as 235 Ma and mean track lengths < 12.5 μm, with standard deviations between 1.8 and 3 μm. These old apatite ages and relatively short track lengths suggest that the rocks were exposed to maximum palaeotemperatures between approximately 80° and 100°C prior to the regional cooling episode. This cooling is interpreted to be the result of kilometre‐scale uplift and erosion of the eastern highlands in the mid‐Cretaceous, and the similarity in timing of uplift and erosion within the highlands and initial extension along the eastern Australian passive margin prior to breakup (ca 95 Ma) strongly suggests these two occurrences are related.  相似文献   

18.
Geochronology of oil-gas accumulation (OGA) is a challenging subject of petroleum geology in multi-cycle superimposed basins.By K-Ar dating of authigenic illite (AI) and fluid inclusion (FI) analysis combined with apatite fission track (AFT) thermal modeling,a case study of constraining the OGA times of the Permian reservoirs in northeast Ordos basin (NOB) has been conducted in this paper.AI dating of the Permian oil-gas-bearing sandstone core-samples shows a wide time domain of 178-108 Ma.The distribution of the AI ages presents 2-stage primary OGA processes in the Permian reservoirs,which developed in the time domains of 175-155 Ma and 145-115 Ma with 2-peak ages of 165 Ma and 130 Ma,respectively.The FI temperature peaks of the samples and their projected ages on the AFT thermal path not only present two groups with a low and a high peak temperatures in ranges of 90-78℃ and 125-118℃,respectively corresponding to 2-stage primary OGA processes of 162-153 Ma and 140-128 Ma in the Permian reservoirs,but also appear a medium temperature group with the peak of 98℃ in agreement with a secondary OGA process of c.~30 Ma in the Upper Permian reservoirs.The integrated analysis of the AI and FI ages and the tectono-thermal evolution reveals that the Permian reservoirs in the NOB experienced at least 2-stage primary OGA processes of 165-153 Ma and 140-128 Ma in agreement with the subsidence thermal process of the Mid-Early Jurassic and the tectono-thermal event of the Early Cretaceous.Then,the Upper Permian reservoirs further experienced at least 1-stage secondary OGA process of c.~30 Ma in coincidence with a critical tectonic conversion between the slow and the rapid uplift processes from the Late Cretaceous to Neogene.  相似文献   

19.
There is a large ductile shear zone, 2 km wide and more than 3SO km long, in the South Qilian Mountains, western China. It is composed of volcanic, granitic and calcareous mylonites. The microstructures of the ductile shear zone show nearly E-W extending subvertical foliation, horizontal and oblique stretching lineations, shearing sense from sinis-tral to oblique sinistral strike-slip from east to west, "A" type folds and abundant granitic veins. Measured lattice preferred orientations (LPOs) of the mylonitic and recrystallized quartz of the granitic mylonite in the west segment suggest a strong LPO characterized by the dominant slip systems {1010} formed at high temperature (>650℃). K-feldspar of the mylonite shows an 39Ar/40Ar high-temperature plateau age of 243.3±1.3 Ma, and biotite, 250.5±0.5 Ma, which represent the formation age of the ductile shear zone. The 39Ar/40Ar plateau ages of 169.7±0.3 Ma and 160.6±0.1 Ma and the 39Ar/40Ar isochron ages of 166.99±2.37 Ma and 160.6±0.1 Ma of biot  相似文献   

20.
Cambrian siliciclastic sequences along the Dead Sea Transform (DST) margin in southern Israel and southern Jordan host both detrital fluorapatite [D‐apatite] and U‐rich authigenic carbonate‐fluorapatite (francolite) [A‐apatite]. D‐apatite and underlying Neoproterozoic basement apatite yield fission‐track (FT) data reflecting Palaeozoic–Mesozoic sedimentary cycles and epeirogenic events, and dispersed (U–Th–Sm)/He (AHe) ages. A‐apatite, which may partially or completely replace D‐apatite, yields an early Miocene FT age suggesting formation by fracturing, hydrothermal fluid ascent and intra‐strata recrystallisation, linked to early DST motion. The DST, separating the African and Arabian plates, records ~105 km of sinistral strike‐slip displacement, but became more transtensional post‐5 Ma. Helium diffusion measurements on A‐apatite are consistent with thermally activated volume diffusion, indicating Tc ~52 to 56 ± 10°C (cooling rate 10°C/Ma). A‐apatite AHe data record Pliocene cooling (~35 to 40°C) during the transtensional phase of movement. This suggests that timing of important milestones in DST motion can be discerned using A‐apatite low‐temperature thermochronology data alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号