首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present combined observations made near midnight by the EISCAT radar, all-sky cameras and the combined released and radiation efects satellite (CRRES) shortly before and during a substorm. In particular, we study a discrete, equatorward-drifting auroral arc, seen several degrees poleward of the onset region. The arc passes through the field-aligned beam of the EISCAT radar and is seen to be associated with a considerable upflow of ionospheric plasma. During the substorm, the CRRES satellite observed two major injections, 17 min apart, the second of which was dominated by O+ ions. We show that the observed are was in a suitable location in both latitude and MLT to have fed O+ ions into the second injection and that the upward flux of ions associated with it was sufficient to explain the observed injection. We interpret these data as showing that arcs in the nightside plasma-sheet boundary layer could be the source of O+ ions energised by a dipolarisation of the mid- and near-Earth tail, as opposed to ions ejected from the dayside ionosphere in the cleft ion fountain.  相似文献   

2.
We have analyzed the response of azimuthal component of the ionospheric electric field to auroral arc activity. We have chosen for analysis three intervals of coordinated EISCAT and TV observations on 18 February, 1993. These intervals include three kinds of arc activity: the appearance of a new auroral arc, the gradual brightening of the existing arc and variations of the arc luminosity. The arcs were mostly east-west aligned. In all cases, the enhancement of arc luminosity is accompanied by a decrease in the westward component of the ionospheric electric field. In contrast, an increase of that component seems to be connected with arc fading. The observed response is assumed to have the same nature as the short circuit of an external electric field by the conductor. The possible consequence of this phenomenon is discussed.  相似文献   

3.
During a run of the Common Programme Three of the EISCAT radar the splitting of an auroral arc was observed by high time-resolution, ground-based cameras when the UHF radar beam was close to the arc. The evening eastward electrojet situation with a large-scale northward ionospheric electric field was disturbed by the intrusion of a convection channel with southward electric field from the east. The interaction of the new convection channel with the auroral arc caused changes in arc brightness and arc splitting, i.e. the creation of a new arc parallel to the preexisting auroral arc. The event is described as one possibility for the creation of parallel arcs during slightly disturbed magnetic conditions far from the Harang discontinuity.  相似文献   

4.
This review is devoted to auroral fading before beginning of the substorm active phase. This initial stage of the active phase called breakup is accompanied by a sharp brightening of auroras and their rush toward the pole. Auroral fading before breakup was first detected in discrete auroras in the nightside sector and consisted in that a short-term decrease in brightness of an arc moving toward the equator below the level observed during the preliminary phase was observed during the substorm preliminary phase 2–3 min before breakup. During fading, the velocity of equatorward motion of auroral arcs decreased up to their complete stoppage. Auroral fading in the noon sector was registered simultaneously with fading on the Earth’s nightside before the beginning of the active phase. Short-term background fading was also observed both equatorward and poleward of an arc on the nightside. It was subsequently indicated that similar fading is observed in various geophysical phenomena. It was detected that a radar aurora signal fades before breakup, if auroral substorm is observed in a radar pattern and substorm source is located under good aspect conditions. Riometer absorption decreases simultaneously with auroral fading. Geomagnetic pulsations decay on dayside and nightside immediately before breakup. Such a multiform manifestation of fading in various geophysical phenomena indicates that fading is related to some global processes proceeding in the magnetosphere when energy accumulation in this region comes to the end before its explosive release into the polar ionosphere.  相似文献   

5.
We present the ground signatures of dynamic substorm features with particular emphasis on the event interpretation capabilities provided by the IMAGE magnetometer network. This array covers the high latitudes from the sub-auroral to the cusp/cleft region. An isolated substorm on 11 Oct. 1993 during the late evening hours exhibited many of well-known features such as the Harang discontinuity, westward travelling surge and poleward leap, but also discrete auroral forms, known as auroral streamers, appeared propagating westward along the centre of the electrojet. Besides the magnetic field measurements, there were auroral observations and plasma flow and conductivity measurements obtained by EISCAT. The data of all three sets of instruments are consistent with the notion of upward field-aligned currents associated with the moving auroral patches. A detailed analysis of the electro-dynamic parameters in the ionosphere, however, reveals that they do not agree with the expectations resulting from commonly used simplifying approximations. For example, the westward moving auroral streamers which are associated with field-aligned current filaments, are not collocated with the centres of equivalent current vortices. Furthermore, there is a clear discrepancy between the measured plasma flow direction and the obtained equivalent current direction. All this suggests that steep conductivity gradients are associated with the transient auroral forms. Also self-induction effects in the ionosphere may play a role for the orientation of the plasma flows. This study stresses the importance of multi-instrument observation for a reliable interpretation of dynamic auroral processes.  相似文献   

6.
Observations and modelling are presented which illustrate the ability of the Finland CUTLASS HF radar to monitor the afternoon-evening equatorward auroral boundary during weak geomagnetic activity. The subsequent substorm growth phase development was also observed in the late evening sector as a natural continuation of the preceding auroral oval dynamics. Over an 8 h period the CUTLASS Finland radar observed a narrow (in range) and persistent region of auroral F- and (later) E-layer echoes which gradually moved equatorward, consistent with the auroral oval diurnal rotation. This echo region corresponds to the subvisual equatorward edge of the diffuse luminosity belt (SEEL) and the ionospheric footprint of the inner boundary of the electron plasma sheet. The capability of the Finland CUTLASS radar to monitor the E-layer SEEL-echoes is a consequence of the nearly zero E-layer rectilinear aspect angles in a region 5/10° poleward of the radar site. The F-layer echoes are probably the boundary blob echoes. The UHF EISCAT radar was in operation and observed a similar subvisual auroral arc and an F-layer electron density enhancement when it appeared in its antenna beam.  相似文献   

7.
Auroral precipitating electrons pass through an acceleration region before entering the atmosphere. Regardless of what produces it, a parallel electric field is assumed to cause the acceleration. It is well known that from kinetic theory an expression for the corresponding upward field-aligned current can be calculated, which under certain assumptions can be linearized to j = KV. The K constant, referred to as the Lyons-Evans-Lundin constant, depends on the source density and thermal energy of the magnetospheric electrons; it is an important parameter in magnetosphere-ionosphere coupling models. However, the K parameter is still rather unknown, and values are found in a wide range of 10–8–10–10Sim–2. In this study, we investigated how the type of auroral structure affects the K values. We look at onset and westwards-travelling surge (WTS) events and make comparisons with earlier results from observations of more stable auroral arcs. A new analysis technique for studying those magnetospheric parameters using ground-based measurements is introduced. Electron density measurements are taken with the EISCAT radar, and through an inversion technique the flux-energy spectra are calculated. Source densities, thermal energies and potential drops are estimated from fittings of accelerated Maxwellian distributions. With this radar technique we have the possibility to study the changes of the mentioned parameters during the development of onsets and the passage of surges over EISCAT. The study indicates that the linearization of the full Knight formulation holds even for the very high potential drops and thermal temperatures found in the dynamic onset and WTS events. The values of K are found to be very low, around 10–11Sm–2 in onset cases as well as WTS events. The results may establish a new technique where ionospheric measurements are used for studying the ionosphere-magnetosphere coupling processes.  相似文献   

8.
We present results from a multi-instrument study of events on February 13–14, 1996. The data were taken by the EISCAT incoherent-scatter radar, the Sussex, MPI and FMI all-sky cameras, the IRIS riometer and the IMAGE and SAMNET magnetometer networks. Observations from the various instruments are compared to establish the concurrency of the radar, optical and absorption signatures of arcs, and to make a detailed study of their dynamics. The distribution of electric field strength near each arc is determined and the drift velocity of each arc is compared with EISCAT measurements of F-region plasma velocity. Two multiple-onset substorms are studied in detail, the behaviour of each arc depends on the phase of the substorm in which it is observed. Our major points are: (1) All arcs observed during the growth or recovery phases are seen to drift at velocities close to the average convection velocity. In contrast, arcs observed during the expansion phase travel at a significantly different velocity. (2) There is strong qualitative evidence that arcs which drift with the convection are optically less bright than arcs with a large relative velocity with respect to the surrounding plasma so that arc brightening at substorm onset is clearly associated with a sharp increase in relative velocity. (3) The observations confirm the current electrodynamics model of arcs and, moreover, we notice a difference in the conductivity behaviour with respect to the direction of the arc movement. It is generally true that when the band of enhanced electric field is in advance of a moving arc the gradient in conductivity is very sharp at the leading edge of the arc and hence the largest electric fields are seen very close to the arc. When, however, the band of enhanced field follows the moving arc the increase in Pedersen conductivity is more gradual, and in such cases too the maximum electric field strength is observed at greater distances from the optical arc itself.  相似文献   

9.
联合利用EISCAT和E-Svalbard非相干散射雷达数据,研究l997年5月强磁暴期间向阳侧极盖与极光椭圆区电离层F区负暴.发现在磁暴主相和恢复相初期,极光椭圆和极盖区电离层都在大约l90km高度出现类似F1的峰,F2主峰完全消失,F区电子密度大幅度下降.但离子温度的变化在两个区域很不相同,在极光椭圆区大幅度升高,而在极盖区没有显著变化,反映出引起F区负暴的主要机制在两个区域不尽相同.强对流电场引起大气焦耳加热与离子增温而使O+离子消失的化学反应速率增大所导致的电离损失,对极光椭圆区负暴起主要作用;而输运过程,特别是持续长达数小时的沿场上行离子流,对极盖区负暴起重要作用.磁暴主相期间,当EISCAT雷达位于等离子体对流涡旋转换区下方时,在无焦耳加热与离子摩擦增温的情况下,观测到由顶部电离层O+离子沿场高速外流引起的F区电子密度耗空.  相似文献   

10.
The irregularity velocity patterns observed by the SABRE coherent radar at substorm expansion phase onset, which is identified by magnetometer observations of Pi2 pulsations, are occasionally highly structured. In all the examples of structured velocity patterns examined, the SABRE viewing area is located at longitudes within the inferred substorm current wedge. Three types of structured velocity regime are apparent depending on the level of magnetic activity and the position of the radar viewing area relative to the substorm enhanced currents and the Pi2 pulsation generation region. Firstly, vortex-like velocity patterns are observed and these may be caused by the field-aligned currents associated with the substorm current wedge. Secondly, regions of equatorward velocity are also observed at times of substorm expansion phase onset moving longitudinally across the SABRE viewing area. The longitudinal movement is usually westward although an example of eastward motion has been observed. The phase velocity of these regions of equatorward flow is typically 1–3 km s?1. The observed equatorward velocities occur at the poleward edge or poleward of the background convection velocities observed by SABRE. These equatorward velocities may be related to the westward travelling surge and to the expansion (eastwards as well as westwards) of the brightening arc region at substorm onset. Thirdly, the flow rotates equatorward within the field of view but does not then appear to move longitudinally. These equatorward velocities may relate to the earthward surge of plasma from the magnetotail at substorm onset.  相似文献   

11.
We have investigated ion outflows observed by the Akebono satellite and the EISCAT radar in the nightside auroral region on February 16, 1993. The Akebono satellite at about 7000 km altitude observed the region of suprathermal ion outflows and inverted-V type electron precipitation alternately with a horizontal separation of 70–150 km at the ionospheric level. These two regions corresponded to the upward and downward field-aligned current region, respectively, and intense ELF waves were observed in the ion outflow region. From the EISCAT VHF radar observation (Common Program 7 mode), it has been suggested that the ion outflow region and the enhanced electron temperature region were aligned along geomagnetic field lines with vertical and horizontal separations of 200–400 and 70–80 km, respectively and these two regions convected equatorward across the EISCAT radar at Tromsø site. Based on these results, we propose a model for this ion outflow as follows. In the nightside auroral region, downward FAC regions exist near the edge of the inverted-V type electron precipitation regions. ELF waves are excited probably by a plasma instability due to the upward thermal electron beam carrying the downward FACs, and these ELF waves cause transverse ion heating at the top of the ionosphere. The produced ion conics contribute significantly to ion outflow.  相似文献   

12.
The evolution of preonset auroral arcs before full-scale auroral poleward expansion (the time T0 indicates the expansion onset) is studied based on ground-based optical observations filtered by the gradient method. In one of the three events studied in detail, the preonset arc exhibits periodic poleward excursions ~10 min before T0. The excursions extend over 1° in latitude, being repeated with a period of 2.5 min (frequency 6.7 mHz), and can be explained by the theory of classical (i.e., linear nondispersive) Alfvénic fieldline resonance (FLR), which is proposed to form and evolve at the location of subsequent substorm initiation. In two other events, the preonset arc evolves somewhat differently. Having appeared 15–20 min before T0, the arc brightens and develops a fine structure in the transverse direction, with new arcs detaching and propagating away from it. Such signatures may indicate a nonlinear dispersive FLR that periodically produces soliton-like structures propagating across and away from the resonance layer. The involved nonlinearity has a ponderomotive nature. The dispersive effects become significant if, as a result of fine structuring, perturbations are produced on the scales of order of the electron inertial length or ion gyroradius.  相似文献   

13.
The energy of precipitating particles that cause auroras can be characterized by the ratio of different atom and molecule emissions in the upper atmospheric layers. It is known that the spectrum of precipitating electrons becomes harder when substorms develop. The ratio of the I 6300 red line to the I 5577 green line was used to determine the precipitating-electron spectrum hardness. The I 6300/I 5577 parameter was used to roughly estimate the electron energy in auroral arcs observed in different zones of the auroral bulge at the bulge poleward edge and within this bulge. The variations in the emission red and green lines in auroral arcs during substorms that occurred in the winter season 2007–2008 and in January 2006 were analyzed based on the zenith photometer and all-sky camera data at the Barentsburg and Longyearbyen (LYR) high-latitude observatories. It has been indicated that the average value of the I 6300/I 5577 emission ratio for arcs within the auroral bulge is larger than this value at the bulge poleward edge. This means that the highest-energy electron precipitation is observed in arcs at the poleward edge of the substorm auroral bulge.  相似文献   

14.
As a rule, bright auroral arcs evolve near the poleward boundary of the auroral oval at the growth phase of a substorm, a phenomenon that is known to occur near the poleward edge of the auroral oval. The closeness of these arcs to the projection of the magnetic separatrix on the night side suggests that their generation is related to magnetic reconnection in the magnetospheric tail in a particular way. In this study this suggestion is confirmed by the fact that integral brightness of the auroral oval at the poleward edge correlates with magnetic field structures in the solar wind that are observed by ACE and Wind satellites at distances of 50–300 RE upstream and are shifted towards the magnetospheric tail with time delays of ~ 10–80 min, consistent with measurements of the solar wind velocity. About 50 examples of this correlation have been found. The possible physical mechanisms of the effect observed are discussed.  相似文献   

15.
The unique spectrographic observations of auroras on the Kola Peninsula, simultaneously performed in 1970 at Loparskaya and Kem stations using C-180-S cameras, have been analyzed by up-to-date digital data processing. The position and dynamics of proton precipitation relative to other manifestations of auroral and substorm activity (auroral arcs and electrojets) under moderately and weakly disturbed conditions have been analyzed. Several previously known regularities in the morphology of proton auroras have been confirmed. It has been indicated that the direction of motion of the proton band equatorward boundary in the evening sector changes at a sign reversal of the IMF Z component. Weak breakups affect the poleward boundary of the proton band but do not influence the position of the equatorward boundary of this band, which results in the expansion of the proton emission region. When a disturbance is stronger, the proton emission disappears near an active electron arc and subsequently appears poleward of its position before intensification. Short-term proton precipitation is also observed in the region of active electron precipitation during an intense breakup in the form of N–S structures.  相似文献   

16.
Observations from the special UK EISCAT program UFIS are presented. UFIS is a joint UHF-VHF experiment, designed to make simultaneous measurements of enhanced vertical plasma flows in the F-region and topside ionospheres. Three distinct intervals of upward ion flow were observed. During the first event, upward ion fluxes in excess of 1013 m–2 s–1 were detected, with vertical ion velocities reaching 300 ms–1 at 800 km. The upflow was associated with the passage of an auroral arc through the radar field of view. In the F-region, an enhanced and sheared convection electric field on the leading edge of the arc resulted in heating of the ions, whilst at higher altitudes, above the precipitation region, strongly enhanced electron temperatures were observed; such features are commonly associated with the generation of plasma upflows. These observations demonstrate some of the acceleration mechanisms which can exist within the small-scale structure of an auroral arc. A later upflow event was associated with enhanced electron temperatures and only a moderate convection electric field, with no indication of significantly elevated ion temperatures. There was again some evidence of F-region particle precipitation at the time of the upflow, which exhibited vertical ion velocities of similar magnitude to the earlier upflow, suggesting that the behaviour of the electrons might be the dominant factor in this type of event. A third upflow was detected at altitudes above the observing range of the UHF radar, but which was evident in the VHP data from 600 km upwards. Smaller vertical velocities were observed in this event, which was apparently uncorrelated with any features observed at lower altitudes. Limitations imposed by the experimental conditions inhibit the interpretation of this event, although the upflow was again likely related to topside plasma heating.  相似文献   

17.
We report observations of the cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) VHF radar at Troms and the EISCAT Svalbard radar (ESR). We compare them with observations of the dayside auroral luminosity, as seen by meridian scanning photometers at Ny Ålesund and of HF radar backscatter, as observed by the CUTLASS radar. We study the response to an interval of about one hour when the interplanetary magnetic field (IMF), monitored by the WIND and ACE spacecraft, was southward. The cusp/cleft aurora is shown to correspond to a spatially extended region of elevated electron temperatures in the VHF radar data. Initial conditions were characterised by a northward-directed IMF and cusp/cleft aurora poleward of the ESR. A strong southward turning then occurred, causing an equatorward motion of the cusp/cleft aurora. Within the equatorward expanding, southward-IMF cusp/cleft, the ESR observed structured and elevated plasma densities and ion and electron temperatures. Cleft ion fountain upflows were seen in association with elevated ion temperatures and rapid eastward convection, consistent with the magnetic curvature force on newly opened field lines for the observed negative IMF By. Subsequently, the ESR beam remained immediately poleward of the main cusp/cleft and a sequence of poleward-moving auroral transients passed over it. After the last of these, the ESR was in the polar cap and the radar observations were characterised by extremely low ionospheric densities and downward field-aligned flows. The IMF then turned northward again and the auroral oval contracted such that the ESR moved back into the cusp/cleft region. For the poleward-retreating, northward-IMF cusp/cleft, the convection flows were slower, upflows were weaker and the electron density and temperature enhancements were less structured. Following the northward turning, the bands of high electron temperature and cusp/cleft aurora bifurcated, consistent with both subsolar and lobe reconnection taking place simultaneously. The present paper describes the large-scale behaviour of the ionosphere during this interval, as observed by a powerful combination of instruments. Two companion papers, by Lockwood et al. (2000) and Thorolfsson et al. (2000), both in this issue, describe the detailed behaviour of the poleward-moving transients observed during the interval of southward Bz, and explain their morphology in the context of previous theoretical work.  相似文献   

18.
The character of a change in the ionospheric electric field when several auroral arcs crossed the region of radar measurements has been analyzed. In one case the plasma conductivity and electric field normal component in an arc increased as compared to their undisturbed values. In another case the field and conductivity changed traditionally (in antiphase). Arcs with an increased field were previously classified as correlating arcs, but their existence was subsequently open to question during optical observations. The usage of the ALIS system of digital cameras made it possible to decrease the errors introduced by optical equipment. The measurements in the vicinity of correlating arcs were performed when these arcs were generated, and a traditional arc was a completed formation. In an originating arc, the field value can depend not only on the ionospheric plasma conductivity but also on the processes in the magnetospheric-ionospheric system resulting in the field enhancement.  相似文献   

19.
A discussion is given of plasma flows in the dawn and nightside high-latitude ionospheric regions during substorms occurring on a contracted auroral oval, as observed using the EISCAT CP-4-A experiment. Supporting data from the PACE radar, Greenland magnetometer chain, SAMNET magnetometers and geostationary satellites are compared to the EISCAT observations. On 4 October 1989 a weak substorm with initial expansion phase onset signatures at 0030 UT, resulted in the convection reversal boundary observed by EISCAT (at \sim0415 MLT) contracting rapidly poleward, causing a band of elevated ionospheric ion temperatures and a localised plasma density depletion. This polar cap contraction event is shown to be associated with various substorm signatures; Pi2 pulsations at mid-latitudes, magnetic bays in the midnight sector and particle injections at geosynchronous orbit. A similar event was observed on the following day around 0230 UT (\sim0515 MLT) with the unusual and significant difference that two convection reversals were observed, both contracting poleward. We show that this feature is not an ionospheric signature of two active reconnection neutral lines as predicted by the near-Earth neutral model before the plasmoid is “pinched off”, and present two alternative explanations in terms of (1) viscous and lobe circulation cells and (2) polar cap contraction during northward IMF. The voltage associated with the anti-sunward flow between the reversals reaches a maximum of 13 kV during the substorm expansion phase. This suggests it to be associated with the polar cap contraction and caused by the reconnection of open flux in the geomagnetic tail which has mimicked “viscous-like” momentum transfer across the magnetopause.  相似文献   

20.
Flow bursts within the ionosphere are the ionospheric signatures of flow bursts in the plasma sheet and have been associated with poleward boundary intensifications (PBIs). Some PBIs extend equatorward from the polar cap boundary, where they can be roughly divided into north–south-aligned and east–west-aligned structures. In this paper, we present two flow burst events observed by the new Poker Flat Advanced Modular Incoherent Scatter Radar (PFISR) in the pre-midnight auroral zone on 28 April 2007, one towards the west and the other towards the east. In both cases, enhanced flows lasted for about 8–10 min with peak velocities exceeding 1500 m/s. The concurrently measured electron density showed that the flow bursts occurred in low conductivity regions. However, near the poleward (equatorward) edge of the westward (eastward) flow burst, strong electron density enhancements were observed in the E region, indicating the presence of discrete auroral arcs. Auroral images from the Polar spacecraft were available at the time of the eastward flow burst and they indicate that this burst was associated with an east–west-aligned auroral structure that connected at later MLT to a north–south structure. In addition, simultaneous precipitating particle energy spectrum measured by the the Defense Meteorological Satellites Program (DMSP) F13 satellite reveals that this auroral structure resulted from mono-energetic electron precipitation associated with a significant field-aligned potential drop. These observations show direct evidence of the relationship between flow bursts, field-aligned currents and auroral intensifications, and suggest that eastward/westward flow bursts are associated with east–west-oriented PBI structures that have extended well within the plasma sheet. This is in contrast to the equatorward-directed flow that has been previously inferred for PBIs near the polar cap boundary and for north–south auroral structures. This paper illustrates the use of the PFISR radar for studying the magnetosphere–ionosphere coupling of flow bursts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号