首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The subduction polarity and related arc–magmatic evolutional history of the Bangong–Nujiang Ocean, which separated the South Qiangtang terrane to the north from the North Lhasa terrane to the south during the Mesozoic, remain debated. This study tries to reconstruct the subduction and evolution of the Bangong–Nujiang Ocean on the basis of U–Pb and Hf isotopic analyses of detrital zircons in samples from sedimentary rocks of the middle-western section of the Bangong–Nujiang suture zone in Gerze County, central Tibet. The Middle Jurassic Muggargangri Group in the Bangong–Nujiang suture zone was deposited in a deep-sea basin setting on an active continental margin. The Late Jurassic strata, such as the Sewa Formation, are widely distributed in the South Qiangtang terrane and represent deposition on a shelf. The Early Cretaceous Shamuluo Formation in the Bangong–Nujiang suture zone unconformably overlies the Muggargangri Group and was probably deposited in a residual marine basin setting. The detrital zircons of the Muggargangri Group contain seven U–Pb age populations: 2.6–2.4 Ga, 1.95–1.75 Ga, 950–900 Ma, 850–800 Ma, 650–550 Ma, 480–420 Ma, and 350–250 Ma, which is similar to the age populations in sedimentary rocks of the South Qiangtang terrane. In addition, the age spectra of the Shamuluo Formation are similar to those of the Muggargangri Group, indicating that both had a northern terrane provenance, which is conformed by the north-to-south palaeocurrent. This provenance indicates northward subduction of the Bangong–Nujiang oceanic crust. In contrast, two samples from the Sewa Formation yield variable age distributions: the lower sample has age populations similar to those of the South Qiangtang terrane, whereas the upper possesses only one age cluster with a peak at ca. 156 Ma. Moreover, the majority of the late Mesozoic detrital zircons are characterized by weakly positive εHf(t) values that are similar to those of magmatic zircons from arc magmatic rocks in the South Qiangtang terrane. The findings, together with information from the record of magmatism, indicate that the earliest prevalent arc magmatism occurred during the Early Jurassic (ca. 185 Ma) and that the principal arc–magmatic stage occurred during the Middle–Late Jurassic (ca. 170–150 Ma). The magmatic gap and scarcity of detrital zircons at ca. 140–130 Ma likely indicate collision between the Qiangtang and Lhasa terranes. The late Early Cretaceous (ca. 125–100 Ma) magmatism on both sides of the Bangong–Nujiang suture zone was probably related to slab break-off or lithospheric delamination after closure of the Bangong–Nujiang Ocean.  相似文献   

2.
We report zircon U–Pb geochronologic and geochemical data for the post-collisional volcanic rocks from the Batamayineishan (BS) Formation in the Shuangjingzi area, northwestern China. The zircon U–Pb ages of seven volcanic samples from the BS Formation show that the magmatic activity in the study area occurred during 342–304 Ma in the Carboniferous. The ages also indicate that the Palaeo-Karamaili Ocean had already closed by 342 Ma. Moreover, the volcanic rocks also contained 10 inherited zircons with ages ranging from 565 to 2626 Ma, indicating that Precambrian continental crust or microcontinents with accretionary arcs are two possible interpretations for the basement underlying the East Junggar terrane. The sampled mafic-intermediate rocks belong to the medium-K to high-K calc-alkaline and shoshonitic series, and the formation of these rocks involved fractional crystallization with little crustal contamination. These Carboniferous mafic-intermediate rocks show depletions in Nb and Ta and enrichments in large ion lithophile elements (e.g. Rb, Ba, U, and Th) and light rare earth elements. The low initial 87Sr/86Sr values (0.7034–0.7042) and positive εNd(t) values (+2.63 to +6.46) of these rocks suggest that they formed from depleted mantle material. The mafic-intermediate rocks were most likely generated by 5–10% partial melting of a mantle source composed primarily of spinel lherzolite with minor garnet lherzolite that had been metasomatized by slab-derived fluids and minor slab melts. In contrast, the felsic rocks in the BS Formation are A-type rhyolites with positive εNd(t) values and young model ages. These rocks are interpreted to be derived from the partial melting of juvenile basaltic lower crustal material. Taken together, the mafic-intermediate rocks formed in a post-collisional extensional setting generated by slap breakoff in the early Carboniferous (342–330 Ma) and the A-type rhyolites formed in a post-collisional extensional setting triggered by the upwelling asthenosphere in the late Carboniferous (330–304 Ma).  相似文献   

3.
The area of Arghash in northeast Iran, prominent for its gold mineralization, was newly mapped on a scale of 1:20,000 with particular attention to the occurring generations of igneous rocks. In addition, geochronological and geochemical investigations were carried out. The oldest geological unit is a late Precambrian, hornblende-bearing diorite pluton with low-K composition and primitive isotope signatures. This diorite (U–Pb zircon age 554 ± 6 Ma) is most likely a remnant from a Peri-Gondwana island-arc or back-arc basin. About one-third of the map area is interpreted as an Upper Cretaceous magmatic arc consisting of a volcanic and a plutonic part. The plutonic part is represented by a suite of hornblende-bearing medium-K, I-type granitoids (minor diorite, mainly quartz–monzodiorite and granodiorite) dated at 92.8 ± 1.3 Ma (U–Pb zircon age). The volcanic part comprises medium-K andesite, dacite and tuffitic rocks and must be at least slightly older, because it is locally affected by contact metamorphism through the hornblende–granitoids. The Upper Cretaceous arc magmatism in the Arghash Massif is probably related to the northward subduction of the Sabzevar oceanic basin, which holds a back-arc position behind the main Neotethys subduction front. Small occurrences of pillow basalts and sediments (sandstone, conglomerate, limestone) tectonically intercalated in the older volcanic series may be relics of earlier Cretaceous or even pre-Cretaceous rocks. In the early Cenozoic, the Cretaceous magmatic arc was intruded by bodies of felsic, weakly peraluminous granite (U–Pb zircon age 55.4 ± 2.3 Ma). Another strong pulse of magmatism followed slightly later in the Eocene, producing large masses of andesitic to dacitic volcanic rocks. The geochemistry of this prominent Eocene volcanism is very distinct, with a high-K signature and trace element contents similar to shoshonitic series (high P, Zr, Cr, Sr and Ba). High Sr/Y ratios feature affinities to adakite magmas. The Eocene magmatism in the Arghash Massif is interpreted as related to thermal anomalies in crust and mantle that developed when the Sabzevar subduction system collapsed. The youngest magmatic activities in the Arghash Massif are lamprophyres and small intrusions of quartz–monzodiorite porphyries, which cut through all other rocks including an Oligocene–Miocene conglomerate cover series.  相似文献   

4.
新生代青藏高原钾质火山岩发育,主要集中于藏北地区和拉萨地块内,仲巴地块中鲜见报道。对仲巴地块中发现的加达钾质火山岩进行研究,其岩石类型以粗面质为主,岩浆以溢流相-喷发相不间断喷发。样品普遍显示高钾高铝,低碱,偏酸性,富集轻稀土元素和大离子亲石元素,亏损高场强元素,具弱负Eu异常,贫Y和Yb,Sr含量较高,类似于典型的埃达克质岩的地球化学特征。粗面玄武安山岩样品LA-ICP-MS锆石U-Pb年龄为17.03±0.32Ma,形成时代为中新世。加达钾质火山岩浆来源于挤压增厚的下地壳部分熔融,其产出的构造背景是后碰撞伸展环境。  相似文献   

5.
青藏高原拉萨地块后碰撞钾质和超钾质岩浆活动广泛分布且已有不少研究成果,但是它们的年龄主要是17~8Ma,而对于拉萨地块西部雄巴地区时代为24~23Ma的岩浆作用则研究较少。本文对雄巴盆地新识别出的三种类型火山岩的锆石LA-ICP-MS U-Pb定年和岩石地球化学研究表明,它们分别是超钾质安粗岩(23.9±0.6Ma)、粗面英安岩(23.3±0.4Ma)和钾质流纹岩(24.1±0.3Ma),这三种岩石近于同时产出。三类岩石的源区明显不同,其中钾质流纹岩是中、上地壳部分熔融产物;具有埃达克质特征的钾质粗面英安岩可能为加厚下地壳部分熔融;而超钾质安粗岩可能富集地幔部分熔融的产物。雄巴三种火山岩均含数量不等的继承锆石,钾质流纹岩具有~150Ma、~90Ma和~50Ma的继承锆石年龄群;钾质粗面英安岩突出显示了~90Ma左右岩浆活动记录和两个新元古代继承锆石年龄;幔源超钾质安粗岩的继承锆石则绝大多数继承锆石为晚白垩纪以来的岩浆活动记录,突出显示110~80Ma和62~30Ma两个峰值。  相似文献   

6.
The composite Meghri–Ordubad and Bargushat plutons of the Zangezur–Ordubad region in the southernmost Lesser Caucasus consist of successive Eocene to Pliocene magmatic pulses, and host two stages of porphyry Cu–Mo deposits. New high-precision TIMS U–Pb zircon ages confirm the magmatic sequence recognized by previous Rb–Sr isochron and whole-rock K–Ar dating. A 44.03 ± 0.02 Ma-old granite and a 48.99 ± 0.07 Ma-old granodiorite belong to an initial Eocene magmatic pulse, which is coeval with the first stage of porphyry Cu–Mo formation at Agarak, Hanqasar, Aygedzor and Dastakert. A subsequent Oligocene magmatic pulse was constrained by U–Pb zircon ages at 31.82 ± 0.02 Ma and 33.49 ± 0.02 Ma for a monzonite and a gabbro, and a late Miocene porphyritic granodioritic and granitic pulse yielded ages between 22.46 ± 0.02 Ma and 22.22 ± 0.01 Ma, respectively. The Oligo-Miocene magmatic evolution broadly coincides with the second porphyry-Cu–Mo ore deposit stage, including the major Kadjaran deposit at 26–27 Ma.Primitive mantle-normalized spider diagrams with negative Nb, Ta and Ti anomalies support a subduction-like nature for all Cenozoic magmatic rocks. Eocene magmatic rocks have a normal arc, calc-alkaline to high-K calc-alkaline composition, early Oligocene magmatic rocks a high-K calc-alkaline to shoshonitic composition, and late Oligocene to Mio-Pliocene rocks are adakitic and have a calc-alkaline to high-K calc-alkaline composition. Radiogenic isotopes reveal a mantle-dominated magmatic source, with the mantle component becoming more predominant during the Neogene. Trace element ratio and concentration patterns (Dy/Yb, Sr/Y, La/Yb, Eu/Eu*, Y contents) correlate with the age of the magmatic rocks. They reveal combined amphibole and plagioclase fractionation during the Eocene and the early Oligocene, and amphibole fractionation in the absence of plagioclase during the late Oligocene and the Mio-Pliocene, consistent with Eocene to Pliocene progressive thickening of the crust or increasing pressure of magma differentiation. Characteristic trace element and isotope systematics (Ba vs. Nb/Y, Th/Yb vs. Ba/La, 206Pb/204Pb vs. Th/Nb, Th/Nb vs. δ18O, REE) indicate that Eocene magmatism was dominated by fluid-mobile components, whereas Oligocene and Mio-Pliocene magmatism was dominated by a depleted mantle, compositionally modified by subducted sediments.A two-stage magmatic and metallogenic evolution is proposed for the Zangezur–Ordubad region. Eocene normal arc, calc-alkaline to high-K calc-alkaline magmatism was coeval with extensive Eocene magmatism in Iran attributed to Neotethys subduction. Eocene subduction resulted in the emplacement of small tonnage porphyry Cu–Mo deposits. Subsequent Oligocene and Miocene high-K calc-alkaline and shoshonitic to adakitic magmatism, and the second porphyry Cu–Mo deposit stage coincided with Arabia–Eurasia collision to post-collision tectonics. Magmatism and ore formation are linked to asthenospheric upwelling along translithospheric, transpressional regional faults between the Gondwana-derived South Armenian block and the Eurasian margin, resulting in decompression melting of lithospheric mantle, metasomatised by sediment components added to the mantle during the previous Eocene subduction event.  相似文献   

7.
The Dawan Mo–Zn–Fe deposit located in the Northern Taihang Mountains in the middle of the North China Craton (NCC) contains large Mo‐dominant deposits. The mineralization of the Dawan Mo–Zn–Fe deposit is associated with the Mesozoic Wanganzhen granitoid complex and is mainly hosted within Archean metamorphic rocks and Proterozoic–Paleozoic dolomites. Rhyolite porphyry and quartz monzonite both occur in the ore field and potassic alteration, strong silicic–phyllic alteration, and propylitic alteration occur from the center of the rhyolite porphyry outward. The Mo mineralization is spacially related to silicic and potassic alteration. The Fe orebody is mainly found in serpentinized skarn in the external contact zone between the quartz monzonite and dolomite. Six samples of molybdenite were collected for Re–Os dating. Results show that the Re–Os model ages range from 136.2 Ma to 138.1 Ma with an isochron age of 138 ± 2 Ma (MSWD = 1.2). U–Pb zircon ages determined by laser ablation inductively coupled plasma mass spectrometry yield crystallization ages of 141.2 ± 0.7 (MSWD = 0.38) and 130.7 ± 0.6 Ma (MSWD = 0.73) for the rhyolite porphyry and quartz monzonite, respectively. The ore‐bearing rhyolite porphyry shows higher K2O/Na2O ratios, ranging from 58.0 to 68.7 (wt%), than those of quartz monzonite. All of the rock samples are classified in the shoshonitic series and characterized by enrichment in large ion lithophile elements; depletion in Mg, Fe, Ta, Ni, P, and Y; enrichment in light rare earth elements with high (La/Yb)n ratios. Geochronology results indicate that skarn‐type Fe mineralization associated with quartz monzonite (130.7 ± 0.6 Ma) formed eight million years later than Mo and Zn mineralization (138 ± 2 Ma) in the Dawan deposit. From Re concentrations in molybdenite and previously presented Pb and S isotope data, we conclude that the ore‐forming material of the deposit was derived from a crust‐mantle mixed source. The porphyry‐skarn type Cu–Mo–Zn mineralization around the Wanganzhen complex is related to the primary magmatic activity, and the skarn‐type Fe mineralization is formed at the late period magmatism. The Dawan Mo–Zn–Fe porphyry‐skarn ores are related to the magmatism that was associated with lithospheric thinning in the NCC.  相似文献   

8.
西天山东段的查岗诺尔铁矿和智博铁矿赋存于以玄武岩、玄武安山岩、粗面岩以及安山质凝灰岩为主的晚石炭世火山岩中, 对火山岩的形成时代以及构造地质背景的研究是重建成矿过程的关键。本文通过对两个矿区的火山岩进行岩石地球化学和LA-ICP-MS锆石U-Pb测年分析来探讨火山岩形成的构造环境与时代。地球化学分析表明大多数火山岩化学成分从钙碱性、高钾钙碱性变化到钾玄岩系列,富集轻稀土元素(LREE)和大离子亲石元素(LILE; 如Rb、Th、K),重稀土元素(HREE)配分平坦,同时具有Nb、Ta、Ti的强烈亏损,类似于岛弧火山岩的地球化学特征。大多数玄武质火山岩在构造环境判别图中位于火山弧环境。LA-ICP-MS锆石U-Pb测年显示流纹岩和英安岩的206Pb/238U加权平均年龄分别为301.8±0.9Ma和300.3±1.1Ma。此外,对两件闪长岩样品测年获得206Pb/238U加权平均年龄介于303.8~305Ma之间。火山岩与闪长岩样品具有类似的地球化学特征以及形成时代,表明它们可能来源于同一母岩浆,形成于相同的构造背景下。结合区域地质资料,本文认为矿区内出露的高钾钙碱性到钾玄岩系列火山岩可能属于俯冲过程末期阶段大陆岛弧岩浆作用的产物。  相似文献   

9.
The relationship among magmatism, large-scale metallogenesis of Southeast China, and subduction of the Pacific plate has long been debated. The lower Yangtze River belt (LYRB) in the northeastern edge of Southeast China is characterized by intense late Mesozoic magmatism and associated polymetallic mineralization such as copper, gold, iron, tungsten, molybdenum, etc. The copper-related adakitic rocks (148–130 Ma) in this belt are the oldest episode of magmatism and intruded as small intermediate-acid intrusive bodies. The Huayuangong granitoids (HYG), located in the southern part of this belt, however, are copper-barren. Three granitoid samples from this pluton give zircon U–Pb ages of 126.4 ± 1.6 Ma, 125.9 ± 1.9 Ma, and 126.2 ± 1.2 Ma, respectively. The HYG has A-type affinity with metaluminous to weakly peraluminous, high FeOT/(FeOT+MgO) ratios, and high Zr+Nb+Ce+Yb contents. Meanwhile, 10 late Mesozoic mafic samples from the LYRB exhibit similar trace element characteristics to those of ‘continental arc andesite’ (CAA) and suggest an enriched lithospheric mantle source with depletion in high field strength elements (e.g. Nb, Ta, Zr, Hf, and Ti) and enrichment of large ion lithophile elements (e.g. Rb, Th, U, and Pb). Although the HYG exhibits similar Sr–Nd isotope composition with the mafic dikes, distinct whole-rock Pb isotope ratios imply that the granitoids and mafic magmas originated from heterogeneous mantle sources. Compared with coeval Baijuhuajian A-type rocks that are exposed along the Jiang–Shao fault of Southeast China, the HYG shows enriched Hf isotope ratios of zircon with εHf(t) values ranging from ?4.8 to ?11.1. In the Yb/Ta versus Y/Nb diagram, being different from the major asthenospheric mantle-origin Baijuhuajian pluton, a large range of and high Y/Nb ratios as well as high Zr contents of the HYG pluton suggest a magmatic source of mixing between the asthenospheric and enriched crustal component in the LYRB. Compared with early-stage copper-related adakitic rocks (148–130 Ma) with subduction-related affinities and high oxygen fugacity, the copper-barren HYG has with-plate A-type affinities and lower oxygen fugacity. Summarizing, the production of early-stage (i.e. subduction related) adakitic rocks followed by late-stage A-type granitoids in the LYRB is ascribed to the rollback of the Palaeo-Pacific plate beneath Southeast China and associated with asthenospheric upwelling and lithospheric thinning during the late Mesozoic era.  相似文献   

10.
Cenozoic volcanism on the Tibetan plateau, which shows systematic variations in space and time, is the volcanic response to the India–Asia continental collision. The volcanism gradually changed from Na-rich + K-rich to potassic–ultrapotassic + adakitic compositions along with the India–Asia collision shifting from contact-collision (i.e. “soft collision” or “syn-collision”) to all-sided collision (i.e. “hard collision”). The sodium-rich and potasium-rich lavas with ages of 65–40 Ma distribute mainly in the Lhasa terrane of southern Tibet and subordinately in the Qiangtang terrane of central Tibet. The widespread potassic–ultrapotassic lavas and subordinate adakites were generated from ~ 45 to 26 Ma in the Qiangtang terrane of central Tibet. Subsequent post-collisional volcanism migrated southwards, producing ultrapotassic and adakitic lavas coevally between ~ 26 and 8 Ma in the Lhasa terrane. Then potassic and minor adakitic volcanism was renewed to the north and has become extensive and semicontinuous since ~ 20 Ma in the western Qiangtang and Songpan–Ganze terranes. Such spatial–temporal variations provide important constraints on the geodynamic processes that evolved at depth to form the Tibetan plateau. These processes involve roll-back and break-off of the subducted Neo-Tethyan slab followed by removal of the thickened Lhasa lithospheric root, and consequently northward underthrusting of the Indian lithosphere. The Tibetan plateau is suggested to have risen diachronously from south to north. Whereas the southern part of the plateau may have been created and maintained since the late-Oligocene, the northern plateau would have not attained its present-day elevation and size until the mid-Miocene when the lower part of the western Qiangtang and Songpan–Ganze lithospheres began to founder and detach owing to the persistently northward push of the underthrust Indian lithosphere.  相似文献   

11.
U–Pb zircon and baddeleyite dating of six syenitic stocks establishes that the ultrapotassic, potassic alkaline and shoshonitic magmatism with island-arc affinities in the Central Metasedimentary Belt (CMB) of the southwestern Grenville Province, Canada took place between 1089 and 1076 Ma, along a 400-km-long, northeast-trending plutonic belt. These ages indicate that ultrapotassic rocks with arc affinities are not unique to the Phanerozoic. West to east emplacement ages along a northern and southern cross-section of this belt range from 1083±2 Ma (Kensington), through 1081±2 Ma (Lac Rouge) to 1076 –1 +3 Ma (Loranger) in the north, and from 1089 –3 +4 Ma (loon Lake) and 1088±2 Ma (Calabogie), to 1076±2 Ma (Westport) in the south. Although closely spaced in time, in detail these ages suggest a slight younging of this magmatic activity to the southeast. Integration of the geochronological data with the spatial extent and potassic character of the plutons shows that the K-rich alkaline suite is distinct from the nepheline-syenite belt of the Bancroft terrane and from the syenite-monzonite suite of the Frontenac terrane of the CMB, and it is considered to be a magmatic episode unique to the Elzevir terrane and its Gatineau segment. The timing and the postmetamorphic emplacement of these plutons indicate that the regional greenschist to granulite-facies metamorphism of the country rock (precise age unknown) is older than 1089 Ma throughout the entire Elzevir terrane. The potassic magmatism is interpreted as the initiation of the 1090–1050 Ma Ottawan Orogeny in the Elzevir terrane; thus, the regional metamorphism in this terrane, previously assigned to the Ottawan Orogeny, is an earlier event. The contemporaneous emplacement of this postmetamorphic plutonic belt with Keweenawan volcanism is at variance with current tectonic models which consider the Keweenawan rift to be formed at the same time as regional metamorphism in the CMB.  相似文献   

12.
Post-collisional (23–8 Ma), potassium-rich (including ultrapotassic and potassic) mafic magmatic rocks occur within the north–south-trending Xuruco lake–Dangre Yongcuo lake (XDY) rift in the Lhasa terrane of the southern Tibetan Plateau, forming an approximately 130-km-long semi-continuous magmatic belt. They include both extrusive and intrusive facies. Major and trace element and Sr–Nd–Pb isotopic data are presented for all of the known exposures within the XDY rift. The potassium-rich, mafic igneous rocks are characterized by high MgO (5.9–10.8 wt.%), K2O (4.81–10.68 wt.%), Ba (1,782–5,618 ppm) and Th (81.3–327.4 ppm) contents, and relatively high SiO2 (52.76–58.32 wt.%) and Al2O3 (11.10–13.67 wt.%). Initial Sr isotopic compositions are extremely radiogenic (0.712600–0.736157), combined with low (206Pb/204Pb) i (18.28–18.96) and (143Nd/144Nd) i (0.511781–0.512046). Chondrite-normalized rare earth element patterns display relatively weak negative Eu anomalies. Primitive mantle-normalized incompatible trace element patterns exhibit strong enrichments in large ion lithophile elements relative to high-field-strength elements and display strongly negative Ta–Nb–Ti anomalies. The combined major and trace element and Sr–Nd–Pb isotopic characteristics of the K-rich igneous rocks suggest that the primitive magmas were produced by 1–10 % partial melting of an asthenospheric mantle source enriched by both fluids and partial melts derived from Indian passive continental margin sediments subducted into the shallow mantle as a consequence of the northward underthrusting of the Indian continental lithosphere beneath Tibet since the India–Asia collision at ~55 Ma. The best-fit model results indicate that a melt with trace element characteristics similar to those of the K-rich rocks could be generated by 8–10 % partial melting of a metasomatized mantle source in the south and 1–2 % melting in the north of the XDY rift. Trace element and Sr–Nd–Pb isotopic modeling indicate that the proportion of fluid derived from the subducted sediments, for which we use as a proxy the Higher Himalayan Crystalline Sequence (HHCS), in the mantle source region increases from north (rear-arc) to south (front-arc), ranging from 0 to 5 %, respectively. Correspondingly, the proportion of the melt derived from the subducted HHCS in the source increases from north (2 %) to south (15 %). The increasing proportion of the fluid and melt component in the mantle source from north to south, together with a southward decreasing trend in the age of the K-rich magmatism within the XDY rift, is inferred to reflect rollback of the subducted Indian lithospheric mantle slab during the period 25–8 Ma. Slab rollback may be linked to a decreasing convergence rate between India and Asia. As a consequence of slab rollback at 25 Ma beneath the Lhasa terrane, its geodynamic setting was transformed from a convergent (55–25 Ma) to an extensional (25–8 Ma) regime. The occurrence of K-rich magmatism during the period 25–8 Ma is a consequence of the decompression melting of an enriched mantle source, which may signal the onset of extension in the southern Tibetan Plateau and provide a petrological record of the extension process.  相似文献   

13.
The Tiegelongnan Cu (Au) deposit is the largest copper deposit newly discovered in the Bangong–Nujiang metallogenic belt. The deposit has a clear alteration zoning consisting of, from core to margin, potassic to propylitic, superimposed by phyllic and advanced argillic alteration. The shallow part of the deposit consists of a high sulphidation‐state overprint, mainly comprising disseminated pyrite and Cu–S minerals such as bornite, covellite, digenite, and enargite. At depth porphyry‐type mineralization mainly comprises disseminated chalcopyrite, bornite, pyrite, and a minor vein molybdenite. Mineralization is disseminated and associated with veins contained within the porphyry intrusions and their surrounding rocks. The zircon U–Pb ages of the mineralized diorite porphyry and granodiorite porphyry are 123.1 ± 1.7 Ma (2σ) and 121.5 ± 1.5 Ma (2σ), respectively. The molybdenite Re–Os age is 121.2 ± 1.2 Ma, suggesting that mineralization was closely associated with magmatism. Andesite lava (zircon U–Pb age of 111.7 ± 1.6 Ma, 2σ) overlies the ore‐bodies and is the product of post‐mineralization volcanic activity that played a critical role in preserving the ore‐bodies. Values of ?4.6 ‰ to + 0.8 ‰ δ34S for the metal sulfides (mean ? 1.55 ‰) suggest that S mainly has a deep magmatic source. The H and O isotopic composition is (δD = ?87 ‰ to ?64 ‰; δ18OH2O = 5.5 ‰ to 9.0 ‰), indicating that the ore‐forming fluids are mostly magmatic‐hydrothermal, possibly mixed with a small amount of meteoric water. The zircon εHf(t) of the diorite porphyry is 3.7 to 8.3, and the granodiorite porphyry is 1.8 to 7.5. Molybdenite has a high Re from 382.2 × 10?6 to 1600 × 10?6. Re and Hf isotope composition show that Tiegelongnan has some mantle source, maybe the juvenile lower crust from crust–mantle mixed source. Metallogenesis of the Tiegelongnan giant porphyry system was associated with intermediate to acidic magma in the Early Cretaceous (~120 Ma). The magma provenance of the Tiegelongnan deposit has some mantle‐derived composition, possibly mixed with the crust‐derived materials.  相似文献   

14.
报道的高钾-钾玄质火山岩位于狮泉河镇南东方向约20km处,向东延伸。高钾-钾玄质火山岩Si O2变化于60.35%~68.68%之间,属中酸性岩范畴;具有高的K2O+Na2O含量(8.8%~10.66%),K2O/Na2O值在1.92~2.49之间,Mg O含量较低,介于0.88%~3.47%之间,Al2O3含量为14.02%~14.91%,属于高钾-钾玄质系列。岩石强烈富集大离子亲石元素(LILE)Rb、Ba、Th、U和轻稀土元素(LREE),高场强元素(HFSE)Nb、Ta、Ti具有明显负异常,Cr、Ni、Co相容元素含量低于或接近地壳的平均含量,结合Th/Yb-Ta/Yb、(Th×100)/Zr-(Nb×100)/Zr判别图及La-La/Yb图解,暗示岩浆源区可能为下地壳。在左左乡南东约2km处和狮泉河水泥厂北东约1km处各采集1个高钾-钾玄质火山岩样品,对其中的锆石进行LA-ICP-MS U-Pb同位素测定,得到的206Pb/238U年龄加权平均值分别为22.04±0.42Ma和22.29±0.31Ma,此年龄被解释为狮泉河一带高钾-钾玄质火山岩的喷发时代,即中新世阿启塔期。由此表明,该火山岩是印度板片向北俯冲时在狮泉河一带俯冲板片断离,岩浆发生部分熔融的产物。  相似文献   

15.
ABSTRACT

This article reports the results of field mapping and the petrology of clastic rocks in the Dabure area, southern Qiangtang, Tibet, together with the results of U–Pb dating of detrital zircons from these rocks. The Dabure clastic rocks are characterized by low compositional and textural maturity, and they have been affected by lower greenschist facies metamorphism. The deposits exhibit the typical features of turbidites. Altogether, 279 detrital zircons were selected for U–Pb dating, and the ages fall into five groups: 550–650, ~800, 900–1100, 1600–1800, and 2300–2500 Ma. In general, the ages of the detrital zircons that are older than ~550 Ma are similar to those found elsewhere in the southern Qiangtang and Himalayan terranes. The most reliable youngest age of a detrital zircon from the Dabure clastic rocks is ~550 Ma. In the southern part of the Tibet Plateau, strata with the same ages and lithologies as the Dabure clastic rocks are widespread, especially in the Himalayan terrane. Combining our data with previous work on the basalts in the Dabure area (the Dabure basalts), we tentatively suggest that the Dabure clastic rocks represent the late Ediacaran (~550 Ma) sedimentary record for the Qiangtang terrane, and that before the late Neoproterozoic the southern Qiangtang terrane was possibly connected to the Himalayan terrane.  相似文献   

16.
Exposed cross‐sections of the continental crust are a unique geological situation for crustal evolution studies, providing the possibility of deciphering the time relationships between magmatic and metamorphic events at all levels of the crust. In the cross‐section of southern and northern Calabria, U–Pb, Rb–Sr and K–Ar mineral ages of granulite facies metapelitic migmatites, peraluminous granites and amphibolite facies upper crustal gneisses provide constraints on the late‐Hercynian peak metamorphism and granitoid magmatism as well as on the post‐metamorphic cooling. Monazite from upper crustal amphibolite facies paragneisses from southern Calabria yields similar U–Pb ages (295–293±4 Ma) to those of granulite facies metamorphism in the lower crust and of intrusions of calcalkaline and metaluminous granitoids in the middle crust (300±10 Ma). Monazite and xenotime from peraluminous granites in the middle to upper crust of the same crustal section provide slightly older intrusion ages of 303–302±0.6 Ma. Zircon from a mafic to intermediate sill in the lower crust yields a lower concordia intercept age of 290±2 Ma, which may be interpreted as the minimum age for metamorphism or intrusion. U–Pb monazite ages from granulite facies migmatites and peraluminous granites of the lower and middle crust from northern Calabria (Sila) also point to a near‐synchronism of peak metamorphism and intrusion at 304–300±0.4 Ma. At the end of the granulite facies metamorphism, the lower crustal rocks were uplifted into mid‐crustal levels (10–15 km) followed by nearly isobaric slow cooling (c. 3 °C Ma?1) as indicated by muscovite and biotite K–Ar and Rb–Sr data between 210±4 and 123±1 Ma. The thermal history is therefore similar to that of the lower crust of southern Calabria. In combination with previous petrological studies addressing metamorphic textures and P–T conditions of rocks from all crustal levels, the new geochronological results are used to suggest that the thermal evolution and heat distribution in the Calabrian crust were mainly controlled by advective heat input through magmatic intrusions into all crustal levels during the late‐Hercynian orogeny.  相似文献   

17.
The late Paleozoic adakitic rocks are closely associated with the shoshonitic volcanic rocks in the western Tianshan Mountains, China, both spatially and temporally. The magmatic rocks were formed during the period from the middle to the late Permian with isotopic ages of 248-268 Ma. The 87Sr/86Sr initial ratios of the rocks are low in a narrow variation range (-0.7050). The 143Nd/144Nd initial ratios are high (-0.51240) with positive εND(t) values (+1.28-+4.92). In the εNd(t)-(87Sr/86Sr)i diagram they fall in the first quadrant. The association of the shoshonitic and adakitic rocks can be interpreted by a two-stage model: the shoshonitic volcanic rocks were formed through long-term fractional crystallization of underplated basaltic magma, while the following partial melting of the residual phases formed the adakitic rocks.  相似文献   

18.
《International Geology Review》2012,54(13):1755-1771
The tectonic setting of the West Qinling orogenic belt (QOB) during the Middle–Late Triassic remains a subject of debate. Petrogenesis of adakitic granodiorite plays a critical role in determining the nature of the lower continental crust and mantle dynamics during orogenic processes in the region. The Tadong adakitic granodiorite pluton in the western part of the West QOB is an important element of this system. Its petrogenesis can place severe constraints on the nature of the lower continental crust and mantle dynamics during the formation of the orogenic belt. U–Pb dates obtained through zircon laser-ablation inductively coupled mass spectrometry indicate that the Tadong pluton was emplaced at 220.2 ± 2.5 Ma, coeval with abundant magmatic rocks in the region. This indicates a prominent magmatic event in the western part of West Qinling during the Late Triassic. Geochemically the granodiorites are metaluminous to peraluminous high-K calc-alkalic and characterized by relatively high SiO2 (63.84–67.91 wt.%), Al2O3 (15.39–16.54 wt.%), and Sr (435.08–521.64 ppm), and low MgO (1.16–1.88 wt.%; Mg# = 38–46), Y (5.49–8.84 ppm) and Yb (0.34–0.91 ppm) contents, variable Eu anomalies (Eu/Eu* = 0.87–1.1), and high Sr/Y (51.72–84.45) ratios. These are compositional features of adakites that are commonly assumed to have been produced through partial melting of subducted oceanic basalt. In addition, the adakitic rocks are relatively enriched in light rare earth elements, large ion lithophile elements (Rb, Ba, Sr, Th, and K), and depleted in high field strength elements. However, petrological, geochronological, and geochemical characteristics indicate that the adakitic rocks were most likely formed by partial melting of a thickened mafic lower crust. Therefore, we suggest that the Tadong adakitic granodiorites were produced in a syn-collisional regime and associated with asthenospheric upwelling triggered by slab break-off or gravitational instability. This mechanism was responsible for generating the Late Triassic magmatism of West Qinling.  相似文献   

19.
青藏高原的新生代火山作用是印度-亚洲大陆碰撞的火山响应,它显示了系统的时、空变化。随着印度-亚洲大陆碰撞从~65 Ma的接触-碰撞(即"软碰撞")转变到~45 Ma的全面碰撞(即"硬碰撞"),火山作用也逐渐从钠质+钾质变为钾质-超钾质+埃达克质。65~40 Ma的钾质和钠质熔岩主要分布于藏南的拉萨地块,少量分布于藏中的羌塘地块。从45~26 Ma,在藏中的羌塘地块中广泛发育钾质-超钾质熔岩和少量埃达克岩。随后的碰撞后火山作用向南迁移,在拉萨地块中产生~26~10 Ma间的同时代超钾质和埃达克质熔岩。尔后,从~18 Ma始,钾质和少量埃达克质火山作用重新向北,在西羌塘和松潘-甘孜地块中呈广泛和半连续状分布。此种时-空变异对形成青藏高原的深部地球动力学过程提供了重要约束。该过程包括:已消减的新特提斯大洋板片的回转、断离及随后增厚拉萨岩石圈根的去根作用,及因此而造成的印度岩石圈向北下插。青藏高原的隆升是自南向北穿时发生的。高原南部被创建于渐新世晚期,并保持至今;直到中新世中期,由于下插印度岩石圈的持续向北推挤,西羌塘和松潘-甘孜岩石圈的下部开始塌陷和拆离,高原北部才达到其现今的高度和规模。  相似文献   

20.
ABSTRACT

The Guichi ore-cluster district in the Lower Yangtze River Metallogenic Belt hosts extensive Cu–Au–Mo polymetallic deposits including the Tongshan Cu–Mo, Paodaoling Au, Matou Cu–Mo, Anzishan Cu–Mo, Guilinzheng Mo and Zhaceqiao Au deposits, mostly associated with the late Mesozoic magmatic rocks, which has been drawn to attention of study and exploration. However, the metallogenic relationship between magmatic rocks and the Cu–Au-polymetallic deposits is not well constrained. In this study, we report new zircon U–Pb ages, Hf isotopic, and geochemical data for the ore-bearing intrusions of Guichi region. LA-ICP-MS U–Pb ages for the Anzishan quartz diorite porphyrite is 143.9 ± 1.0 Ma. Integrated with previous geochronological data, these late Mesozoic magmatic rocks can be subdivided into two stages of magmatic activities. The first stage (150–132 Ma) is characterized by high-K calc-alkaline intrusions closely associated with Cu–Au polymetallic ore deposits. Whereas, the second stage (130–125 Ma) produced granites and syenites and is mainly characterized by shoshonite series that are related to Mo–Cu mineralization. The first stage of magmatic rocks is considered to be formed by partial melting of subducted Palaeo-Pacific Plate, assimilated with Yangtze lower crust and remelting Meso-Neoproterozoic crust/sediments. The second stage of magmatism is originated from partial melting of Mesoproterozoic-Neoproterozoic crust, mixed with juvenile crustal materials. The depression cross to the uplift zone of the Jiangnan Ancient Continent forms a gradual transition relation, and the hydrothermal mineralization composite with two stages have certain characteristics along the regional fault (Gaotan Fault). Guichi region results from two episodes of magmatism probably related to tectonic transition from subduction of Palaeo-Pacific Plate to back-arc extensional setting between 150 and 125 Ma, which lead to the Mesozoic large-scale polymetallic mineralization events in southeast China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号