首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Behavior of zircon at the schist/migmatite transition is investigated. Syn-metamorphic overgrowth is rare in zircon in schists, whereas zircon in migmatites has rims with low Th/U that give 90.3 ± 2.2 Ma U–Pb concordia age. Between inherited core and the metamorphic rim, a thin, dark-CL annulus containing melt inclusion is commonly developed, suggesting that it formed contemporaneous with the rim in the presence of melt. In diatexites, the annulus is further truncated by the brighter-CL overgrowth, suggesting the resorption and regrowth of the zircon after near-peak metamorphism. Part of the zircon rim crystallized during the solidification of the melt in migmatites. Preservation of angular-shaped inherited core of 5–10 μm in zircon included in garnet suggests that zircon of this size did not experience resorption but developed overgrowths during near-peak metamorphism. The Ostwald ripening process consuming zircon less than 5–10 μm is required to form new overgrowths. Curved crystal size distribution pattern for fine-grained zircons in a diatexite sample may indicate the contribution of this process. Zircon less than 20 μm is confirmed to be an important sink of Zr in metatexites, and ca. 35-μm zircon without detrital core are common in diatexites, supporting new nucleation of zircon in migmatites. In the Ryoke metamorphic belt at the Aoyama area, monazite from migmatites records the prograde growth age of 96.5 ± 1.9 Ma. Using the difference of growth timing of monazite and zircon, the duration of metamorphism higher than the amphibolite facies grade is estimated to be ca. 6 Myr.  相似文献   

2.
Progressive Early Silurian low‐pressure greenschist to granulite facies regional metamorphism of Ordovician flysch at Cooma, southeastern Australia, had different effects on detrital zircon and monazite and their U–Pb isotopic systems. Monazite began to dissolve at lower amphibolite facies, virtually disappearing by upper amphibolite facies, above which it began to regrow, becoming most coarsely grained in migmatite leucosome and the anatectic Cooma Granodiorite. Detrital monazite U–Pb ages survived through mid‐amphibolite facies, but not to higher grade. Monazite in the migmatite and granodiorite records only metamorphism and granite genesis at 432.8 ± 3.5 Ma. Detrital zircon was unaffected by metamorphism until the inception of partial melting, when platelets of new zircon precipitated in preferred orientations on the surface of the grains. These amalgamated to wholly enclose the grains in new growth, characterised by the development of {211} crystal faces, in the migmatite and granodiorite. New growth, although maximum in the leucosome, was best dated in the granodiorite at 435.2 ± 6.3 Ma. The combined best estimate for the age of metamorphism and granite genesis is 433.4 ± 3.1 Ma. Detrital zircon U–Pb ages were preserved unmodified throughout metamorphism and magma genesis and indicate derivation of the Cooma Granodiorite from Lower Palaeozoic source rocks with the same protolith as the Ordovician sediments, not Precambrian basement. Cooling of the metamorphic complex was relatively slow (average ~12°C/106y from ~730 to ~170°C), more consistent with the unroofing of a regional thermal high than cooling of an igneous intrusion. The ages of detrital zircon and monazite from the Ordovician flysch (dominantly composite populations 600–500 Ma and 1.2–0.9 Ga old) indicate its derivation from a source remote from the Australian craton.  相似文献   

3.
Detrital zircons are important proxies for crustal provenance and have been widely used in tracing source characteristics and continental reconstructions. Southern Peninsular India constituted the central segment of the late Neoproterozoic supercontinent Gondwana and is composed of crustal blocks ranging in age from Mesoarchean to late Neoproterozoic–Cambrian. Here we investigate detrital zircon grains from a suite of quartzites accreted along the southern part of the Madurai Block. Our LA-ICPMS U-Pb dating reveals multiple populations of magmatic zircons, among which the oldest group ranges in age from Mesoarchean to Paleoproterozoic (ca. 2980–1670 Ma, with peaks at 2900–2800 Ma, 2700–2600 Ma, 2500–2300 Ma, 2100–2000 Ma). Zircons in two samples show magmatic zircons with dominantly Neoproterozoic (950–550 Ma) ages. The metamorphic zircons from the quartzites define ages in the range of 580–500 Ma, correlating with the timing of metamorphism reported from the adjacent Trivandrum Block as well as from other adjacent crustal fragments within the Gondwana assembly. The zircon trace element data are mostly characterized by LREE depletion and HREE enrichment, positive Ce, Sm anomalies and negative Eu, Pr, Nd anomalies. The Mesoarchean to Neoproterozoic age range and the contrasting petrogenetic features as indicated from zircon chemistry suggest that the detritus were sourced from multiple provenances involving a range of lithologies of varying ages. Since the exposed basement of the southern Madurai Block is largely composed of Neoproterozoic orthogneisses, the data presented in our study indicate derivation of the detritus from distal source regions implying an open ocean environment. Samples carrying exclusive Neoproterozoic detrital zircon population in the absence of older zircons suggest proximal sources in the southern Madurai Block. Our results suggest that a branch of the Mozambique ocean might have separated the southern Madurai Block to the north and the Nagercoil Block to the south, with the metasediments of the khondalite belt in Trivandrum Block marking the zone of ocean closure, part of which were accreted onto the southern Madurai Block during the collisional amalgamation of the Gondwana supercontinent in latest Neoproterozoic–Cambrian.  相似文献   

4.
《International Geology Review》2012,54(14):1754-1768
The Wudaogou Group in eastern Yanbian, Northeast China, plays a key role in constraining the timing and eastward termination of the Solonker–Xra Moron River–Changchun Suture, where the Palaeo-Asian Ocean closed. The Wudaogou Group consists of schist, gneiss, amphibolite, metasedimentary, and metavolcanic rocks, all of which underwent greenschist- to epidote–amphibolite-facies regional metamorphism, with some hornfels resulting from contact metamorphism. To determine the age of deposition, the timing and grade of metamorphism, and the tectonic setting of the Wudaogou Group, we investigated the petrography and geochronology of the metamorphic rocks in this group. Zircons from the metasedimentary rocks of this group can be divided into metamorphic zircons and detrital zircons of magmatic origin. U–Pb ages of metamorphic zircons dated by LA-ICP-MS vary from 249 ± 4 to 266 ± 4 Ma, approximating the age of regional metamorphism in the eastern Yanbian area. Detrital zircons yield U–Pb ages ranging from 253 ± 5 to 818 ± 5 Ma, and indicate that the provenance of the Wudaogou Group experienced four tectonic–thermal events between 818 and 253 Ma: Neoproterozoic (ca. 818–580 Ma), Cambro–Ordovician (ca. 500–489 Ma), Devonian–Carboniferous (ca. 422–300 Ma), and middle–late Permian (ca. 269–253 Ma). The youngest detrital zircon, with a U–Pb age of 253 ± 5 Ma, defines the maximum depositional age of the Wudaogou Group. The presence of the Cambro-Ordovician and Neoproterozoic detrital zircons implies that the source of the Wudaogou Group had an affinity with Northeast China, which leads us to conclude that the Solonker–Xra Moron River–Changchun Suture extends from Wangqing to Hunchun in eastern Yanbian, and that the Palaeo-Asian Ocean may have closed at the end of the Permian or Early Triassic period.  相似文献   

5.
Migmatite gneisses are widespread in the Dabie orogen, but their formation ages are poorly constrained. Eight samples of migmatite, including leucosome, melanosome, and banded gneiss, were selected for U–Pb dating and Hf isotope analysis. Most metamorphic zircon occurs as overgrowths around inherited igneous cores or as newly grown grains. Morphological and internal structure features suggest that their growth is associated with partial melting. According to the Hf isotope ratio relationships between metamorphic zircon and inherited cores, three formation mechanisms for metamorphic zircon can be determined, which are dissolution–reprecipitation of pre‐existing zircon, breakdown of Zr‐bearing phase other than zircon in a closed system and crystallization from externally derived Zr‐bearing melt. Four samples contain magmatic zircon cores, yielding upper intercept U–Pb ages of 807 ± 35–768 ± 12 Ma suggesting that the protoliths of the migmatites are Neoproterozoic in age. The migmatite zircon yields weighted mean two‐stage Hf model ages of 2513 ± 97–894 ± 54 Ma, indicating reworking of both juvenile and ancient crustal materials at the time of their protolith formation. The metamorphic zircons give U–Pb ages of 145 ± 2–120 ± 2 Ma. The oldest age indicates that partial melting commenced prior to 145 Ma, which also constrains the onset of extensional tectonism in this region to pre‐145 Ma. The youngest age of 120 Ma was obtained from an undeformed granitic vein, indicating that deformation in this area was complete at this time. Two major episodes of partial melting were dated at 139 ± 1 and 123 ± 1Ma. The first episode of partial melting is obviously older than the timing of post‐collision magmatism, corresponding to regional extension. The second episode of partial melting is coeval with the widespread post‐collision magmatism, indicating the gravitational collapse and delamination of the orogenic lithospheric keel of the Dabie orogen, which were possibly triggered by the uprising of the Cretaceous mid‐Pacific superplume.  相似文献   

6.
《International Geology Review》2012,54(15):1887-1908
ABSTRACT

The widespread migmatites in the northwestern part of the Sulu Orogen, China, indicate regional anatexis that is of great significance when discussing the tectonic evolution of this continental orogenic belt. Cathodoluminescence (CL) images, U–Pb ages, and in situ trace element compositions of zircons from four pegmatite veins within these migmatites provide clear evidence for the nature of the post-collisional evolution of the Sulu Orogen. The inherited zircon cores reveal that the protoliths of the migmatites were middle Neoproterozoic magmatic rocks (810–620 Ma) of the South China Block. The protoliths underwent two partial melting events. The mantle domains of the inherited zircons record a Late Triassic (222.0–204.0 Ma) partial melting event that occurred during the exhumation and retrograde metamorphism, after ultrahigh-pressure (UHP) metamorphism. Subsequent newly grown zircons record a Middle–Late Jurassic to Early Cretaceous (164.1–125.5 Ma) anatexis event, indicating that the late Mesozoic anatexis started before ca. 164.1 Ma, reached a peak at ca. 152.1 Ma, and ceased at ca. 125.5 Ma. Combined with previous results of studies on the Sulu orogen, the late Mesozoic anatexis suggested that the thickened crust of the Sulu Orogen had started to become unstable before 164.1 Ma. The duration of ~164.1–137 Ma corresponds to a period of transition in the tectonic regime of the Sulu Orogen, enabling the early high-temperature ductile deformation. After ca. 137 Ma, the tectonic regime was fully transformed into extension and the Sulu Orogen underwent rapid thinning and collapse, thus leading to the late medium–low temperature ductile deformation (137–121 Ma) and laying the foundations for the large-scale magmatic emplacement during the late Early Cretaceous (127–115 Ma). These two partial melting events together promoted the rapid exhumation of the Sulu UHP rocks.  相似文献   

7.
The petrology and timing of crustal melting has been investigated in the migmatites of the Higher Himalayan Crystalline (HHC) exposed in Sikkim, India. The metapelites underwent pervasive partial melting through hydrous as well as dehydration melting reactions involving muscovite and biotite to produce a main assemblage of quartz, K-feldspar, plagioclase, biotite, garnet ± sillimanite. Peak metamorphic conditions were 8–9 kbar and ~800 °C. Monazite and zircon crystals in several migmatites collected along a N–S transect show multiple growth domains. The domains were analyzed by microbeam techniques for age (SHRIMP) and trace element composition (LA-ICP-MS) to relate ages to conditions of formation. Monazite preserves the best record of metamorphism with domains that have different zoning pattern, composition and age. Zircon was generally less reactive than monazite, with metamorphic growth zones preserved in only a few samples. The growth of accessory minerals in the presence of melt was episodic in the interval between 31 and 17 Ma, but widespread and diachronous across samples. Systematic variations in the chemical composition of the dated mineral zones (HREE content and negative Eu anomaly) are related to the variation in garnet and K-feldspar abundances, respectively, and thus to metamorphic reactions and P–T stages. In turn, this allows prograde versus decompressional and retrograde melt production to be timed. A hierarchy of timescales characterizes melting which occurred over a period of ~15 Ma (31–17 Ma): a given block within this region traversed the field of melting in 5–7 Ma, whereas individual melting reactions lasted for time durations below, or approaching, the resolution of microbeam dating techniques (~0.6 Ma). An older ~36 Ma high-grade event is recorded in an allocthonous relict related to mafic lenses. We identify two sections of the HHC in Sikkim that traversed similar P–T conditions at different times, separated by a tectonic discontinuity. The higher structural levels reached melting and peak conditions later (~26–23 Ma) than the lower structural levels (~31–27 Ma). Diachronicity across the HHC cannot be reconciled with channel flow models in their simplest form, as it requires two similar high-grade sections to move independently during collision.  相似文献   

8.
ABSTRACT

Different tectonic interpretations have been proposed for the various spatially associated Palaeoproterozoic granulite-facies lithologies (metasedimentary rocks, metabasites, and felsic granulites) from north-central part of the North China Craton, which hinges primarily on controversies about metamorphic histories of these granulites, especially on the timing of peak metamorphism. Published data exhibit two controversial peak metamorphic ages of 1950–1900 Ma and 1850–1800 Ma. We report here LA-ICPMS U–Pb zircon ages of seven representative granulite-facies samples of different lithologies to constrain the timing of metamorphism, and then discuss their geological significance. Most zircon grains from these rocks display weak core-and-rim structures and yield two comparable group metamorphic ages of 1970–1900 Ma and 1880–1790 Ma, although their formation ages vary from Neoarchaean to Palaeoproterozoic. The older population metamorphic ages are interpreted to approximate timing of high-pressure granulite-facies metamorphism, and the younger population ages as the approximate timing of intermediate- to low-pressure granulite-facies metamorphism. Combined with recent petrological studies, we propose these granulites have shared metamorphic histories at least since ~1970–1900 Ma, and they are probably formed in one single metamorphic cycle in response to crustal-scale subduction–collision–exhumation processes involved in Palaeoproterozoic mobile belt.  相似文献   

9.
SHRIMP U–Pb zircon ages are reported from a paragneiss, a pegmatite, a metasomatised metasediment and an amphibolite taken from the upper amphibolite facies host sequence of the Cannington Ag–Pb–Zn deposit at the southeastern margin of the Proterozoic Mt Isa Block. Also reported are ages from a middle amphibolite‐facies metasediment from the Soldiers Cap Group approximately 90 km north of Cannington. The predominantly metasedimentary host rocks of the Cannington deposit were eroded from a terrane containing latest Archaean to earliest Palaeoproterozoic (ca 2600–2300 Ma) and Palaeoproterozoic (ca 1750–1700 Ma) zircon. The ca 1750–1700 Ma group of zircons are consistent with sedimentary provenance from rocks of Cover Sequence 2 age that are now exposed to the north and west of the Cannington deposit. The metasedimentary samples also include a group of zircon grains at ca 1675 Ma, which we interpret as the maximum depositional age of the sedimentary protolith. This is comparable to the maximum depositional age of the metasediment from the Maronan area (ca 1665 Ma) and to previously published data from the Soldiers Cap Group. Metamorphic zircon rims and new zircon grains grew at 1600–1580 Ma during upper amphibolite‐facies metamorphism in metasedimentary and mafic magmatic rocks. Zircon inheritance patterns suggest that sheet‐like pegmatitic intrusions were most likely derived from partial melting of the surrounding metasediments during this period of metamorphism. Some zircon grains from the amphibolite have a morphology consistent with partially recrystallised igneous grains and have apparent ages close to the metamorphic age, although it is not clear whether these represent metamorphic resetting or crystallisation of the magmatic protolith. Pb‐loss during syn‐ to post‐metamorphic metasomatism resulted in partial resetting of zircons from the metasomatised metasediment.  相似文献   

10.
The Madurai Block (MB) is the largest Precambrian crustal block in the Southern Granulite Terrane (SGT) of India and hosts rare cordierite- and orthopyroxene-bearing granulites. Investigations based on field study, petrology, metamorphic PT estimation, and detrital zircon geochronology of these granulites are crucial for understanding the ultrahigh-temperature (UHT) metamorphism and crustal evolution in this block. Here we investigate the petrology and zircon U–Pb geochronology of two new localities of cordierite granulites at Kottayam (southern MB; SMB) and Munnar (central MB; CMB). Petrographic observations and phase equilibria modelling results indicate that these rocks experienced UHT metamorphism with the peak temperature exceeding 950℃ and involving clockwise P–T paths. The prograde mineral assemblages define the PT conditions of 6.8–8.7 kbar and 750–875℃. The peak conditions are estimated using pseudosection modelling and geothermometry, which yield PT estimates of 7.1–9.1 kbar and 955–985℃. The retrograde cooling and decompression are inferred at 860–790℃ and <6.5 kbar, respectively. Partial melting played an important role during metamorphism and contributed to the overgrowth around detrital zircons. The melt production process was probably related to biotite dehydration melting, and was mainly triggered by heating, with or without the effect of decompression. Detrital zircons in cordierite granulite samples from the two localities show similar age distributions and have dominantly Neoproterozoic ages (1024–760 Ma). The zircon cores show oscillatory zoning with a wide range of Th/U ratios (0.01–0.96), implying complex protoliths from multiple Neoproterozoic provenances from both southern and central domains of the MBs. Zircon rims and homogeneous bright zircons yield mean ages of 549 ± 5 Ma, 536 ± 6 Ma, and 544 ± 6 Ma, which are interpreted to represent zircon overgrowths during the post-peak cooling and decompression process. The timing of peak UHT metamorphism is constrained as 549–599 Ma, which coincides with the assembly of the Gondwana supercontinent.  相似文献   

11.
SHRIMP U–Pb ages have been obtained for zircon in granitic gneisses from the aureole of the Rogaland anorthosite–norite intrusive complex, both from the ultrahigh temperature (UHT; >900 °C pigeonite‐in) zone and from outside the hypersthene‐in isograd. Magmatic and metamorphic segments of composite zircon were characterised on the basis of electron backscattered electron and cathodoluminescence images plus trace element analysis. A sample from outside the UHT zone has magmatic cores with an age of 1034 ± 7 Ma (2σ, n = 8) and 1052 ± 5 Ma (1σ, n = 1) overgrown by M1 metamorphic rims giving ages between 1020 ± 7 and 1007 ± 5 Ma. In contrast, samples from the UHT zone exhibit four major age groups: (1) magmatic cores yielding ages over 1500 Ma (2) magmatic cores giving ages of 1034 ± 13 Ma (2σ, n = 4) and 1056 ± 10 Ma (1σ, n = 1) (3) metamorphic overgrowths ranging in age between 1017 ± 6 Ma and 992 ± 7 Ma (1σ) corresponding to the regional M1 Sveconorwegian granulite facies metamorphism, and (4) overgrowths corresponding to M2 UHT contact metamorphism giving values of 922 ± 14 Ma (2σ, n = 6). Recrystallized areas in zircon from both areas define a further age group at 974 ± 13 Ma (2σ, n = 4). This study presents the first evidence from Rogaland for new growth of zircon resulting from UHT contact metamorphism. More importantly, it shows the survival of magmatic and regional metamorphic zircon relics in rocks that experienced a thermal overprint of c. 950 °C for at least 1 Myr. Magmatic and different metamorphic zones in the same zircon are sharply bounded and preserve original crystallization age information, a result inconsistent with some experimental data on Pb diffusion in zircon which predict measurable Pb diffusion under such conditions. The implication is that resetting of zircon ages by diffusion during M2 was negligible in these dry granulite facies rocks. Imaging and Th/U–Y systematics indicate that the main processes affecting zircon were dissolution‐reprecipitation in a closed system and solid‐state recrystallization during and soon after M1.  相似文献   

12.
Monazite is a key accessory mineral for metamorphic geochronology, but interpretation of its complex chemical and age zoning acquired during high-temperature metamorphism and anatexis remains a challenge. We investigate the petrology, pressure–temperature and timing of metamorphism in pelitic and psammitic granulites that contain monazite from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent isothermal decompression from pressure of >10 kbar to ~5 kbar at temperatures of 750–830 °C, and recorded three metamorphic stages at kyanite (M1), sillimanite (M2) and cordierite-spinel grade (M3). Monazite and zircon crystals were dated by microbeam techniques either as grain separates or in thin sections. U–Th–Pb ages are linked to specific conditions of mineral growth on the basis of zoning patterns, trace element signatures, index mineral inclusions (melt inclusions, sillimanite and K-feldspar) in dated domains and textural relationships with co-existing minerals. The results show that inherited domains (500–400 Ma) are preserved in monazite even at granulite-facies conditions. Few monazites or zircon yield ages related to the M1-stage (~30–29 Ma), possibly corresponding to prograde melting by muscovite dehydration. During the early stage of isothermal decompression, inherited or prograde monazites in most samples were dissolved in the melt produced by biotite dehydration-melting. Most monazite grains crystallized from melt toward the end of decompression (M3-stage, 21–19 Ma) and are chemically related to garnet breakdown reactions. Another peak of monazite growth occurred at final melt crystallization (~15 Ma), and these monazite grains are unzoned and are homogeneous in composition. In a regional context, our pressure–temperature–time data constrains peak high-pressure metamorphism within the GHC to ~30–29 Ma in Dinggye Himalaya. Our results are in line with a melt-assisted exhumation of the GHC rocks.  相似文献   

13.
The western Fiordland Orthogneiss (WFO) is an extensive composite metagabbroic to dioritic arc batholith that was emplaced at c. 20–25 km crustal depth into Palaeozoic and Mesozoic gneiss during collision and accretion of the arc with the Mesozoic Pacific Gondwana margin. Sensitive high‐resolution ion microprobe U–Pb zircon data from central and northern Fiordland indicate that WFO plutons were emplaced throughout the early Cretaceous (123.6 ± 3.0, 121.8 ± 1.7, 120.0 ± 2.6 and 115.6 ± 2.4 Ma). Emplacement of the WFO synchronous with regional deformation and collisional‐style orogenesis is illustrated by (i) coeval ages of a post‐D1 dyke (123.6 ± 3.0 Ma) and its host pluton (121.8 ± 1.7 Ma) at Mt Daniel and (ii) coeval ages of pluton emplacement and metamorphism/deformation of proximal paragneiss in George and Doubtful Sounds. The coincidence emplacement and metamorphic ages indicate that the WFO was regionally significant as a heat source for amphibolite to granulite facies metamorphism. The age spectra of detrital zircon populations were characterized for four paragneiss samples. A paragneiss from Doubtful Sound shows a similar age spectrum to other central Fiordland and Westland paragneiss and SE Australian Ordovician sedimentary rocks, with age peaks at 600–500 and 1100–900 Ma, a smaller peak at c. 1400 Ma, and a minor Archean component. Similarly, one sample of the George Sound paragneiss has a significant Palaeozoic to Archean age spectrum, however zircon populations from the George Sound paragneiss are dominated by Permo‐Triassic components and thus are markedly different from any of those previously studied in Fiordland.  相似文献   

14.
The Eoarchaean (>3,600 Ma) Itsaq Gneiss Complex of southern West Greenland is dominated by polyphase orthogneisses with a complex Archaean tectonothermal history. Some of the orthogneisses have c. 3,850 Ma zircons, and they vary from rare single phase metatonalites to more common complexly banded migmatites. This is due to heterogeneous strain, in situ anatexis and granitic veining superimposed during younger tectonothermal events. In the single-phase tonalites with c. 3,850 Ma zircon, oscillatory-zoned prismatic zircon is all 3,850 Ma old, but shows patchy ancient loss of radiogenic Pb. SHRIMP spot analyses and laser ablation ICP-MS depth profiling show that thin (usually < 10 μm) younger (3,660–3,590 Ma and Neoarchaean) shells of lower Th/U metamorphic zircon are present on these 3,850 Ma zircons. Several samples with this simple zircon population occur on islands near Akilia. In contrast, migmatites usually contain more complex zircon populations, with often more than one generation of igneous zircon present. Additional zircon dating of banded gneisses across the Complex shows that samples with c. 3,850 Ma igneous zircon are not just a phenomenon restricted to Akilia and adjacent islands. For example, migmatites from Itilleq (c. 65 km from Akilia) contain variable amounts of oscillatory-zoned 3,850 Ma and 3,650 Ma zircon, interpreted, respectively, as the rock age and the time of crustal melting under Eoarchaean metamorphism. With only 110–140 ppm Zr in the tonalites and likely magmatic temperatures of >850°C, zircon solubility–melt composition relationships show that they were only one-third saturated in zircon. Any zircon entrained in the precursor magmas would thus have been highly soluble. Combined with the cathodoluminesence imaging, this demonstrates that the c. 3,850 Ma oscillatory zoned zircon crystallised out of the melt and hence gives a magmatic age. Thus the rare well-preserved tonalites and palaeosome in migmatites testify that c. 3,850 Ma quartzo–feldspathic rocks are a widespread (but probably minor) component in the Itsaq Gneiss Complex. C. 3,850 Ma zircon with negative Eu anomalies (showing growth in felsic systems) also occurs as detrital grains in rare c. 3,800 Ma metaquartzites and as inherited grains in some 3,660 Ma granites (sensu stricto). These demonstrate that still more c. 3,850 Ma rocks were present, but were recycled into Eoarchaean sediments and crustally derived granites. The major and trace element characteristics (e.g. LREE enrichment, HREE depletion, low MgO) of the best-preserved c. 3,850 Ma rocks are typical of Archaean TTG suites, and thus argue for crust formation processes involving important contributions from melting of hydrated mafic crust to the earliest Archaean. Five c. 3,850 Ma tonalites were selected as the best preserved on the basis of field criteria and zircon petrology. Four of these samples have overlapping initial ɛNd (3,850 Ma) values from +2.9 to +3.6± 0.5, with the fourth having a slightly lower value of +0.6. These data provide additional evidence for a markedly LREE-depleted early terrestrial mantle reservoir. The role of c. 3,850 Ma crust should be considered in interpreting isotope signatures of the younger (3,800–3,600 Ma) rocks of the Itsaq Gneiss Complex. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
In order to decipher the origin of eclogite in the high‐P/T Sanbagawa metamorphic belt, SHRIMP U–Pb ages of zircons from quartz‐bearing eclogite and associated quartz‐rich rock (metasandstone) were determined. One zircon core of the quartz‐rich rock yields an extremely old provenance age of 1899 ± 79 Ma, suggesting that the core is of detrital origin. Eight other core ages are in the 148–134 Ma range, and are older than the estimated age for trench sedimentation as indicated by the youngest radiolarian fossil age of 139–135 Ma from the Sanbagawa schists. Ages of metamorphic zircon rims (132–112 Ma) from the quartz‐rich rock are consistent with metamorphic zircon ages from the quartz‐bearing eclogite, indicating that eclogite facies metamorphism peaked at 120–110 Ma. These new data are consistent with both the Iratsu eclogite body and surrounding highest‐grade Sanbagawa schists undergoing coeval subduction‐zone metamorphism, and subsequent re‐equilibration under epidote amphibolite facies conditions during exhumation.  相似文献   

16.
Garnet granulite and pyroxenite xenoliths from the Grib kimberlite pipe (Arkhangelsk, NW Russia) represent the lower crust beneath Russian platform in close vicinity to the cratonic region of the north-eastern Baltic (Fennoscandian) Shield. Many of the xenoliths have experienced strong interaction with the kimberlite host, but in others some primary granulite-facies minerals are preserved. Calculated bulk compositions for the granulites suggest that their protoliths were basic to intermediate igneous rocks; pyroxenites were ultrabasic to basic cumulates. A few samples are probably metasedimentary in origin. Zircons are abundant in the xenoliths; they exhibit complex zoning in cathodoluminescence with relic cores and various metamorphic rims. Cores include oscillatory zircon crystallized in magmatic protoliths, and metamorphic and magmatic sector-zoned zircons. Recrystallization of older zircons led to the formation of bright homogeneous rims. In some samples, homogeneous shells are surrounded by darker convoluted overgrowths that were formed by subsolidus growth when a change in mineral association occurred. The source of Zr was a phase consumed during a reaction, which produced garnet. Late-generation zircons in all xenoliths show concordant U–Pb ages of 1.81–1.84 Ga (1,826 ± 11 Ma), interpreted as the age of last granulite-facies metamorphism. This event completely resets most zircon cores. An earlier metamorphic event at 1.96–1.94 Ga is recorded by some rare cores, and a few magmatic oscillatory zircons have retained a Neoarchaean age of 2,719 ± 14 Ma. The assemblage of metaigneous and metasedimentary rocks was probably formed before the event at 1.96 Ga. Inherited magmatic zircons indicate the existence of continental crust by the time of intrusion of magmatic protoliths in the Late Archaean. The U–Pb zircon ages correspond to major events recorded in upper crustal rocks of the region: collisional metamorphism and magmatism 2.7 Ga ago and reworking of Archaean rocks at around 1.95–1.75 Ga. However, formation of the granulitic paragenesis in lower crustal rocks occurred significantly later than the last granulite-facies event seen in the upper crust and correlates instead with retrograde metamorphism and small-volume magmatism in the upper crust.  相似文献   

17.
Zircons from anatectic melts of the country rocks of three Proterozoic mafic–ultramafic intrusions from the Sveconorwegian Province in SW Sweden were microanalyzed for U–Th–Pb and rare earth elements. Melting and interaction of the wall rocks with the intrusions gave rise to new magmas that crystallized zircon as new grains and overgrowths on xenocrysts. The ages of the intrusions can be determined by dating this newly crystallized zircon. The method is applied to three intrusions that present different degrees of complexity, related to age differences between intrusion and country rocks, and the effects of post-intrusive metamorphism. By careful study of cathodoluminescent images and selection of ion probe spots in zircon grains, we show that this approach is a powerful tool for obtaining accurate and precise ages. In the contact melts around the 916?±?11?Ma Hakefjorden Complex, Pb-loss occurred in some U-rich parts of xenocrystic zircon due to the heat from the intrusion. In back-veins of the 1624?±?6?Ma Olstorp intrusion we succeeded in geochemically distinguishing new magmatic from xenocrystic zircon despite small age differences. At Borås the mafic intrusion mixed with country rock granite to form a tonalite in which new zircon grew at 1674?±?8?Ma. Reworking of zircon occurred during 930+33/–34?Ma upper amphibolite facies Sveconorwegian metamorphism. Pb-loss was the result of re-equilibration with metamorphic fluids. REE-profiles show consistent differences between xenocrystic, magmatic, and metamorphic zircon in all cases. They typically differ in Lu/LaN, Ce/Ce*, and Eu/Eu*, and igneous zircon with marked positive Ce/Ce* and negative Eu/Eu* lost its anomalies during metamorphism.  相似文献   

18.
The Great Xing’an Range in Northeast China is located in the eastern part of the Central Asian Orogenic Belt. From north to south, the Great Xing’an Range is divided into the Erguna, Xing’an, and Songliao blocks. Previous U–Pb zircon geochronology results have revealed that some ‘Precambrian metamorphic rocks’ in the Xing’an block have Phanerozoic protolith ages, questioning whether Precambrian basement exists in the Xing’an block. We present laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb dating results for zircons from suspected Precambrian metamorphic rocks in the Xing’an block. Meta-rhyolites of the Xinkailing Group in Nenjiang yield magmatic ages of 355.8 Ma. Detrital zircons from phyllites of the Xinkailing Group in Duobaoshan yield populations of ca. 1505, ca. 810, and ca. 485 Ma, with the youngest peak constraining its depositional age to be <485 Ma. Zircons from amphibolitic gneisses of the Xinkailing Group in Nenjiang have magmatic ages of 308.6 Ma. Mylonitic granites of the Xinkailing Group in Nenjiang have zircon magmatic ages of 164 Ma. Detrital zircons from two-mica quartz schists of the Luomahu Group in the Galashan Forest yield ca. 2419, ca. 1789, ca. 801, ca. 536, ca. 480, and ca. 420 Ma, with the youngest peak indicating its depositional age as <420 Ma. Detrital zircons from mylonitized sericite–chlorite schist of the Ergunhe Formation in Taerqi yield populations of 982–948, ca. 519, and ca. 410 Ma, with the youngest peak demonstrating that its depositional age is <410 Ma. These zircon ages for a range of lithologies show that the Great Xing’an Range metamorphic rocks formed during the Phanerozoic (164–485 Ma) and that this crust is mostly Palaeozoic. Based on these results and published data, we conclude that there is no evidence of Precambrian metamorphic basement in the Xing’an block. In summary, the age data indicate that Precambrian metamorphic basement may not exist in the Xing’an region.  相似文献   

19.
 The highest grade of metamorphism and associated structural elements in orogenic belts may be inherited from earlier orogenic events. We illustrate this point using magmatic and metamorphic rocks from the southern steep belt of the Lepontine Gneiss Dome (Central Alps). The U-Pb zircon ages from an anatectic granite at Verampio and migmatites at Corcapolo and Lavertezzo yield 280–290 Ma, i.e., Hercynian ages. These ages indicate that the highest grade of metamorphism in several crystalline nappes of the Lepontine Gneiss Dome is pre-Alpine. Alpine metamorphism reached sufficiently high grade to reset the Rb-Sr and K-Ar systematics of mica and amphibole, but generally did not result in crustal melting, except in the steep belt to the north of the Insubric Line, where numerous 29 to 26 Ma old pegmatites and aplites had intruded syn- and post-kinematically into gneisses of the ductile Simplon Shear Zone. The emplacement age of these pegmatites gives a minimum estimate for the age of the Alpine metamorphic peak in the Monte Rosa nappe. The U-Pb titanite ages of 33 to 31 Ma from felsic porphyritic veins represent a minimum-age estimate for Alpine metamorphism in the Sesia Zone. A porphyric vein emplaced at 448±5 Ma (U-Pb monazite) demonstrates that there existed a consolidated Caledonian basement in the Sesia Zone. Received: 23 May 1995/Accepted: 12 October 1995  相似文献   

20.
Exposed cross‐sections of the continental crust are a unique geological situation for crustal evolution studies, providing the possibility of deciphering the time relationships between magmatic and metamorphic events at all levels of the crust. In the cross‐section of southern and northern Calabria, U–Pb, Rb–Sr and K–Ar mineral ages of granulite facies metapelitic migmatites, peraluminous granites and amphibolite facies upper crustal gneisses provide constraints on the late‐Hercynian peak metamorphism and granitoid magmatism as well as on the post‐metamorphic cooling. Monazite from upper crustal amphibolite facies paragneisses from southern Calabria yields similar U–Pb ages (295–293±4 Ma) to those of granulite facies metamorphism in the lower crust and of intrusions of calcalkaline and metaluminous granitoids in the middle crust (300±10 Ma). Monazite and xenotime from peraluminous granites in the middle to upper crust of the same crustal section provide slightly older intrusion ages of 303–302±0.6 Ma. Zircon from a mafic to intermediate sill in the lower crust yields a lower concordia intercept age of 290±2 Ma, which may be interpreted as the minimum age for metamorphism or intrusion. U–Pb monazite ages from granulite facies migmatites and peraluminous granites of the lower and middle crust from northern Calabria (Sila) also point to a near‐synchronism of peak metamorphism and intrusion at 304–300±0.4 Ma. At the end of the granulite facies metamorphism, the lower crustal rocks were uplifted into mid‐crustal levels (10–15 km) followed by nearly isobaric slow cooling (c. 3 °C Ma?1) as indicated by muscovite and biotite K–Ar and Rb–Sr data between 210±4 and 123±1 Ma. The thermal history is therefore similar to that of the lower crust of southern Calabria. In combination with previous petrological studies addressing metamorphic textures and P–T conditions of rocks from all crustal levels, the new geochronological results are used to suggest that the thermal evolution and heat distribution in the Calabrian crust were mainly controlled by advective heat input through magmatic intrusions into all crustal levels during the late‐Hercynian orogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号