首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ultrahigh temperature (UHT) metamorphism is traditionally recognized by the development of characteristic mineral associations in Mg–Al-rich metapelitic rocks. However, recognition of UHT metamorphism in non-supracrustal rocks is more difficult. UHT metamorphic conditions are recorded by a migmatite from the North Dabie Terrane (NDT) of the Dabie orogen, east China. The migmatite is composed of intercalated layers of melanosome and K-feldspar-rich leucosome. Zircon grains in the migmatite have a core–rim structure comprising a metamorphic core and an anatectic rim. The metamorphic cores have low U contents (mainly <657 ppm) and low Th/U ratios (<0.2), and are depleted in heavy rare earth element (HREE). The metamorphic domains yield concordant 206Pb/238U ages ranging from 205.1 ± 4.8 Ma to 248.0 ± 4.1 Ma with a weighted mean of 217.7 ± 4.3 Ma (n = 20, MSWD = 4.2). They contain a granulite-facies inclusion assemblage of garnet + clinopyroxene + plagioclase + quartz + rutile. Conventional geobarometry and Ti-in-zircon thermometry constrain PT conditions to approximately 11–12 kbar and 900–950 °C, suggesting UHT metamorphism. The discovery of Triassic UHT metamorphism in the Dabie orogen, which was previously best known for ultrahigh pressure metamorphism, provides new insights into the thermal structure and geodynamics of the orogeny during continental collision. The anatectic rims of zircon grains have relatively high U contents and low Th/U ratios (<0.14), and are enriched in HREE. They yield concordant 206Pb/238U ages of 133.6 ± 1.1 Ma to 156.4 ± 2.2 Ma, indicating that anatexis occurred during post-collisional collapse of the Dabie orogen.  相似文献   

2.
Migmatites are predominant in the North Qinling (NQ) orogen, but their formation ages are poorly constrained. This paper presents a combined study of cathodoluminescence imaging, U–Pb age, trace element and Hf isotopes of zircon in migmatites from the NQ unit. In the migmatites, most zircon grains occur as new, homogeneous crystals, while some are present as overgrowth rims around inherited cores. Morphological and trace element features suggest that the zircon crystals are metamorphic and formed during partial melting. The inherited cores have oscillatory zoning and yield U–Pb ages of c. 900 Ma, representing their protolith ages. The early Neoproterozoic protoliths probably formed in an active continental margin, being a response to the assembly of the supercontinent Rodinia. The migmatite zircon yields Hf model ages of 1911 ± 20 to 990 ± 22 Ma, indicating that the protoliths were derived from reworking of Palaeoproterozoic to Neoproterozoic crustal materials. The anatexis zircon yields formation ages ranging from 455 ± 5 to 420 ± 4 Ma, with a peak at c. 435 Ma. Combined with previous results, we suggest that the migmatization of the NQ terrane occurred at c. 455–400 Ma. The migmatization was c. 50 Ma later than the c. 490 Ma ultra‐high‐P (UHP) metamorphism, indicating that they occurred in two independent tectonic events. By contrast, the migmatization was coeval with the granulite facies metamorphism and the granitic magmatism in the NQ unit, which collectively argue for their formation due to the northward subduction of the Shangdan Ocean. UHP rocks were distributed mainly along the northern margin and occasionally in the inner part of the NQ unit, indicating that they were exhumed along the northern edge and detached from the basement by the subsequent migmatization process.  相似文献   

3.
桐柏造山带深熔作用:混合岩LA-ICPMS锆石U-Pb年代学证据   总被引:2,自引:1,他引:1  
刘小驰  吴元保  彭敏  汪晶  王浩  彭德才 《岩石学报》2011,27(4):1163-1171
桐柏造山带是研究秦岭-桐柏-大别-苏鲁变质带演化的关键地区。由于桐柏高级变质杂岩深熔作用发生时间还缺乏准确的限定,这一区域的构造演化仍存在较大的争议。本文对桐柏杂岩中的一个混合岩的中色体和两个混合岩浅色体样品中的锆石进行了LA-ICPMS年代学测定。中色体中锆石分析点获得的上下交点分别为859±73Ma和135±250Ma。接近上交点的6个谐和分析点给出的206Pb/238U加权平均结果为828±7Ma (MSWD=0.57)。这一年龄结果同上交点在误差范围内一致,代表混合岩原岩结晶年龄,对应扬子板块北缘出现的中-新元古代的岩浆事件。另一方面,混合岩浅色体中的新生锆石具有面状分带或是弱的振荡环带,低的Th/U比值,锆石形态学和内部结构也表明新生锆石结晶于与深熔作用有关的熔体中,它们的206Pb/238U加权平均值分别为135±4Ma和131±3Ma。这一年龄范围代表桐柏高级变质地体发生深熔作用时间,区域上与桐柏-大别变质带广泛出现的碰撞后岩浆事件的时代相同。桐柏造山带出现造山后伸展的时间应不晚于135Ma。  相似文献   

4.
Partial melting of ultrahigh‐pressure (UHP) metamorphic rocks is common during collisional orogenesis and post‐collisional reworking, indicating that determining the timing and processes involved in this partial melting can provide insights into the tectonic evolution of collisional orogens. This study presents the results of a combined whole‐rock geochemical and zirconological study of migmatites from the Sulu orogen in eastern China. These data provide evidence of multiple episodes of crustal anatexis and geochemical differentiation within the UHP metamorphic rocks. The leucosomes contain higher concentrations of Ba and K and lower concentrations of the rare earth elements (REE), Th and Y, than associated melanosomes and granitic gneisses. The leucosomes also have homogenous Sr–Nd–O isotopic compositions that are similar to proximal (i.e. within the same outcrop) melanosomes, suggesting that the anatectic melts were generated by the partial melting of source rocks that are located within individual outcrops. The migmatites contain zircons with six different types of domains that can be categorized using differences in structures, trace element compositions, and U–Pb ages. Group I domains are relict magmatic zircons that yield middle Neoproterozoic U–Pb ages and contain high REE concentrations. Group II domains represent newly grown metamorphic zircons that formed at 230 ± 1 Ma during the collisional orogenesis. Groups III, IV, V, and VI zircons are newly grown anatectic zircons that formed at 222 ± 2 Ma, 215 ± 1 Ma, 177 ± 2 Ma, and 152 ± 2 Ma, respectively. The metamorphic zircons have higher Th/U and lower (Yb/Gd)N values, flat heavy REE (HREE) patterns with no significantly negative Eu anomalies relative to the anatectic zircons, which are characterized by low Th/U ratios, steep HREE patterns, and negative Eu anomalies. The first two episodes of crustal anatexis occurred during the Late Triassic at c. 222 Ma and c. 215 Ma as a result of phengite breakdown. The other two episodes of anatexis occurred during the Jurassic period at c. 177 Ma and c. 152 Ma and were associated with extensional collapse of the collision‐thickened orogen. The majority of Triassic anatectic zircons and all of the Jurassic zircons are located within the leucosomes, whereas the melanosomes are dominated by Triassic metamorphic zircons, suggesting that the leucosomes within the migmatites record more episodes of crustal anatexis. Both metamorphic and anatectic zircons have elevated εHf(t) values compared with relict magmatic zircon cores, suggesting that these zircons contain non‐zircon Hf derived from material with more radiogenic Hf isotope compositions. Therefore, the Sulu and Dabie orogens experienced different episodes of reworking during the exhumation and post‐collisional stages.  相似文献   

5.
Although the U–Pb zircon chronometer has been widely used for dating metamorphism in moderate‐ to high‐grade rocks, it is generally difficult to link the U–Pb age of zircon to specific metamorphic reactions. In this study, the initial Hf isotopic composition of secondary zircon is compared with the evolution of Hf isotopic composition of the bulk sample, back‐projected from the measured value through time. This approach may enhance the interpretation of radiometric ages performed on metamorphic mineral assemblages. Here, U–Pb, Sm–Nd and Lu–Hf geochronology and thermobarometry have been integrated and applied to two metamorphosed diabase dykes in the Sveconorwegian orogen, SW Sweden. The dykes are located ~5 km east of the NNE‐trending Göta Älv deformation zone in the Idefjorden terrane, and trend parallel to this zone. The Lunden dyke is recrystallized into a coronitic, granulite facies assemblage. U–Pb isotopic analyses of baddeleyite in this dyke indicate an emplacement age of c. 1300 Ma. Thermobarometric techniques applied to garnet and omphacitic clinopyroxene coronas indicate high‐pressure metamorphism at ~15 kbar and ~740 °C. The growth of polycrystalline zircon at the expense of baddeleyite occurred at 1046 ± 6 Ma. The identical Hf isotopic composition of polycrystalline zircon and baddeleyite shows that the baddeleyite‐to‐zircon transition took place before Hf equilibration among the other metamorphic minerals and, hence the c. 1046 Ma age of polycrystalline zircon sets an upper age limit of metamorphism of this sample. The Haregården dyke is recrystallized into a granoblastic transitional upper amphibolite to granulite facies assemblage. The estimated P–T conditions are ~10 kbar and ~700 °C. Analyses of small (~30 μm), clear and round zircon in this sample yield a Concordia U–Pb age of 1026 ± 4 Ma, which is indistinguishable from the Lu‐Hf and Sm‐Nd mineral isochron ages of 1027 ± 9 and 1022 ± 34 Ma, respectively. This type of secondary zircon plots at the lower end of the Lu‐Hf isochron and indicates simultaneous growth with garnet at c. 1026 Ma, a time when Hf isotopic equilibrium among minerals must have been reached.  相似文献   

6.
Thin layers and lenses of granitic leucosome are widely distributed within amphibolites, paragneisses and orthogneisses of the Sulu UHP terrane. They are parallel to, or cross‐cut, foliations in the host rocks at different scales and show evidence of coalescence and migration to form centimetre‐ to decimetre‐scale segregations. Variously migmatized rocks extend at least 350 km from SW Sulu (Maobei) to NE Sulu (Weihai), in a band at least 50 km wide. A combined study of mineral inclusions, cathoduluminescence (CL) images, U–Pb LA‐ICP‐MS dates, and in‐situ trace element compositions of zircon provide clear evidence on the nature and timing of partial melting in these UHP rocks. Most zircon from the granitic leucosomes occurs as distinct overgrowths around inherited (igneous or metamorphic) cores or as new, euhedral crystals. The overgrowths and new crystals commonly show perfectly euhedral shapes, have pronounced oscillatory zoning and contain felsic mineral inclusions, such as Kfs + Pl + Qtz ± Ilm ± monazite (Mon). In contrast, the inherited igneous or metamorphic cores are rounded or irregular, contain low‐P or UHP mineral inclusions and show clear dissolution textures. These data suggest that the new zircon is anatectic in origin and that it grew during partial melting of the UHP rocks. The REE patterns of the anatectic zircon show steep slopes from the HREE to LREE with strongly to moderately negative Eu anomalies (Eu/Eu* = 0.31–0.72) and pronounced positive Ce anomalies (Ce/Ce* = 6.8–26.5). Abundant U–Pb spot analyses of the anatectic zircon reveal two discrete and meaningful ages of partial melting within the Sulu UHP terrane. Anatectic zircon from 12 granitic leucosomes within amphibolites, paragneisses, and orthogneisses from Sulu UHP slices II and III yields consistent mean U–Pb ages of 219.0 ± 1.2 to 218.3 ± 1.6 Ma, 218.8 ± 2.0 to 217.3 ± 1.7 Ma and 218.2 ± 1.4 to 215.0 ± 1.5 Ma, respectively. In contrast, anatectic zircon from six granitic leucosomes within paragneisses and orthogneisses from Sulu UHP slice III records younger mean U–Pb ages of 151.9 ± 1.3 to 151.1 ± 1.8 Ma and 155.9 ± 1.8 to 153.7 ± 1.7 Ma, respectively. These data imply that the Sulu UHP terrane experienced two Mesozoic partial melting events. The first partial melting event (219–215 Ma) was probably associated with a Late Triassic granulite facies stage of ‘hot’ exhumation, whereas the second (156–151 Ma) is interpreted as the result of Middle‐Late Jurassic extension and thinning of the previously thickened crust of the Sulu UHP terrane. Both partial melting events induced extensive retrograde metamorphism of the eclogites and their country rocks.  相似文献   

7.
A combined study of zircon morphology, U–Pb ages and Hf isotopes as well as whole‐rock major and trace elements was carried out for ultrahigh‐pressure (UHP) eclogite and felsic gneiss from the main hole (MH) of the Chinese Continental Scientific Drilling (CCSD) project in the Sulu orogen. The results show contrasting Hf isotope compositions for bimodal UHP metaigneous rocks, pointing to contrasting origins for their protoliths (thus dual‐bimodal compositions). The samples of interest were from two continuous core segments from CCSD MH at depths of 734.21–737.16 m (I) and 929.67–932.86 m (II) respectively. Zircon U–Pb dating for four samples from the two core segments yields two groups of ages at 784 ± 17 and 222 ± 3 Ma, respectively, corresponding to protolith formation during supercontinental rifting and metamorphic growth during continental collision. Although the Triassic UHP metamorphism significantly reset the zircon U–Pb system of UHP rocks, the Hf isotope compositions of igneous zircon can be used to trace their protolith origin. Contrasting types of initial Hf isotope ratios are, respectively, correlated with segments I and II, regardless of their lithochemistry. The first type shows positive ?Hf(t) values of 7.8 ± 3.1 to 6.0 ± 3.0, with young Hf model age of 1.03 and 1.11 Ga. The second type exhibits negative ?Hf(t) values of ?6.9 ± 1.6 to ?9.1 ± 1.1, with old Hf model ages of 2.11 and 2.25 Ga. It appears that the UHP rocks from the two segments have protoliths of contrasting origin. Consistent results are also obtained from their trace element compositions suggesting that mid‐Neoproterozoic protoliths of bimodal UHP metaigneous rocks formed during supercontinental rifting at the northern margin of the South China Block. Thus, the first type of bimodal magmatism formed by rapid reworking of juvenile crust, whereas the second type of bimodal magmatism was principally generated by rift anatexis of Paleoproterozoic crust. Melting of orogenic lithosphere has potential to bring about bimodal magmatism with contrasting origins. Because arc–continent collision zones are the best place to accumulate both juvenile and ancient crusts, the contrasting types of bimodal magmatism are proposed to occur in an arc–continent collision orogen during the supercontinental rifting, in response to the attempted breakup of the supercontinent Rodinia at c. 780 Ma.  相似文献   

8.
An integrated study of petrology, mineralogy, geochemistry, and geochronology was carried out for contemporaneous mafic granulite and diorite from the Dabie orogen. The results provide evidence for granulite‐facies reworking of the ultrahigh‐pressure (UHP) metamorphic rock in the collisional orogen. Most zircons from the granulite are new growth, and their U‐Pb ages are clearly categorized into two groups at 122–127 Ma and 188.2 Ma. Although these two groups of zircons show similarly steep HREE patterns and variably negative Eu anomalies, the younger group has much higher U, Th and REE contents and Th/U ratios, much lower εHf(t) values than the older group. This suggests their growth is associated with different types of dehydration reactions. The older zircon domains contain mineral inclusions of Grt, Cpx and Qz, indicating their growth through metamorphic reactions at high pressures. In contrast, the young zircon domains would have grown through peritectic reaction at low to medium pressures. The younger granulite‐facies metamorphic age is in agreement not only with the adjacent diorite at 125.1 Ma in this study but also the voluminous emplacement of coeval mafic and felsic magmas in the Dabie orogen. Mineral separates from both mafic granulite and its adjacent diorite show uniformly lower δ18O values than normal mantle, similar to those for UHP eclogite‐facies metaigneous rocks in the Dabie orogen. In combination with major‐trace elements and zircon Lu‐Hf isotope compositions, it is inferred that the protolith of mafic granulites shares with the source rock of diorites, both being a kind of mafic metasomatites at the slab‐mantle interface in the continental subduction channel. This provides a direct link in petrogenesis between the granulitic, migmatic and magmatic rocks in the collisional orogen to active continental rifting, whereby high heat flow was transferred from the asthenospheric mantle into the thinned orogenic lithosphere for partia melting.  相似文献   

9.
Back‐arc basins hold the key in understanding the geodynamics of orogenic processes. The Qinling–Dabie orogenic belt in central China is one of the most important orogenic belts constraining the tectonic framework of eastern Asia. However, its Palaeozoic accretionary processes remain equivocal, mainly derived from the age uncertainty of the back‐arc basin in the Qinling orogen. We carried out zircon U–Pb geochronology for two pyroclastic volcanic rocks intercalated within the Erlangping back‐arc basin basalts. They yield U–Pb ages of 435.8 ± 4.2 Ma and 435.7 ± 3.8 Ma, which precisely constrain the timing of the back‐arc basin opening. The opening of the Erlangping back‐arc basin might have been triggered by the rollback of the Proto‐Tethyan oceanic slab due to the southward migration of arc magmatism at ca. 440 Ma. The Palaeozoic tectonic evolution and orogen‐scale geodynamic processes of the Qinling orogen are thus reconstructed.  相似文献   

10.
Zircon U‐Pb dating of three orthogneiss samples from the North Dabie terrane (NDT) is undertaken in order to reconstruct their formation and evolutionary histories, and also the crustal architecture of the Dabie orogen after Triassic subduction and exhumation. SHRIMP zircon U‐Pb dating, in combination with back scattered electron (BSE) imaging and Laser Raman spectrometry, provides accurate identification of the core, mantle and rim structure for zircon growth during protolith formation and overgrowth during subduction/exhumation and post‐collisional metamorphism. Concordant U‐Pb ages of 760–730 Ma and high Th/U ratios of >0.4 are obtained for relict oscillatory zoning fields of inherited cores that were not metamictized. These features suggest that these ages represent the time of magmatic protolith formation during the breakup of Rodinia. The overgrown mantle domains around the metamictized cores are clean with few mineral inclusions (e.g. quartz, garnet and apatite). Mantle domains have low Th/U ratios of <0.1 and yielded U‐Pb ages of 215–205 Ma, which are slightly younger than the known ages of peak ultrahigh‐pressure (UHP) metamorphism, suggesting that overgrowth took place during initial exhumation. The ages are similar to the time of retrograde metamorphism of the UHP orthogneisses in the Central Dabie terrane (CDT). Overgrown rims are also clean, with a few mineral inclusions of apatite and quartz. They yield two groups of U‐Pb ages, 138–137 Ma and 124–120 Ma. The former is considered to be the time of onset of orogenic extension and tectonic collapse, whereas the latter falls into the age range of widespread magmatism in the Dabie orogen, and is regarded as the time of extension climax that resulted in intensive anatexis of the crust. Whole‐rock Sr‐Nd isotope analyses of four orthogneisses show εNd(t) values of ?1.2 to ?15 and ISr values >0.719, similar to the values obtained from UHP orthogneisses in the CDT. It is concluded that, as with the CDT, the orthogneisses with episodic zircon growths from the NDT should also be a part of the exhumed slice following the continental deep subduction. However, the orthogneisses in this study were buried at a lower level in the orogenic crust compared with those of the CDT prior to the Cretaceous magmatism. Therefore, the orthogneisses from the NDT were affected by the Cretaceous magmatism whereas the CDT orthogneisses were not affected.  相似文献   

11.
Progressive Early Silurian low‐pressure greenschist to granulite facies regional metamorphism of Ordovician flysch at Cooma, southeastern Australia, had different effects on detrital zircon and monazite and their U–Pb isotopic systems. Monazite began to dissolve at lower amphibolite facies, virtually disappearing by upper amphibolite facies, above which it began to regrow, becoming most coarsely grained in migmatite leucosome and the anatectic Cooma Granodiorite. Detrital monazite U–Pb ages survived through mid‐amphibolite facies, but not to higher grade. Monazite in the migmatite and granodiorite records only metamorphism and granite genesis at 432.8 ± 3.5 Ma. Detrital zircon was unaffected by metamorphism until the inception of partial melting, when platelets of new zircon precipitated in preferred orientations on the surface of the grains. These amalgamated to wholly enclose the grains in new growth, characterised by the development of {211} crystal faces, in the migmatite and granodiorite. New growth, although maximum in the leucosome, was best dated in the granodiorite at 435.2 ± 6.3 Ma. The combined best estimate for the age of metamorphism and granite genesis is 433.4 ± 3.1 Ma. Detrital zircon U–Pb ages were preserved unmodified throughout metamorphism and magma genesis and indicate derivation of the Cooma Granodiorite from Lower Palaeozoic source rocks with the same protolith as the Ordovician sediments, not Precambrian basement. Cooling of the metamorphic complex was relatively slow (average ~12°C/106y from ~730 to ~170°C), more consistent with the unroofing of a regional thermal high than cooling of an igneous intrusion. The ages of detrital zircon and monazite from the Ordovician flysch (dominantly composite populations 600–500 Ma and 1.2–0.9 Ga old) indicate its derivation from a source remote from the Australian craton.  相似文献   

12.
Correct interpretation of zircon ages from high-grade metamorphic terrains poses a major challenge because of the differential response of the U–Pb system to metamorphism, and many aspects like pressure–temperature conditions, metamorphic mineral transformations and textural properties of the zircon crystals have to be explored. A large (c. 450?km2) coherent migmatite complex was recently discovered in the Bohemian Massif, Central European Variscides. Rocks from this complex are characterized by granulite- and amphibolite-facies mineral assemblages and, based on compositional and isotopic trends, are identified as the remnants of a magma body derived from mixing between tonalite and supracrustal rocks. Zircon crystals from the migmatites are exclusively large (200–400?μm) and yield 207Pb/206Pb evaporation ages between 342–328?Ma and single-grain zircon fractions analysed by U–Pb ID-TIMS method plot along the concordia curve between 342 and 325?Ma. High-resolution U–Pb SHRIMP analyses substantiate the existence of a resolvable age variability and yield older 206Pb/238U ages (342–330?Ma, weighted mean age?=?333.6?±?3.1?Ma) for inner zone domains without relict cores and younger 206Pb/238U ages (333–320?Ma, weighted mean age?=?326.0?±?2.8?Ma) for rim domains. Pre-metamorphic cores were identified only in one sample (206Pb/238U ages at 375.0?±?3.9, 420.3?±?4.4 and 426.2?±?4.4?Ma). Most zircon ages bracket the time span between granulite-facies metamorphism in the Bohemian Massif (~345?Ma) and the late-Variscan anatectic overprint (Bavarian phase, ~325?Ma). It is argued that pre-existing zircon was variously affected by these metamorphic events and that primary magmatic growth zones were replaced by secondary textures as a result of diffusion reaction processes and replacement of zircon by dissolution and recrystallization followed by new zircon rim growth. Collectively, the results show that the zircons equilibrated during high-grade metamorphism and record partial loss of radiogenic Pb during post-peak granulite events and new growth under subsequent anatectic conditions.  相似文献   

13.
In‐situ SIMS analyses of O and U‐Pb isotopes were carried out for zircons from a quartz vein hosted by ultrahigh‐pressure metagranite (UHP) in the Dabie orogen. The results are integrated to decipher the property of unusual U‐rich aqueous fluids and their effects on both metamorphic and magmatic zircons during exhumation of the UHP metagranite. In CL images, most zircon grains show distinct core‐rim structures. Relict cores are bright and exhibit oscillatory or patchy zonation, giving Neoproterozoic upper‐intercept ages of 795 ± 26 Ma. Newly grown rims are dark and exhibit no zoning, yielding Triassic concordant ages of 215 ± 5 Ma. The cores give Th contents of 59 to 463 ppm and U contents of 98 to 558 ppm, with Th/U ratios of 0.263 to 1.423. The rims yield reduced Th contents of 11 to 124 ppm but significantly elevated U contents of 1051 to 3531 ppm, with Th/U ratios of 0.010 to 0.035. Comparison with the cores of magmatic origin, the unusual enrichment in U but depletion in Th in the rims of metamorphic origin are interpreted as zircon growth from Cl‐rich oxidized vein‐forming aqueous fluids that were produced by dehydration reactions of the wallrock during continental exhumation. The cores have variably positive δ18O values with concordant or discordant Neoproterozoic U‐Pb ages, suggesting their solid‐state modification of both O and U‐Pb isotopes through interaction with the fluids. The rims yield negative δ18O values, indicating their growth from the negative δ18O fluids. Taken together, the proposed Cl‐rich oxidized negative‐δ18O vein‐forming aqueous fluids have such an ability to not only cause variable metamorphic recrystallization in the relict magmatic zircons but also produce dramatic fractionation of U over Th in the metamorphic zircons during quartz veining, and potentially impact on the overlain metasomatite in the mantle wedge.  相似文献   

14.
Sm–Nd (garnet), U–Pb (monazite) and Rb–Sr (biotite) ages from a composite migmatite sample (Damara orogen, Namibia) constrain the time of high‐grade regional metamorphism and the duration of regional metamorphic events. Sm–Nd garnet whole‐rock ages for a strongly restitic melanosome and an adjacent intrusive leucosome yield ages of 534±5, 528±11 and 539±8 Ma. These results provide substantial evidence for pre‐500 Ma Pan‐African regional metamorphism and melting for this segment of the orogen. Other parts of the migmatite yield younger Sm–Nd ages of 488±9 Ma for melanosome and 496±10, 492±5 and 511±16 Ma for the corresponding leucosomes. Garnet from one xenolith from the leucosomes yields an age of 497±2 Ma. Major element compostions of garnet are different in terms of absolute abundances of pyrope and spessartine components, but the flat shape of the elemental patterns suggests late‐stage retrograde equilibration. Rare earth element compositions of the garnet from the different layers are similar except for garnet from the intrusive leucosome suggesting that they grew in different environments. Monazite from the leucosomes is reversely discordant and records 207Pb/235U ages between 536 and 529 Ma, indicating that this monazite represents incorporated residual material from the first melting event. Monazite from the mesosome MES 2 and the melanosome MEL 3 gives 207Pb/235U ages of 523 and 526 Ma, and 529 and 531 Ma, respectively, which probably indicates another thermal event. Previously published 207Pb/235U monazite data give ages between 525 and 521 Ma for composite migmatites, and 521 and 518 Ma for monazite from neosomes. Monazite from granitic to granodioritic veins indicates another thermal event at 507–505 Ma. These ages are also recorded in 207Pb/235U monazite data of 508 Ma from the metasediment MET 1 from the migmatite and also in the Sm–Nd garnet ages obtained in this study. Taken together, these ages indicate that high‐grade metamorphism started at c. 535 Ma (or earlier) and was followed by thermal events at c. 520 Ma and c. 505 Ma. The latter event is probably connected with the intrusion of a large igneous body (Donkerhoek granite) for which so far only imprecise Rb–Sr whole‐rock data of 520±15 Ma are available. Rb–Sr biotite ages from the different layers of the migmatite are 488, 469 and 473 Ma. These different ages indicate late‐stage disturbance of the Rb–Sr isotopic system on the sub‐sample scale. Nevertheless, these ages are close to the youngest Sm–Nd garnet ages, indicating rapid cooling rates between 13 and 20°C Ma?1 and fast uplift of this segment of the crust. Similar Sm–Nd garnet and U–Pb monazite ages suggest that the closure temperatures for both isotopic systems are not very different in this case and are probably similar or higher than the previously estimated peak metamorphic temperatures of 730±30°C. The preservation of restitic monazite in leucosomes indicates that dissolution of monazite in felsic water‐undersaturated peraluminous melts can be sluggish. This study shows that geochronological data from migmatites can record polymetamorphic episodes in high‐grade terranes that often contain cryptic evidence for the nature and timing of early metamorphic events.  相似文献   

15.
Both oceanic and continental HP rocks are juxtaposed in the Huwan shear zone in the western Dabie orogen, and thus provide a window for testing the buoyancy‐driven exhumation of dense oceanic HP rocks. The HP metamorphic age of the continental rocks in this zone has not been well constrained, and hence it is not known if they are of the same age as the exhumation of the HP oceanic rocks. In situ laser ablation (multiple collector) inductively coupled plasma mass spectrometry (LA‐(MC‐)ICP‐MS), U–Pb, trace element and Hf isotope analyses were made on zircon in a granitic gneiss and two eclogites from the Huwan shear zone. U–Pb age and trace element analysis of residual magmatic zircon in an eclogite constrain its protolith formation at 411 ± 4 Ma. The zircon in this sample displays εHf (t) values of +6.1 to +14.4. The positive εHf (t) values up to +14.4 suggest that the protolith was derived from a relatively depleted mantle source, most likely Palaeotethyan oceanic crust. A granitic gneiss and the other eclogite yield protolith U–Pb ages of 738 ± 6 and 700 ± 14 Ma, respectively, which are both the Neoproterozoic basement rocks of the Yangtze Block. The zircon in the granitic gneiss has low εHf (t) values of ?14.2 to ?10.5 and old TDM2 ages of 2528–2298 Ma, suggesting reworking of Palaeoproterozoic crust during the Neoproterozoic. The zircon in the eclogite has εHf (t) values of ?1.0 to +7.4 and TDM1 ages of 1294–966 Ma, implying prompt reworking of juvenile crust during its protolith formation. Metamorphic zircon in both eclogite samples displays low Th/U ratios, trace element concentrations, relatively flat heavy rare earth element patterns, weak negative Eu anomalies and low 176Lu/177Hf ratios. All these features suggest that the metamorphic zircon formed in the presence of garnet but in the absence of feldspar, and thus under eclogite facies conditions. The metamorphic zircon yields U–Pb ages of 310 ± 3 and 306 ± 7 Ma. Therefore, both the oceanic‐ and continental‐type eclogites share the same episode of Carboniferous eclogite facies metamorphism. This suggests that high‐pressure continental‐type metamorphic rocks might have played a key role in the exhumation and preservation of oceanic‐type eclogites through buoyancy‐driven uplift.  相似文献   

16.
Laser ablation inductively coupled plasma mass spectrometry analyses of U–Pb isotopes and trace elements in zircon and titanite were carried out on epoxy mounts and thin sections for ultrahigh‐pressure (UHP) eclogite in association with paragneiss in the Dabie orogen. The results provide a direct link between metamorphic ages and temperatures during continental subduction‐zone metamorphism. Zircon U–Pb dating gives two groups of concordant ages at 242 ± 2 to 239 ± 5 Ma and 226 ± 2 to 224 ± 6 Ma, respectively. The Triassic zircon U–Pb ages are characterized by flat heavy rare earth element (HREE) patterns typical of metamorphic growth. Ti‐in‐zircon thermometry for the two generations of metamorphic zircon yields temperatures of 697 ± 27 to 721 ± 8 °C and 742 ± 19 to 778 ± 34 °C, respectively. We interpret that the first episode of zircon growth took place during subduction prior to the onset of UHP metamorphism, whereas the second episode in the stage of exhumation from UHP to HP eclogite facies regime. Thus, the continental subduction‐zone metamorphism of sedimentary protolith is temporally associated with two episodes of fluid activity, respectively, predating and postdating the UHP metamorphic phase. The significantly high Ti‐in‐zircon temperatures for the younger zircon at lower pressures indicate the initial ‘hot’ exhumation after the peak UHP metamorphism. There are two types of titanite. One exhibits light rare earth element (LREE) enrichment, steep MREE–HREE patterns and no Eu anomalies, and yields Zr‐in‐titanite temperatures of 551 to 605 °C at 0.5 GPa, and the other shows LREE depletion and flat MREE–HREE patterns, and gives Zr‐in‐titanite temperatures of 782–788 °C at 2.0 GPa. The former is amenable for U–Pb dating, yielding a discordia lower intercept age of 252 ± 3 Ma. Thus, the first type of titanite is interpreted to have grown in the absence of garnet and plagioclase and thus in the early stage of subduction. In contrast, the second one occurs as rims surrounding rutile cores and thus grew in the presence of garnet during the ‘hot’ exhumation. Therefore, there is multistage growth of zircon and titanite during the continental subduction‐zone metamorphism. The combined studies of chronometry and thermobarometry provide tight constraints on the P–T–t path of eclogites during the continental collision. It appears that the mid‐T/UHP eclogite facies zone would not only form by subduction of the continental crust in a P–T path slightly below the wet granite solidus, but also experience decompression heating during the initial exhumation.  相似文献   

17.
SHRIMP U–Pb dating and laser ablation ICP‐MS trace element analyses of zircon from four eclogite samples from the north‐western Dabie Mountains, central China, provide evidence for two eclogite facies metamorphic events. Three samples from the Huwan shear zone yield indistinguishable late Carboniferous metamorphic ages of 312 ± 5, 307 ± 4 and 311 ± 17 Ma, with a mean age of 309 ± 3 Ma. One sample from the Hong'an Group, 1 km south of the shear zone yields a late Triassic age of 232 ± 10 Ma, similar to the age of ultra‐high pressure (UHP) metamorphism in the east Qinling–Dabie orogenic belt. REE and other trace element compositions of the zircon from two of the Huwan samples indicate metamorphic zircon growth in the presence of garnet but not plagioclase, namely in the eclogite facies, an interpretation supported by the presence of garnet, omphacite and phengite inclusions. Zircon also grew during later retrogression. Zircon cores from the Huwan shear zone have Ordovician to Devonian (440–350 Ma) ages, flat to steep heavy‐REE patterns, negative Eu anomalies, and in some cases plagioclase inclusions, indicative of derivation from North China Block igneous and low pressure metamorphic source rocks. Cores from Hong'an Group zircon are Neoproterozoic (780–610 Ma), consistent with derivation from the South China Block. In the western Dabie Mountains, the first stage of the collision between the North and South China Blocks took place in the Carboniferous along a suture north of the Huwan shear zone. The major Triassic continent–continent collision occurred along a suture at the southern boundary of the shear zone. The first collision produced local eclogite facies metamorphism in the Huwan shear zone. The second produced widespread eclogite facies metamorphism throughout the Dabie Mountains–Sulu terrane and a lower grade overprint in the shear zone.  相似文献   

18.
《International Geology Review》2012,54(16):2036-2056
ABSTRACT

The Chinese Southwest Tianshan Orogenic Belt is located along the boundary between the Central Asian Orogenic Belt (CAOB) and the Tarim Block (TB), NW China. It records the convergence of the Tarim Block and the Middle Tianshan, and is, therefore, a crucial region for understanding the Eurasia continental growth and evolution. The Wulagen (geographical name) metasedimentary rocks of the Wuqia area (mainly metamorphic sandstones and mica schists) form one of the metamorphic terranes in the Southwestern Tianshan Orogenic Belt. The geochronology of these rocks is poorly known, which hampers our understanding of the tectonic evolution of the belt. We analyzed 517 zircon grains for detrital zircon U–Pb dating and 93 zircon grains for in situ Lu–Hf isotopic compositions from the Wulagen metasedimentary rocks. The analyzed zircon grains yield Neoarchean to late Paleozoic U–Pb ages with major age peaks at ~2543 Ma, 1814 Ma, 830 Ma, 460 Ma, and the youngest cluster of zircon (magmatogene) ages is 395 Ma. The zircon U–Pb data show that the late Paleozoic (Early Devonian) is the maximum depositional age of the Wulagen metasedimentary rocks, rather than the previously considered Precambrian period. The zircons with Paleozoic ages yield εHf(t) values of ?22.0 to +11.3 and two-stage model ages (TDM2) of 3.95 to 1.30 Ga, suggesting that the parental magmas were formed from partial melting of pre-existing crustal rocks. Our zircon U–Pb geochronology and Hf isotopic data indicate the major source regions for the Wulagen metasedimentary rocks was the Kyrgyzstan North Tianshan. The zircon age population of 600–400 Ma (peak at ~460 Ma) has negative εHf(t) values (?15.0 to ?0.6) and Mesoproterozoic two-stage model ages, suggesting that the early Paleozoic magmatism resulted mainly from the melting of ancient crust, which played an important role in crustal evolution in the southern CAOB.  相似文献   

19.
The amalgamation of South (SCB) and North China Blocks (NCB) along the Qinling‐Dabie orogenic belt involved several stages of high pressure (HP)‐ultra high pressure (UHP) metamorphism. The new discovery of UHP metamorphic rocks in the North Qinling (NQ) terrane can provide valuable information on this process. However, no precise age for the UHP metamorphism in the NQ terrane has been documented yet, and thus hinders deciphering of the evolution of the whole Qinling‐Dabie‐Sulu orogenic belt. This article reports an integrated study of U–Pb age, trace element, mineral inclusion and Hf isotope composition of zircon from an eclogite, a quartz vein and a schist in the NQ terrane. The zircon cores in the eclogite are characterized by oscillatory zoning or weak zoning, high Th/U and 176Lu/177Hf ratios, pronounced Eu anomalies and steep heavy rare earth element (HREE) patterns. The zircon cores yield an age of 796 ± 13 Ma, which is taken as the protolith formation age of the eclogite, and implies that the NQ terrane may belong to the SCB before it collided with the NCB. The ?Hf(t) values vary from ?11.3 to 3.2 and corresponding two‐stage Hf model ages are 2402 to 1495 Ma, suggesting the protolith was derived from an enriched mantle. In contrast, the metamorphic zircon rims show no zoning or weak zoning, very low Th/U and 176Lu/177Hf ratios, insignificant Eu anomalies and flat HREE patterns. They contain inclusions of garnet, omphacite and phengite, suggesting that the metamorphic zircon formed under eclogite facies metamorphic conditions, and their weighted mean 206Pb/238U age of 485.9 ± 3.8 Ma was interpreted to date the timing of the eclogite facies metamorphism. Zircon in the quartz vein is characterized by perfect euhedral habit, some oscillatory zoning, low Th/U ratios and variable HREE contents. It yields a weighted mean U–Pb age of 480.5 ± 2.5 Ma, which registers the age of fluid activity during exhumation. Zircon in the schist is mostly detrital and U–Pb age peaks at c. 1950 to 1850, 1800 to 1600, 1560 to 1460 and 1400 to 1260 Ma with an oldest grain of 2517 Ma, also suggesting that the NQ terrane may have an affinity to the SCB. Accordingly, the amalgamation between the SCB and the NCB is a multistage process that spans c. 300 Myr, which includes: the formation of the Erlangping intra‐oceanic arc zone onto the NCB before c. 490 Ma, the c. 485 Ma crustal subduction and UHP metamorphism of the NQ terrane, the c. 430 Ma arc‐continent collision and granulite facies metamorphism, the 420 to 400 Ma extension and rifting in relation to the opening of the Palaeo‐Tethyan ocean, the c. 310 Ma HP eclogite facies metamorphism of oceanic crust and associated continental basement, and the final 250 to 220 Ma continental subduction and HP–UHP metamorphism.  相似文献   

20.
Whole‐rock geochemistry, zircon U–Pb and molybdenite Re–Os geochronology, and Sr–Nd–Hf isotopes analyses were performed on ore‐related dacite porphyry and quartz porphyry at the Yongping Cu–Mo deposit in Southeast China. The geochemical results show that these porphyry stocks have similar REE patterns, and primitive mantle‐normalized spectra show LILE‐enrichment (Ba, Rb, K) and HFSE (Th, Nb, Ta, Ti) depletion. The zircon SHRIMP U–Pb geochronologic results show that the ore‐related porphyries were emplaced at 162–156 Ma. Hydrothermal muscovite of the quartz porphyry yields a plateau age of 162.1 ± 1.4 Ma (2σ). Two hydrothermal biotite samples of the dacite porphyry show plateau ages of 164 ± 1.3 and 163.8 ± 1.3 Ma. Two molybdenite samples from quartz+molybdenite veins contained in the quartz porphyry yield Re–Os ages of 156.7 ± 2.8 Ma and 155.7 ± 3.6 Ma. The ages of molybdenite coeval to zircon and biotite and muscovite ages of the porphyries within the errors suggest that the Mo mineralization was genetically related to the magmatic emplacement. The whole rocks Nd–Sr isotopic data obtained from both the dacite and quartz porphyries suggest partial melting of the Meso‐Proterozoic crust in contribution to the magma process. The zircon Hf isotopic data also indicate the crustal component is the dominated during the magma generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号