首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zircon U–Pb geochronological and geochemical analyses are reported for a suite of the middle Silurian volcanic rocks from northern West Junggar (NW China), southern Central Asian Orogenic Belt (CAOB), with the aim to investigate the sources, petrogenesis, and tectonic implications. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb analysis from an andesite yielded a concordant weighted mean 206Pb/238U age of 429 ± 3 Ma, indicating the presence of middle Silurian volcanic rocks in northern West Junggar. The andesite is tholeiite series and characterized by minor variations in compositions (SiO2 = 55.68–59.17 wt.%, Al2O3 = 14.56–17.7 wt.%, TiO2 = 0.55–1.23 wt.%, Na2O + K2O = 3.46–7.16 wt.%, and P2O5 = 0.15–0.37 wt.%), with wider MgO content (2.18–6.48 wt.%) and Mg# (57.4–77.9). All andesitic rocks are enriched in large-ion lithophile elements (LILEs; e.g. Rb, Ba, K, and Th) and light rare earth elements (LREEs), but strongly depleted in some high field strength elements (HFSEs; e.g. Nb, Ta and Ti), with slight negative Eu anomalies (Eu/Eu* = 0.8–1). These features suggest that the andesitic magmas were derived from 2–8% partial melting of a garnet lherzolite depleted mantle source with subducted sediments metasomatized by slab-derived fluids. Combining the current study with those data in existing literature, we conclude that the middle Silurian volcanic rocks formed in an intra-oceanic subduction setting during consumption of the Irtysh–Zaysan Ocean, and further confirm the eastern extension of the early Palaeozoic Boshchekul–Chingiz volcanic arc of East Kazakhstan in China.  相似文献   

2.
The vast expanse of Mesozoic igneous rocks in Hong Kong contain important geological records of late Mesozoic magmatic events and tectonic processes from the coastal region of Southeast China. Of these,the Ping Chau Formation in the northwestern New Territories is the youngest known stratum. We perform a detailed study of the volcanic rocks of the Ping Chau Formation utilizing zircon U-Pb dating,with major and trace elements geochemistry. LA-ICP-MS zircon U-Pb data reveal Early Cretaceous age from two volcanic rock samples, with zircon crystallization from magmas at 140.3 ± 0.8 Ma and 139.3 ± 0.9 Ma,respectively. These rocks have high contents of total alkalis(Na_2O + K_2O = 5.58-9.45 wt.%), high-field-strength elements and light rare earth elements, conspicuous negative Eu anomalies, and depletions in Nb, Ta, Ti, Sr, Ba and P. Using this data, in combination with previous studies on the late Mesozoic volcanic belt in Southeast China, we propose that the volcanic rocks of the Ping Chau Formation probably originated from deep melting of the crust in a back-arc extensional setting induced by the subduction of the paleo-Pacific Plate. This formation represents the final stages of Early Cretaceous volcanic activity in Hong Kong, as associated with large-scale lithospheric extension, thinning and magmatism. Our results provide new information that can be used in evaluating the significance of Early Cretaceous volcanism and tectonics in Southeast China.  相似文献   

3.
《International Geology Review》2012,54(10):1278-1293
ABSTRACT

Zircon U–Pb geochronological and geochemical analyses are reported for a suite of the early Carboniferous volcanic rocks from West Junggar (Northwest China), southern Central Asian Orogenic Belt (CAOB), with the aim to investigate the sources, petrogenesis, and tectonic implications. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb analysis from an andesite yielded concordant weighted mean 206Pb/238U age of 345 ± 3 Ma, indicating the presence of early Carboniferous volcanic rocks in West Junggar. The early Carboniferous volcanic rocks consist of basalt, basaltic andesite, and andesite. Geochemically, all the samples bear the signature of ocean island basalt (OIB), and are characterized by alkaline affinity with minor variations in SiO2 compositions (45.13–53.05 wt.%), high concentrations of Na2O + K2O (5.08–8.89 wt.%) and TiO2 (1.71–3.35 wt.%), and LREE enrichment and HREE depletion ((La/Yb)N = 7.1–12.4), with weak Eu anomalies (Eu/Eu* = 0.9–1.1) and no obvious Nb, Ta, and Ti negative anomalies. These features suggest that the early Carboniferous volcanic rocks were derived from an OIB-related source that consists of oceanic lithosphere with ~1–3% degree partial melting of garnet lherzolite. From these observations, in combination with previous work, we conclude that the early Carboniferous alkaline volcanic rocks in Karamay region formed by upwelling of asthenospheric mantle through a slab window in a forearc setting during consumption of the West Junggar Ocean. Meanwhile, seamounts, which formed in the Late Devonian and were accreted and subducted in Karamay arc, also brought geological effects in the subduction zone.  相似文献   

4.
This paper presents new petrographic observations and geochemical and microprobe analyses for the Laomiaojishan, Xiaotongguanshan, and Tianebaodanshan intrusions in the Tongguanshan mineral district, East China. The plutons vary in composition from quartz monzonitic diorite to pyroxene monzonitic diorite, and contain gabbroic to dioritic xenoliths. The Xiaotongguanshan intrusion yields a SHRIMP zircon U–Pb age of 139.5±2.9 Ma, indicating Late Jurassic to Early Cretaceous magmatism in the Lower Yangtze River Valley. Relative to host rocks, the gabbro and diorite xenoliths are low in SiO2 (52.03–54.61 wt‐%), Al2O3 (12.87–14.43 wt‐%), and total alkalis (Na2O+K2O; 5.26–6.30 wt‐%), but high in MgO (5.41–11.66 wt‐%); the host rocks have high SiO2 (59.97–64.44 wt‐%), Al2O3 (16.43–17.59 wt‐%), and total alkalis (6.67–8.25 wt‐%), but are low in MgO (1.52–2.50 wt‐%). Concentrations of rare earth elements (REEs) in the xenoliths (165.70–190.40 ppm) are similar to those in the host rocks (166.12–185.95 ppm), although the ratio of light REEs to heavy REEs in the xenoliths (3.39–4.27) is lower than that in the host plutons (4.86–5.94). All of the analysed rocks show similar REE patterns, although the xenoliths display marked positive Eu anomalies and the host rocks show slightly negative Eu anomalies. Values of epsilon Nd (t) ranges from ?4.9 to ?9.9 in the gabbro xenoliths and from ?11.4 to ?11.9 in the host intrusives. Initial 87Sr/86Sr ratios are 0.7064–0.7073 in the xenoliths and 0.7072–0.7084 in the quartz monzonitic diorite host rocks. Crystallization temperatures of hornblende and plagioclase in the gabbro xenoliths, diorite xenoliths, and host rocks are 816, 773–790, and 664–725°C, respectively, based on an amphibole–plagioclase geothermometer. The pressures recorded by these phases indicate that they formed at depths of 26, 12–15, and 3–4 km, respectively, based on an aluminum‐in‐hornblende geobarometer. The petrological and geochemical features of the analysed intrusions and xenoliths are consistent with their derivation from basic to intermediate‐acidic magmas that possibly formed via a series of complex interactions between underplated, mantle‐derived basaltic magma and varying amounts of middle‐ to lower‐crustal material, followed by assimilation–fractional crystallization.  相似文献   

5.
Thrusting, folding, and metamorphism of late Paleozoic to middle Mesozoic sedimentary rocks, together with high precision U–Pb zircon ages from Middle to Late Jurassic volcanic and granitic rocks, reveal evidence for a major deformation event in northwestern Hong Kong between 164 and 161 Ma. This episode can be linked with collision of an exotic microcontinental fragment along the southeast China continental margin determined from contrasting detrital zircon provenance histories of late Paleozoic to middle Mesozoic sedimentary rocks either side of an NE-trending suture zone through central Hong Kong. The suture zone is also reflected by isotopic heterogeneities and geophysical anomalies in the crustal basement. Detrital zircon provenance of Early to Middle Jurassic rocks from the accreted terrane have little in common with the pre-Middle Jurassic rocks from southeast China. Instead, the zircon age spectra of the accreted terrane show close affinities to sources along the northern margin of east Gondwana. These data provide indisputable evidence for Mesozoic terrane accretion along the southeast China continental margin. In addition, collision of the exotic terrane, accompanied by subduction rollback, is considered to have hastened foundering of the postulated flat slab beneath southeast China, leading to a widespread igneous flare-up event at 160 Ma.  相似文献   

6.
This study presents new zircon U–Pb geochronology, geochemistry, and zircon Hf isotopic data of volcanic and subvolcanic rocks that crop out in the Bayanhushuo area of the southern Great Xing’an Range (GXR) of NE China. These data provide insights into the tectonic evolution of this area during the late Mesozoic and constrain the evolution of the Mongol–Okhotsk Ocean. Combining these new ages with previously published data suggests that the late Mesozoic volcanism occurred in two distinct episodes: Early–Middle Jurassic (176–173 Ma) and Late Jurassic–Early Cretaceous (151–138 Ma). The Early–Middle Jurassic dacite porphyry belongs to high-K calc-alkaline series, showing the features of I-type igneous rock. This unit has zircon εHf(t) values from +4.06 to +11.62 that yield two-stage model ages (TDM2) from 959 to 481 Ma. The geochemistry of the dacite porphyry is indicative of formation in a volcanic arc tectonic setting, and it is derived from a primary magma generated by the partial melting of juvenile mafic crustal material. The Late Jurassic–Early Cretaceous volcanic rocks belong to high-K calc-alkaline or shoshonite series and have A2-type affinities. These volcanics have εHf(t) and TDM2 values from +5.00 to +8.93 and from 879 to 627 Ma, respectively. The geochemistry of these Late Jurassic–Early Cretaceous volcanic rocks is indicative of formation in a post-collisional extensional environment, and they formed from primary magmas generated by the partial melting of juvenile mafic lower crust. The discovery of late Mesozoic volcanic and subvolcanic rocks within the southern GXR indicates that this region was in volcanic arc and extensional tectonic settings during the Early–Middle Jurassic and the Late Jurassic–Early Cretaceous, respectively. This indicates that the Mongol–Okhotsk oceanic plate was undergoing subduction during the Early–Middle Jurassic, and this ocean adjacent to the GXR may have closed by the Late Middle Jurassic–Early Late Jurassic.  相似文献   

7.
《International Geology Review》2012,54(14):1559-1575
The middle segment of the Yangtze River Deep Fault Belt, located in the foreland of the Dabie orogen, contains widely exposed volcanic–intrusive complexes that formed during two episodes of magmatism (post-collisional and post-orogenic), reflecting crust–mantle interactions during the Late Jurassic (J3) to Early Cretaceous (K1). This article summarizes research on the Mesozoic igneous suites and xenolith suites in the area along the Yangtze River. ‘Post-collisional magmatism’ occurred during lithospheric extension at ~145–130 Ma. Its beginning and end are marked by gabbroic xenoliths and pyroxene cumulates within intrusions at Tongling, and by alkali-rich magmatic rocks. The association includes peraluminous silicic rocks and metaluminous mafic–felsic igneous suites, ranging from medium-K to high-K calc-alkaline to shoshonitic compositions. Taking the Tongling region as an example, quartz monzodiorite yields a sensitive high resolution ion microprobe (SHRIMP) zircon U–Pb age of 139.5 ± 2.9 Ma, and granodiorite yields an age of 135.5 ± 4.4 Ma. These intrusive rocks contain 52.79–66.46 wt.% SiO2, 13.12–17.73 wt.% Al2O3, 1.37–4.62 wt.% MgO, 3.86–6.84 wt.% FeOT, and 4.71–7.87 wt.% total alkalis (Na2O?+?K2O). ACNK values range from 0.62 to 1.20, and ANK values from 1.45 to 3.48. ‘Post-orogenic magmatism’ occurred during lithospheric delamination at ~130–120 Ma. The start of magmatism was marked by the formation of gabbro containing spinel lherzolite xenoliths in the Nanjing–Wuhu Basin (NWB), and its end was marked by the generation of feldspathoid phenocryst-bearing phonolite in the NWB and the Lujiang–Zongyang Basin (LZB), respectively. The association that formed during this episode ranges from alkaline to peralkaline. Taking the Niangniangshan Formation in the NWB as an example, the Nosite phonolite yields a whole-rock monomineral Rb–Sr isochron age of 120 ± 9 Ma, and contains 49.92–60.09 wt.% SiO2, 17.67–20.65 wt.% Al2O3, 0.08–2.45 wt.% MgO, 1.32–6.62 wt.% FeOT, and 9.24–13.92 wt.% total alkalis (Na2O?+?K2O). ACNK values range from 0.72 to 1.24, and ANK values from 1.03 to 1.35.

The two magmatisms correspond to two episodes of crust–mantle interaction. The first involved intensive interaction between middle–lower crust and underplated basaltic magma derived from the upper mantle lithosphere, whereas the second involved minor interaction between the middle–lower crust and basaltic magma derived from the lower lithospheric mantle.  相似文献   

8.
A new LA-ICP-MS crystallization age of 370?±?8 Ma is presented for monzogranite from the Achala batholith, the largest Devonian igneous body in the Sierras Pampeanas, confirming previous U-Pb zircon ages and indicating emplacement within a relatively short episode. Granitic rocks from the central area of the batholith display restricted high SiO2 contents (69.8–74.5 wt.%). Major element plots show ferroan and alkaline-calcic to calc-alkaline compositions with an A-type signature. High concentrations of the high field-strength elements such as Y, Nb, Ga, Ta, U, Th, and flat REE patterns with significant negative Eu anomalies, are also typical of A-type granites. The aluminium saturation index (1.10–1.37) indicates aluminous parent magmas which are further characterised by high FeO/MgO ratios (2.6–3.3) and F contents of igneous biotites (0.9–1.5 wt%), as well as relatively high AlIV (2.39–2.58 a.p.f.u.) in biotites and the occurrence of primary muscovite. Petrogenetic modelling supports a source enriched in plagioclase and progressive fractional crystallization of feldspar. The central area of the batholith displays small-scale bodies composed predominantly of biotite (80 %), muscovite (10 %) and apatite (10 %), yielding rock compositions with 2.3–5.4 wt. % P2O5, and 6–7 wt.% F, together with anomalous contents of U (88–1,866 ppm), Zr (1081–2,581 ppm), Nb (257–1,395 ppm) and ΣREE (1,443–4,492 ppm). Previous studies rule out an origin of these bodies as metasedimentary xenoliths and they have been interpreted as cumulates from the granitic magma. An alternative flow segregation process is discussed here.  相似文献   

9.
The area of Arghash in northeast Iran, prominent for its gold mineralization, was newly mapped on a scale of 1:20,000 with particular attention to the occurring generations of igneous rocks. In addition, geochronological and geochemical investigations were carried out. The oldest geological unit is a late Precambrian, hornblende-bearing diorite pluton with low-K composition and primitive isotope signatures. This diorite (U–Pb zircon age 554 ± 6 Ma) is most likely a remnant from a Peri-Gondwana island-arc or back-arc basin. About one-third of the map area is interpreted as an Upper Cretaceous magmatic arc consisting of a volcanic and a plutonic part. The plutonic part is represented by a suite of hornblende-bearing medium-K, I-type granitoids (minor diorite, mainly quartz–monzodiorite and granodiorite) dated at 92.8 ± 1.3 Ma (U–Pb zircon age). The volcanic part comprises medium-K andesite, dacite and tuffitic rocks and must be at least slightly older, because it is locally affected by contact metamorphism through the hornblende–granitoids. The Upper Cretaceous arc magmatism in the Arghash Massif is probably related to the northward subduction of the Sabzevar oceanic basin, which holds a back-arc position behind the main Neotethys subduction front. Small occurrences of pillow basalts and sediments (sandstone, conglomerate, limestone) tectonically intercalated in the older volcanic series may be relics of earlier Cretaceous or even pre-Cretaceous rocks. In the early Cenozoic, the Cretaceous magmatic arc was intruded by bodies of felsic, weakly peraluminous granite (U–Pb zircon age 55.4 ± 2.3 Ma). Another strong pulse of magmatism followed slightly later in the Eocene, producing large masses of andesitic to dacitic volcanic rocks. The geochemistry of this prominent Eocene volcanism is very distinct, with a high-K signature and trace element contents similar to shoshonitic series (high P, Zr, Cr, Sr and Ba). High Sr/Y ratios feature affinities to adakite magmas. The Eocene magmatism in the Arghash Massif is interpreted as related to thermal anomalies in crust and mantle that developed when the Sabzevar subduction system collapsed. The youngest magmatic activities in the Arghash Massif are lamprophyres and small intrusions of quartz–monzodiorite porphyries, which cut through all other rocks including an Oligocene–Miocene conglomerate cover series.  相似文献   

10.
《International Geology Review》2012,54(12):1479-1503
ABSTRACT

Early Cretaceous volcanic rocks are widely distributed in northeast China and being extensively observed recently. However, petrogenesis and tectonic setting of these volcanic rocks are still on debate. We present zircon U–Pb ages, whole-rock geochemistry and zircon Hf isotope for these volcanic and sub-volcanic rocks surrounding the Erlian Basin including basic-intermediate volcanic rocks, intermediate-felsic volcanic rocks, and dacites and trachyandesite from dikes. The zircon U–Pb dating results indicate that these rocks formed in the Early Cretaceous (146–129 Ma). The basic-intermediate volcanic rocks mainly consist of basaltic andesite, which are featured by low SiO2 concentrations (49.96–58.34 wt. %), high Mg# values (54–37) and Co contents (17.85–25.98 ppm), and positive εHf(t) values (+7.11 to +13.87). Moreover, they show high La/Nb (1.79–2.87) and low La/Ba (0.02–0.08) ratios. Such features indicate that they were derived from partial melting of lithospheric mantle that had been modified by fluids. The intermediate-felsic volcanic rocks consist of trachydacite and andesite, which show medium SiO2 concentrations (58.31–66.44 wt. %), a wide range of Mg# values (28–53) and with A1-type granites affinities. These features, along with slightly positive to negative εHf(t) values (+0.53 to ?17.71), indicate that they originated from mixed magma of melted lower crust and mantle substances. Dacites from dikes are distinguished by high SiO2 concentrations (65.72–67.2 wt. %), negative εHf(t) values (?2.55 to ?6.72) and old zircon Hf TDM2 ages (1453–1653 Ma), suggesting they were generated by melting of Mesoproterozoic and Palaeoproterozoic crustal material. All of the investigated volcanic and sub-volcanic rocks exhibit geochemical signatures of extension setting. In combination with previous studies, we suggest the Early Cretaceous extension in northeast China is related to the collapse of thickened lithosphere after closure of the Mongol–Okhotsk Ocean and to the slab break off of the Mudanjiang Ocean.  相似文献   

11.
The medium-tonnage Sarsuk polymetallic Au deposit is located in the Devonian volcanic–sedimentary Ashele Basin of the south Altay Orogenic Belt (AOB), Northwest China. Within the deposit, the rhyolite porphyries and diabases are widespread, emplaced into strata. The orebodies are hosted by the rhyolite porphyries. We studied the petrography, geochemistry, and Sr–Nd–Hf isotopes of the rhyolite porphyries and diabases, in order to understand the petrogenesis of these rocks and their tectonic significance. They display typical bimodality in geochemistry compositions. The diabases are characterized by SiO2 contents of 44.84–59.77 wt.%, high Mg# values (43–69), enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), depletion in Nb and Ta, low (87Sr/86Sr)i (0.706687–0.707613) values, positive εNd(t) (4.8–6.8) values, and positive and high εHf(t) (7.15–15.19) values, suggesting a depleted lithosphere mantle source that might have been metasomatized by subduction-related components. The rhyolite porphyries show affinity to sanukitoid magmas contents [high SiO2 (78.6–81.82 wt.%) and MgO (3.38–5.94 wt.%, one sample at 0.61 wt.%), and enrichments in LILE and LREE], they were derived from the equilibrium reactions between a mantle source and subducted oceanic crust materials. Those characteristics together with the positive εNd(t) (4.1–8.4) and εHf(t) (2.88–15.17) values indicate that the diabases and rhyolite porphyries were generated from the same mantle peridotite source. But the rhyolite porphyries underwent fractional crystallization of Fe–Ti oxides, plagioclase, and apatite due to their negative Eu (δEu = 0.21–0.28) and P anomalies. According to the geochemical and isotopic data, the Sarsuk Middle Devonian igneous rocks are considered to be the products of the juvenile crustal growth in an island arc setting. The Sarsuk polymetallic Au deposit formed slightly later than the Ashele Cu–Zn deposit in the Ashele Basin, but they have the same tectonic setting, belonging to the trench–arc–basin system during extensional process in the south AOB.  相似文献   

12.
ABSTRACT

This study presents new whole-rock major and trace element geochemistry, zircon U–Pb ages, and Hf-isotope compositions for volcanic rocks from the Manketouebo Formation of the central Great Xing’an Range, NE China. These data provide precise ages and information on the petrogenesis and source of the magmas that formed this formation, furthering our understanding of the geodynamic setting of the large-scale late Mesozoic magmatism in the Great Xing’an Range and other areas in NE China. The Manketouebo Formation in the study area is dominated by rhyolites and rhyolitic tuffs with minor trachydacites. The LA-ICP-MS zircon U–Pb dating indicates that these volcanic rocks formed between 143 and 139 Ma. The volcanic rocks contain high silica (66.70–79.91 wt.%) and total alkali (5.93–9.72 wt.%) concentrations, and low concentrations of MgO (0.08–1.15 wt.%), total FeO (0.68–4.50 wt.%), and CaO (0.10–2.56 wt.%). They are enriched in large-ion lithophile elements (LILEs; e.g. Rb, Th, and U) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs; e.g. Nb, Ta, Ti, and P) and heavy rare earth elements (HREEs), indicating that they are similar to highly fractionated I-type igneous rocks. All of the magmatic zircons from the analysed samples have high initial 176Hf/177Hf ratios (0.282900–0.283093), positive εHf(t) values (7.48–14.19), and young Hf two-stage model ages (954–344 Ma) that suggest the primary magma that formed the volcanic rocks of the Manketouebo Formation was derived from the partial melting of Neoproterozoic to Phanerozoic juvenile crustal material, indicating in turn that significant crustal growth occurred at this time within the Xing’an Terrane. These data, combined with previous research into the spatial–temporal distribution of Mesozoic volcanic rocks in NE China, suggest that the Early Cretaceous magmatism in the Great Xing’an Range was influenced by both the subduction of the Palaeo-Pacific Plate and the closure of the Mongol–Okhotsk Ocean. This was a crucial period in the transformation from the Mongol–Okhotsk Ocean to the Palaeo-Pacific tectonic regimes. In summary, the early stages of Early Cretaceous magmatism in this area were related to the closure of the Mongol–Okhotsk Ocean, whereas the later stages of magmatism in this area and elsewhere in NE China were related to the subduction of the Palaeo-Pacific Plate.  相似文献   

13.
We present new geochemical data (major- and trace-elements, as well as Sr and Nd isotopic compositions) of volcanic rocks erupted from Popocatépetl volcano during the volcanic event from December 2000 to January 2001. These data along with an exhaustive compilation of geochemical and Sr, Nd, and Pb isotope data reported for Popocatépetl rocks and nearby volcanic areas are used to examine the origin and geochemical evolution of the magmas in the central Mexican volcanic belt (CMVB). During this period of volcanic eruptions Popocatépetl produced ash columns as high as 7 km. Pyroclastic flows and lahars were observed after the completion of the activity. Samples of banded pumice and a bomb fragment transported by the lahar were chemically analysed for this work. Rocks show an andesitic composition with 58.5–61.7 wt.% SiO2 and 5.9–4.0 wt.% MgO. Contents of large ion lithophile elements (LILE), rare-earth elements (REE) and Zr are nearly constant through the compositional range. No significant Eu anomaly is present, but the samples show Nb-anomaly relative to LILE and high-field strength elements (HFSE). Nd- and Sr-isotopic compositions of these samples range from 143Nd/144Nd = 0.51291 to 0.51287 and 87Sr/86Sr = 0.70399 to 0.70422. Comparison of Popocatépetl products with volcanic rocks from the nearby areas shows that the magmas in CMVB were generated in a heterogeneously veined-mantle source enriched in LILE, HFSE, and REE. Additional crustal assimilation as well as fractional crystallization could account for the great chemical variability of rocks in the CMVB. Statistical comparison of the geochemical compositions of the volcanic products ejected from 1994 to 2000 to those ejected during the 2001 event shows that most geochemical parameters (major- and trace-elements, normative minerals, Sr and Nd isotopic composition, as well some elemental ratios) present no statistically significant differences. Statistically significant differences in the mean only were computed for the major-elements SiO2, FeO, MgO, CaO, and K2O, as well as for the rare-earth elements Nd, Sm, Eu, Gd, Dy, Ho, Tm, and Yb.  相似文献   

14.
Xenolithic inclusions in calc-alkaline andesite from Mt. Moffettvolcano, Adak Island, Aleutian arc, reveal a nearly continuousrecord of crystallization of basaltic magmas in the crust, andpossibly upper mantle, of the arc. The record is more detailedand continuous than that obtained from study of calc-alkalinevolcanic rocks in the arc. Cumulate xenoliths form a progressiveseries in modal mineralogy from ultramafic, hornblende-bearingolivine clinopyroxenite to both hornblende-bearing and hornblende-freegabbros. The cumulate hornblende gabbro xenoliths are typicalof those found in island arc andesites worldwide. Xenolithicinclusions without cumulate textures, here termed compositexenoliths, are characterized by forsteritic olivine, zoned Cr-diopsideand hornblende, and are interpreted to have resulted from reactionand chilling upon magma mixing at depth. The olivine and clinopyroxene in both cumulate and compositexenoliths show the largest and the most complete variation trendsfor Ni, Cr, and FeO/MgO ratio yet reported in igneous xenolithsfrom island arc volcanic rocks. Variation of Ni in olivine indicatesthat the parent magmas for the xenoliths had minimum MgO contentsof 9 wt. per cent. Variation of Cr in clinopyroxene indicatesthat the magmas were basaltic rather than picritic, probablyin equilibrium with spinel lherzolite at near Moho depths. Successiveinjections of batches of primary melt into a magma chamber fractionatingolivine and clinopyroxene can reproduce observed compatibleelement depletion trends. A steady-state process of cotecticcrystallization in a magma chamber continually replenished withbasaltic magma is a possible mechanism for producing large accumulationsof olivine and clinopyroxene, suggesting that Alaskan-type ultramaficcomplexes are related to hydrous basaltic magmas in island arcs.This steady-state open-system crystallization process can alsoyield the abundant high-alumina basalt type in the Aleutianarc. Continued crystallization of high-alumina basalt in lowercrustal magma chambers, recorded in a mineralogically coherentseries of pyroxenite to hornblende gabbro xenoliths, can yieldbasaltic to andesitic magmas of the calc-alkaline series. No xenoliths with a sedimentary protolith have been found atMt Moffett, evidence that the arc crust is igneous in origin,with the lower crust formed of gabbro crystallized from mantle-derivedmelts. Ultramafic cumulates may reside in both the lower crustor upper mantle beneath the arc. A model is proposed wherebythe cumulate crystallization products of hydrous, mantle beneaththe arc. A model is define the upper mantle and lower crustof the arc over time.The net composition added to the crustof the arc is that of high-alumina basalt.  相似文献   

15.
The granitoids and related polymetallic mineralization in the Zhejiang Province at the southeast margin of the Yangtze Block in China provide an important window to evaluate metallogeny associated with convergent margin magmatism. Here, we present geochronological, geochemical, and isotopic data from the granitic rocks of west Zhejiang, to constrain the timing of transformation of the tectonic setting of this region from volcanic arc to intra-plate during Late Mesozoic and its bearing on regional metallogeny. The granitic rocks in west Zhejiang can be geochemically subdivided into two groups. The first group is characterized by relatively steep rare earth element (REE) patterns with slight Eu anomalies, high Sr, low Yb, and negative Nb–Ta–Ti (NTT) anomalies, indicating a volcanic arc environment with a thickened crust in a convergent setting. The second group is featured by flat REE patterns with prominent negative Eu anomalies, low Sr, high Yb, and weak NTT anomalies, suggesting an intra-plate extensional environment with a thin crust. The geochronology of granitic rocks in west Zhejiang, combined with ages of regional tectonic basins and nappe structures, constrains the timing of the tectonic transformation to be in the range from 150 to 140 Ma. Sr–Nd isotopic data and a positive correlation displayed by oxygen fugacity (fO2), and La/Sm and Ba/Th ratios (proxies of subducted sediments and slab dehydration fluids) suggest that the high oxygen fugacity is probably related to the melting of subducted sediments and slab dehydration. From 180 to 80 Ma, due to the increasing dip angle of the subducted Izanagi Plate, the volcanic arc belt migrated oceanward, leaving most of the interior of Zhejiang Province under an intra-plate environment where insufficient subducted components and upwelling mantle generated reduced magmas which were not favorable for Cu–Mo mineralization. Our model provides a plausible explanation for the absence of Cu–Mo porphyry deposits in the adjacent region of Zhejiang, Jiangxi, and Anhui provinces (Zhe-Gan-Wan region) after 140 Ma.  相似文献   

16.
Abstract

Quartz diorite intrusions in the Jiefangyingzi area associated with deformed Palaeozoic rocks of the Palaeozoic Bainaimiao arc magmatic belt on the northern margin of the North China Craton (NCC) were studied to determine their age, chemical composition, and isotopic characteristics. U–Pb dating of magmatic zircons indicates that the quartz diorites formed in Neoarchaean time between 2502.6 ± 9.1 Ma and 2551 ± 7.3 Ma. The quartz diorites have high Al2O3 and low K2O contents, A/CNK = 0.75–0.97, and belong to the low-K tholeiitic series. The quartz diorites are enriched in light rare earth elements (LREEs) with high (La/Yb)N ratios and exhibit weak positive or no Eu anomalies, characteristics of high-alumina tonalite–trondhjemite–granodiorite (TTG) igneous rocks. Zircon εHf(t) value for the quartz diorites ranges from +1.6 to +8.7, and the two-stage Hf-depleted mantle model age (TDM) ranges from 2705 to 2744 Ma, suggesting that the quartz diorite was derived from melting juvenile Neoarchaean crust formed from partial melting of the mantle at 2.7 Ga. Amphibolite xenoliths have low REE concentrations and are moderately depleted in LREE with (La/Yb)N ratios of 0.46–1.09. The trace element characteristics of the amphibolites are consistent with a mid-ocean-ridge basalt (MORB)-like protolith. This is the first time that Archaean rocks have been identified in the Bainaimiao arc magmatic belt and the age and nature of Jiefangyingzi quartz diorites suggest that they belonged to the NCC. The Early Palaeozoic Bainaimiao arc thus appears to represent an Andean-type continental arc on the northern margin of the NCC.  相似文献   

17.
We present and compare whole-rock and zircon O and Pb isotopic compositions for the Hannuoba granulite xenoliths and Mesozoic intermediate-to-felsic igneous rocks from the Zhangjiakou region, northern margin of the North China Craton, northeast China. The xenoliths have an overall Pb isotopic range similar to rocks from the regionally exposed Neoarchaean granulite terrain. Mesozoic zircons from different types of granulite xenoliths have a narrow range of δ18O values (6.0–7.7‰) higher than normal mantle δ18O values (~5.7‰). Mesozoic intermediate–felsic igneous rocks have O and Pb isotopic compositions indistinguishable from the Hannuoba intermediate–mafic granulite xenoliths. Our new data suggest that the Mesozoic igneous rocks and granulite xenoliths are genetically linked and that both were derived from the late Neoarchaean lower crust. This argues against previous proposals that the granulite xenoliths are either products of Mesozoic basaltic underplating or formed by mixing between mantle-derived and pre-existing crustal magmas.  相似文献   

18.
Bezymianny is an active andesitic volcano of the Klyuchevskaya group, and its eruptive products are xenolith- and enclave-bearing basaltic andesites and dacites. Here we report the first occurrence of clinopyroxene-plagioclase high-potassium basaltic trachyandesite xenoliths (51.84-53.00 wt.% SiO2, 0.45-1.95 wt.% K2O) crystallized in the temperature range 1120-840 °C in products of modern eruptions (2007, 2011, 2012). Basaltic trachyandesite differ systematically in petrologic and geochemical characteristics from all previously studied rocks from the Bezymianny volcano. They correspond to the clinopyroxene-plagioclase porphyry rocks from the foot of the Tolbachik volcanoes.  相似文献   

19.
We have undertaken major and trace element analyses of volcanic rocks in Northeast China, as well as U–Pb dating and Hf isotopic analysis of their zircons, in order to determine the petrogenesis and tectonic setting of the volcanics. Mesozoic volcanism in the southern Manzhouli area occurred in two stages: Middle to Late Jurassic (164–147 Ma) and Early Cretaceous (142–123 Ma). The first stage is represented by the Tamulangou, Jixiangfeng, and Qiyimuchang formations. The Jixiangfeng Formation (162–156 Ma) is a rhyolite–trachyte dominated unit that lies between two basalt units, namely the underlying Tamulangou (164–160 Ma) and overlying Qiyimuchang (151–147 Ma) formations. The second igneous stage is dominated by rhyolitic lavas and tuffs of the Shangkuli Formation and basaltic rocks of the Yiliekede Formation, and they yield zircon U–Pb ages of 142–125 and 135–123 Ma, respectively. Basaltic rocks of the Tamulangou and Yiliekede formations have a wide range of MgO contents (1.64–9.59 wt%), but are consistently depleted of Nb and Ta and enriched with incompatible trace elements such as large ion lithophile elements (LILEs) and light rare earth elements (LREEs). Trachytes and rhyolites of the Jixiangfeng and Shangkuli formations are characterized by enrichment in LILEs and LREEs relative to HFSEs and HREEs, and with negative Nb, Ta, P, and Ti anomalies and positive ? Hf(t) values (3.49–9.98). These data suggest that basaltic volcanic rocks in southern Manzhouli were generated by fractional crystallization of a common parental magma, which was derived by partial melting of metasomatized (enriched) lithospheric mantle, whereas the trachytic and rhyolitic magmas were produced by the melting of lower crustal mafic and felsic granulites, respectively. Geochronological data indicate that Mesozoic volcanism in southern Manzhouli was initiated in the Middle to Late Jurassic and continued into the Early Cretaceous. It was mainly induced by lithospheric extension after the closure of the Mongol–Okhotsk Ocean.  相似文献   

20.
The Mesozoic lithospheric mantle beneath the North China craton remains poorly constrained relative to its Palaeozoic and Cenozoic counterparts due to a lack of mantle xenoliths in volcanic rocks. Available data show that the Mesozoic lithospheric mantle was distinctive in terms of its major, trace element, and isotopic compositions. The recent discovery of mantle peridotitic xenoliths in Late Cretaceous mafic rocks in the Jiaodong region provides an opportunity to further quantify the nature and secular evolution of the Mesozoic lithospheric mantle beneath the region. These peridotitic xenoliths are all spinel-facies nodules and two groups, high-Mg# and low-Mg# types, can be distinguished based on textural and mineralogical features. High-Mg# peridotites have inequigranular textures, high Mg# (up to 92.2) in olivines, and high Cr# (up to 55) in spinels. Clinopyroxenes in the high-Mg# peridotites are generally LREE-enriched ((La/Yb)N>1) with variable REE concentrations, and have enriched Sr–Nd isotopic compositions (87Sr/86Sr = 0.7046–0.7087; 143Nd/144Nd = 0.5121–0.5126). We suggest that the high-Mg# peridotites are fragments of the Archaean and/or Proterozoic lithospheric mantle that underwent extensive interaction with both carbonatitic and silicate melts prior to or during Mesozoic time. The low-Mg# peridotites are equigranular, are typified by low Mg# ( < 90) in olivines, and by low Cr# ( < 12) in spinels. Clinopyroxenes from low-Mg# peridotites have low REE abundances (ΣREE = 12 ppm), LREE-depleted REE patterns ((La/Yb)N < 1), and depleted Sr–Nd isotopic features, in contrast to the high-Mg# peridotites. These geochemical characteristics suggest that the low-Mg# peridotites represent samples from the newly accreted lithospheric mantle. Combined with the data of mantle xenoliths from the Junan and Daxizhuang areas, a highly heterogeneous, secular evolution of the lithosphere is inferred for the region in Late Cretaceous time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号