首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tidal sand waves are dynamic bedforms found in coastal shelf seas. Moreover, these areas are inhabited by numerous benthic species, of which the spatial distribution is linked to the morphological structure of sand waves. In particular, the tube-building worm Lanice conchilegais of interest as this organism forms small mounds on the seabed, which provide shelter to other organisms. We investigate how the interactions between small-scale mounds (height ∼dm) and large-scale sand waves (height ∼m) shape the bed of the marine environment. To this end, we present a two-way coupled process-based model of sand waves and tube-building worm patches in Delft3D. The population density evolves according to a general law of logistic growth, with the bed shear stress controlling the carrying capacity. Worm patches are randomly seeded and the tubes are mimicked by small cylinders that influence flow and turbulence, thereby altering sediment dynamics. Model results relate the patches with the highest worm densities to the sand wave troughs, which qualitatively agrees with field observations. Furthermore, the L. conchilegatubes trigger the formation of sandy mounds on the seabed. Because of the population density distribution, the mounds in the troughs can be several centimetres higher than on the crests. Regarding sand wave morphology, the combination of patches and mounds are found to shorten the time-to-equilibrium. Also, if the initial bed comprised small sinusoidal sand waves, the equilibrium wave height decreased with a few decimetres compared to the situation without worm patches. As the timescale of mound formation (years) is shorter than that of sand wave evolution (decades), the mounds induce (and accelerate) sand wave growth on a similar spatial scale to the mounds. Initially, this leads to shorter sand waves than they would be in an abiotic environment. However, near equilibrium the wavelengths tend towards their abiotic counterparts again. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

2.
Modelling sand wave migration in shallow shelf seas   总被引:5,自引:0,他引:5  
Sand waves form a prominent regular pattern in the offshore seabed of sandy shallow seas. The positions of sand-wave crests and troughs slowly change in time. Sand waves are usually assumed to migrate in the direction of the residual current. This paper considers the physical mechanisms that may cause sand waves to migrate and methods to quantify the associated migration rates. We carried out a theoretical study based on the assumption that sand waves evolve as free instabilities of the system. A linear stability analysis was then performed on a 2DV morphological model describing the interaction between the vertically varying water motion and an erodible bed in a shallow sea. Here, we disrupted the basic tidal symmetry by choosing a combination of a steady current (M0) and a sinusoidal tidal motion (M2) as the basic flow. We allowed for two different physical mechanisms to generate the steady current: a sea surface wind stress and a pressure gradient. The results show that similar sand waves develop for both flow conditions and that these sand waves migrate slowly in the direction of the residual flow. The rates of migration and wavelengths found in this work agree with theoretical and empirical values reported in the literature.  相似文献   

3.
The role of wave forcing on the main hydro-morphological dynamics evolving in the shallow waters of the nearshore and at river mouths is analyzed. Focus is mainly on the cross-shore dynamics that evolve over mildly sloping barred, dissipative sandy beaches from the storm up to the yearly timescale, at most. Local and non-local mechanisms as well as connections across three main inter-related subsystems of the nearshore – the region of generation and evolution of nearshore bars, river mouths and the swash zone – are analyzed. The beach slope is a major controlling parameter for all nearshore dynamics. A local mechanism that must be properly described for a suitable representation of wave-forced dynamics of all such three subsystems is the proper correlation between orbital velocity and sediment concentration in the bottom boundary layer; while specific dynamics are the wave–current interaction and bar generation at river mouths and the sediment presuspension at the swash zone. Fundamental non-local mechanisms are both infragravity (IG) waves and large-scale horizontal vortices (i.e. with vertical axes), both influencing the hydrodynamics, the sediment transport and the seabed morphology across the whole nearshore. Major connections across the three subsystems are the upriver propagation of IG waves generated by breaking sea waves and swash–swash interactions, the interplay between the swash zone and along-river-flank sediment transport and the evolution of nearshore sandbars. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
Bastos  A.  Collins  M.  Kenyon  N. 《Ocean Dynamics》2003,53(3):309-321
Numerical simulations of tidal flow and sand transport around a coastal headland (Portland Bill, southern UK) were undertaken to investigate patterns of sand transport during the development of tidally induced transient eddies. Results obtained from a 2-D finite-element hydrodynamic model (TELEMAC-2D) were combined with a sediment transport model (SEDTRANS), to simulate the sand transport processes around the headland. Simulation of the tidal flow around Portland Bill has shown the formation and evolution of tidally induced transient eddies, around the headland. During the evolution of these transient eddies, no current-induced bedload (transport) eddy is formed for either side of the headland. Net bedload sand transport direction, around a coastal headland, is the result of instantaneous gradients in bedload transport rates, during flood and ebb flows, rather than the average (residual) flow. Thus, the use of residual (water) circulation to describe patterns of sediment movement as bedload is not an appropriatedapproach. In the case study presented here, the distinct characteristics of the coastal and seabed morphology around the Isle of Portland (i.e. headland shape and the bathymetry) indicate that these parameters can be influencing tidal (flow) and sediment dispersion around the headland. Such an interpretation has broader implications and applications to headland-associated sandbanks elsewhere.Responsible Editor: Hans Burchard  相似文献   

5.
Medium-term prediction of sediment transport and morphological behaviour in the coastal zone is becoming increasingly important as a result of human interference and changing environmental conditions. The interaction of waves and tides is shown to play a pivotal role in the net (annual) sediment transport and morphodynamics of the coastal zone. The Telemac Modelling System has been applied to the Dyfi Estuary and neighbouring coastline, mid Wales, to recreate the annual wave–current conditions and the resulting sediment fluxes. ‘Input reduction’ methods have been required to produce realistic schematisations of events in practical computation times. A field campaign carried out in 2006 provided data for validation of the flow module (Telemac-2D) and also observations to verify the patterns predicted by the wave module (Tomawac). To improve model accuracy refinements were implemented with regard to the sand transport formulation used in the sand transport module (Sisyphe). Here, a parameterisation of the results from the UWB 1DV sand transport ‘research’ model, for the conditions in the Dyfi Estuary, has been introduced, allowing Sisyphe to provide greater realism in the morphological predictions. The model predictions are presented along with a discussion of the success/failure and limitations of the modelling methods applied.  相似文献   

6.
In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.  相似文献   

7.
Large-scale redistribution of sand by hydrodynamical processes in shelf seas is important for basin and coastal evolution on time scales of a thousand to tens of thousands of years. The influence of tides on the large-scale net sand-transport patterns in the North Sea has received much attention, but the influence of wind-driven flow and wind waves has hardly been investigated. Here, to establish the present-day situation and to develop a method that can also be used for palaeo-situations and forecasts for different sea levels, this influence is assessed for the present southern North Sea using a numerical flow model, a parametric wave model and a wave-averaged sand-transport formulation. Various forcing combinations are used to identify the dominant transport mechanisms: tides only, tides and wind, tides and waves, and combined tides, wind and waves. Wind forcing is applied in two ways to find an efficient, but still representative, method of incorporating this stochastic process: a statistical wind climatology and an observed time series. The results show that (i) the wind climatology yields a good approximation of the sand transport computed using the time series; (ii) wind-driven flow and waves only contribute significantly to the net sand transport by tides when acting together where tidal currents are small; and (iii) various combinations of forcings dominate the net sand transport in different regions of the southern North Sea: (a) tides dominate in the southern, middle and northwestern parts of the Southern Bight and in the region of The Wash; (b) tides, wind-driven flow and waves all are important in the northeastern part of the Southern Bight; and (c) wind-driven flow and waves dominate north of the Friesian Islands, in the German Bight and on the Dogger Bank. Qualitative comparison with observations shows good agreement.  相似文献   

8.
9.
Ship-generated waves and return currents are capable of re-suspending significant quantities of bottom and bank sediments.However,most of the previous studies done on the subject do not show how and where sediment is re-suspended by the wakes and the directions of net transport.In this paper,a 3D numerical model based on hydro-sedimentary coupling is presented to search the relationship between the sediment movement,and the pattern of ship-generated waves around and far away from the vessel and the return currents around the ships.The hydrodynamic model is based on 3D Navier-Stokes equations including the standard k-ε model for turbulence processes,and the sediment transport model is based on a 3D equation for the re-suspended sediment transport.The computation results show that the areas of sediment concentration and transport(whether by resuspension or by the bedload) depend mainly on the position,the speed of the ship in the waterways,the kinematics of ship-generated waves and on the return flows.Thus,a map of sediment distribution and the modes of sediment transport generated by the passage of the ship are presented.  相似文献   

10.

In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.

  相似文献   

11.
The geomorphology of the southern Yellow Sea(SYS) is characterized by offshore radial sand ridges(RSR).An offshore tidal channel(KSY Channel) is located perpendicular to the coast,comprised of a main and a tributary channel separated by a submarine sand ridge(KSY Sand Ridge) extending seaward.In order to investigate the interactions among water flow,sediment transport,and topography,current velocity and suspended sediment concentration(SSC) were observed at 11 anchor stations along KSY Channel in RSR during a spring tide cycle.High resolution bottom topography was also surveyed.Residual currents and tidally averaged suspended sediment fluxes were calculated and analyzed by using the decomposition method.Results suggested that the water currents became stronger landward but with asymmetrical current speed and temporal duration of flood and ebb tides.Residual currents showed landward water transport in the nearshore channel and a clockwise circulation around the KSY Sand Ridge.Tidally-averaged SSC also increased landward along the channel.The main mechanisms controlling SSC variations were resuspension and horizontal advection,with spatial and temporal variations in the channel,which also contributed to sediment redistribution between channels and sand ridges.Residual flow transport and the tidal pumping effect dominated the suspended sediment flux in the KSY Channel.The KSY Sand Ridge had a potential southward migration due to the interaction between water flow,sediment transport,and topography.  相似文献   

12.
夏军强  曹玉芹  周美蓉  刘鑫  邓宇 《湖泊科学》2023,35(6):2144-2154
沙波形态影响水流结构、泥沙输移及动床阻力。本研究采用多波束测深系统首次精细测量了上荆江典型河段的床面地形,采用改进后的沙波形态量化算法统计了各类沙波形态参数,分析了不同水流强度下沙波形态的变化特征。计算结果表明:(1)测量河段小型与大型沙波的平均波高分别为0.16~0.81和0.96~2.31 m,波长分别为13~27和16~41m;沙波尺度相较于水深较小,小型与大型沙波的波高分别不超过水深的0.045和0.150倍;(2)沙波背流面坡度基本不超过14°,小于泥沙水下休止角,其与陡度之间的关系可以用线性方程描述;(3)中洪水流量对沙波形态尺度的塑造作用强于枯水流量,且对浅水区大型沙波形态尺度的塑造作用强于深水区。本研究量化了天然河流的沙波形态,较好地反映了沙波形态特征,能为大型冲积河流沙波形态的量化及特征参数的统计分析提供参考。  相似文献   

13.
Sandy shallow seas, like the North Sea, are very dynamic. Several morphological features are present on the bed, from small ripples to sand waves and large tidal sandbanks. The larger patterns induce significant depth variations that have an impact on human activities taking place in this area. Therefore, it is important to know where these large-scale features occur, what their natural behaviour is and how they interact with human activities. Here, we extend earlier research that compares the results of an idealized model of large-scale seabed patterns with data of seabed patterns in the North Sea. The idealized model is extended with a grain size dependency. The adaptations lead to more accurate predictions of the occurrence of large-scale bed forms in the North Sea. Therefore, grain size dependency and, in particular, critical shear stress are important to explain the occurrence of sand waves and sandbanks in the North Sea. Responsible Editor: Alejandro Souza  相似文献   

14.
本文发展了一套适用于模拟我国南海北部小尺度沙波运移的数值模型,该模型由超高分辨率三维海洋环境数值模块和泥沙运移模块组成,综合考虑了地形、潮汐、温盐和风应力等因素对海底流场和沙波运移的影响,可模拟时间间隔一年以上的沙波运移.研究发现,沙脊两侧沙波运移方向相反是潮汐、地形与温盐三方面因素综合作用的结果,其中温盐分布所导致的密度流是沙波运移中不可忽略的因素之一.与实测结果比较证明,本文模拟结果优于2DV模型和Q3D模型,并且可模拟沙脊两侧沙波运移方向翻转的现象.  相似文献   

15.
LINTRODUCTIONSoftmudhaVebeenfoundinmanycoasts,rivers,andeStheriesallovertheworld.ThemutUaleffectSofpropagatingwavesandsoftmudseedbedshavebeendiscussedbymostinveshgatorsbasedonlinearwavetheory.Buttheinteractionbetweenwaterwaveandsoftmudisnonlinear.OneaPProachisthePe~ationmethod,usedbyPeregrine(1967).AlternativeformofBoussunesqeqUationsisderiVedbyusingthevelocityatanarbitrarydistancefromthestillwaterlevelasthevelocityvariableinsteadofthecommonlyuseddepth-averagedvelocitybyNWogU(1993).…  相似文献   

16.
The irregular seafloor of the narrow Irish Sea on the NW European Shelf has been documented over several decades. From recently collected swath bathymetry data, very large trochoidal, nearly symmetrical sediment waves are observed in many parts of the Irish Sea and appear similar to those described from other continental shelf seas in North America that were covered by glacigenic sediments during the Last Glacial Maximum. Swath multibeam and single beam bathymetry data, backscatter intensity, shallow seismic imagery, video footage and sediment cores from the Irish Sea high sediment waves have been integrated to identify their genesis with reference to present and past hydrodynamic variability. From cross-sectional profiles over asymmetrical sediment waves in the Irish Sea the direction of asymmetry is used to map residual bed stress directions and associated bedload transport paths. Irish Sea peak bed stress vectors were generated using a two-dimensional palaeo-tidal model for the NW European shelf seas and compare well with the observations. Tidally induced bed stresses are modelled to have increased between 7–10 ka BP, to be nearly symmetrical in magnitude and to have reversed in dominant direction on a millennial scale. These environmental conditions during the post-glacial marine transgression are suggested here to help comprehend the construction of the very large sediment waves, with local variations due to differences in sediment grain size, sediment supply, water depth and intensified currents due to seafloor slopes. Model parameterisation using an open ocean boundary with time-dependent tidal changes and the implementation of high-resolution bathymetric information will improve future models of small-scale bed shear stress patterns and improve the predictive value of such modelling efforts.  相似文献   

17.
The problem of transport of suspended sediment after the break of a dam on an inclined bed is considered. To that end we use the shallow‐water approximation for arbitrary, constant slopes of the bottom, taking into consideration the effect of friction. The numerical technique and the frictional model are validated by comparison with available experimental data and asymptotic analytical solutions, with special attention to the numerical solution near the wetting front. The transport of suspended sediment down the inclined bed is obtained and discussed as a function of the slope of the bed for different values of the parameters characterizing the sediment and its transport properties. For sufficiently large times we always find the formation of roll waves near the water front, which affects the transport of sediments significantly. These strong oscillations are accurately computed with the numerical method used. The relative importance of the bed load (to the suspended load) sediment transport is also discussed as a function of the size of the sediment particles and the slope of the bed for different models on the initiation of sediment suspension from bed load. We also check the dilute sediment approach and characterize the conditions for its failure. Finally, the results of the present simplified model are intended to be used as tests of more complex numerical models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Contemporary hydrodynamics and morphological change are examined in a shallow microtidal estuary, located on a wave-dominated coast (Port Stephens, NSW, Australia). Process-based numerical modelling is undertaken by combining modules for hydrodynamics, waves, sediment transport and bathymetry updates. Model results suggest that the complex estuarine bathymetry and geometry give rise to spatial variations in the tidal currents and a marked asymmetry between ebb and flood flows. Sediment transport paths correspond with tidal asymmetry patterns. The SE storms significantly enhance the quantities of sediment transport, while locally generated waves by the westerly strong winds also are capable of causing sediment entrainment and contribute to the delta morphological change. The wave/wind-induced currents are not uniform with flow over shoals driven in the same direction as waves/winds while a reverse flow occurring in the adjacent channel. The conceptual sediment transport model developed in this study shows flood-directed transport occurs on the flood ramp while ebb-directed net transport occurs in the tidal channels and at the estuary entrance. Accretion of the intertidal sand shoals and deepening of tidal channels, as revealed by the model, suggest that sediment-infilling becomes advanced, which may lead to an ebb-dominated estuary. It is likely that a switch from flood- to ebb-dominance occurs during the estuary evolution, and the present-day estuary acts as a sediment source rather than sediment sink to the coastal system. This is conflictive to the expectation drawn from the estuarine morphology; however, it is consistent with previous research suggesting that, in an infilling estuary, an increase in build-up of intertidal flats/shoals can eventually shift an estuary towards ebb dominance. Thus, field data are needed to validate the result presented here, and further study is required to investigate a variety of estuaries in the Australian area.  相似文献   

19.
Estuarine and coastal sediment transport is characterised by the transport of both sand-sized particles (of diameter greater than 63?μm) and muddy fine-grained sediments (silt, diameter less than 63?μm; clay, diameter less than 2?μm). These fractions are traditionally considered as non-cohesive and cohesive, respectively, because of the negligible physico-chemical attraction that occurs between sand grains. However, the flocculation of sediment particles is not only caused by physico-chemical attraction. Cohesivity of sediment is also caused by biology, in particular the sticky extra-cellular polymeric substances secreted by diatoms, and the effect of biology in binding sediment particles can be much larger than that of physico-chemical attraction. As demonstrated by Manning (2008) and further expanded in part 1 of this paper (Manning et al., submitted), the greater binding effect of biology allows sand particles to flocculate with mud. In many estuaries, both the sand and fine sediment fractions are transported in significant quantities. Many of the more common sediment transport modelling suites now have the capability to combine mud and sand transport. However, in all of these modelling approaches, the modelling of mixed sediment transport has still essentially separated the modelling of sand and mud fractions assuming that these different fractions do not interact except at the bed. However, the use of in situ video techniques has greatly enhanced the accuracy and reliability of settling velocity measurements and has led to a re-appraisal of this widely held assumption. Measurements of settling velocity in mixed sands presented by Manning et al. (2009) have shown strong evidence for the flocculation of mixed sediments, whilst the greater understanding of the role of biology in flocculation has identified mechanisms by which this mud-sand flocculation can occur. In the first part of this paper (Manning et al., submitted), the development of an empirical flocculation model is described which represents the interaction between sand and mud particles in the flocculation process. Measurements of the settling velocity of varying mud-sand mixtures are described, and empirical algorithms governing the variation of settling velocity with turbulence, suspended sediment concentration and mud-sand content are derived. The second part of this paper continues the theme of examination of the effects of mud-sand interaction on flocculation. A 1DV mixed transport model is developed and used to reproduce the vertical transport of mixed sediment fractions. The 1DV model is used to reproduce the measured settling velocities in the laboratory experiments described in the part 1 paper and also to reproduce measurements of concentration of mixed sediments in the Outer Thames. In both modelling exercises, the model is run using the algorithms developed in part 1 and repeated using an assumption of no interaction between mud and sand in the flocculation process. The results of the modelling show a significant improvement in the ability of the 1DV to reproduce the observed sediment behaviour when the empirical equations are used. This represents further strong evidence of the interaction between sand and mud in the flocculation process.  相似文献   

20.
A 2D depth-averaged numerical model is set up to simulate the macro-scale hydrodynamic characteristics, sediment transport patterns and morphological evolution in Hangzhou Bay, a large macro-tidal estuary on the eastern coast of China. By incorporating the shallow water equations, the suspended sediment transport equation and the mass-balance equation for sediment; short-term hydrodynamics, sediment transport and long-term morphological evolution for Hangzhou Bay are simulated and the underlying physical mechanisms are analyzed. The model reproduces the spatial distribution patterns of suspended sediment concentration (SSC) in Hangzhou Bay, characterized by three high SSC zones and two low SSC zones. It also correctly simulates the residual flow, the residual sediment transport and the sediment accumulation patterns in Hangzhou Bay. The model results are in agreement with previous studies based on field measurements. The residual flow and the residual sediment transport are landwards directed in the northern part of the bay and seawards directed in the southern part. Sediment accumulation takes place in most areas of the bay. Harmonic analysis revealed that the tide is flood-dominant in the northern part of the bay and ebb-dominant in the southern part of the bay. The strength of the flood-dominance increases landwards along the northern Hangzhou Bay. In turn sediment transport in Hangzhou Bay is controlled by this tidal asymmetry pattern. In addition, the direction of tidal propagation in the East China Sea, the presence of the archipelago in the southeast and the funnel-shaped geometry of the bay, play important roles for the patterns of sediment transport and sediment accumulation respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号