首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents new paleomagnetic results on Cenozoic rocks from northern central Asia. Eighteen sites were sampled in Pliocene to Miocene clays and sandy clays of the Zaisan basin (southeastern Kazakhstan) and 12 sites in the upper Oligocene to Pleistocene clays and sandstones of the Chuya depression (Siberian Altai).Thermal demagnetization of isothermal remanent magnetization (IRM) showed that hematite and magnetite are the main ferromagnetic minerals in the deposits of the Zaisan basin. Stepwise thermal demagnetization up to 640–660 °C isolated a characteristic (ChRM) component of either normal or reverse polarity at nine sites. At two other sites, the great circles convergence method yielded a definite direction. Measurements of the anisotropy of magnetic susceptibility showed that the hematite-bearing sediments preserved their depositional fabric. These results suggest a primary origin of the ChRM and were substantiated by positive fold and reversal tests. The mean paleomagnetic direction for the Zaisan basin (D=9°, I=59°, k=19, α95=11°) is close to the expected direction derived from the APW path of Eurasia [J. Geophys. Res. 96 (1991) 4029] and shows that the basin did not rotated relative to stable Asia during the Tertiary.In the upper Pliocene–Pleistocene sandstones of the Chuya depression, a very stable ChRM carried by hematite was found. Its mean direction (D=9°, I=46°, k=25, α95=7°) is characterized by declination close to the one excepted for early Quaternary, whereas inclination is lower. In the middle Miocene to lower Pliocene clays and sandstones, a stable ChRM of both normal and reverse polarities carried by magnetite was isolated. Its mean direction (D=332°, I=63°, k=31, α95=4°) is deviated with respect to the reference direction and implies a Neogene, 39±8° counterclockwise rotation of the Chuya depression relative to stable Asia. These results and those from the literature suggest that the different amount of rotation found in the two basins is related to a sharp variation in their tectonic style, predominantly compressive in the Zaisan basin and transpressive in the Siberian Altai. At a larger scale, the pattern of vertical axis rotations deduced from paleomagnetic data in northern central Asia is consistent with the hypothesis of a large left-lateral shear zone running from the Pamirs to the Baikal. Heterogeneous rotations, however, indicate changes in style of faulting along the shear zone and local effect for the domains with the largest rotations.  相似文献   

2.
A paleomagnetic study was carried out on Neogene volcanic rocks at 30 sites within the Galatean massif (40.4°N, 31.5°E) to determine possible block rotations due to stress variations. Two phases of rotation could be characterized as the result of Neogene volcanic activity. We suggest that the first stage of rotation was isolated in Early Middle Miocene calc-alkali rocks, with a relative counterclockwise rotation of R ± ΔR = −20.2 ± 9.3° with respect to Eurasia. This accommodates the south-westward rotational collapse of the Western Anatolia peninsula across a pole on the Bitlis suture. In the neotectonic period, on other hand, a relative clockwise rotation of R ± ΔR = 27.3 ± 6.4° with respect to Eurasia is predicted. In contrast to the uniform clockwise rotations, extremely large clockwise rotations up to 264° are restricted in a narrow zone between two dextral faults. We believe that the second stage rotations support the idea of individual microblock rotations due to deformation along the North Anatolian Fault zone.  相似文献   

3.
The so-called apparent rotation was defined as the angular deviation between a local paleomagnetic direction (after the standard bedding correction) and their corresponding paleomagnetic reference [J. Geophys. Res. 85 (1980) 3659]. In this paper, we make a theoretical exploration on this concept and we conclude that (depending on the number, sequence, orientation and magnitude of the deformation axes that have affected to the rock volume) the apparent rotation may be the addition of a vertical-axis rotation plus a spurious rotation. The later is an error whose origin is the inappropriate application of the bedding correction during the restoration (which does not fit the reverse sequence of deformations). Then, Apparent rot. (s.l.) (δ)=Spurious rot. (θ)+Vertical-axis rot. (β).Conical folds are complex geometries that cannot be restored by using the bedding correction. However, appearance of apparent and spurious rotations has not been studied even though the presence of this kind of folds is very common in fold and thrust belts. In this paper, we show a way to restore these structures and its associated paleomagnetic data by means of forward modelling on a stereographic projection. The modelling has to be based on a good characterization of the geometry (fold axis orientation) and understanding of the kinematics of the fold. General modelling has also allowed us to predict the apparent rotation in conical synclines. Its magnitude depends on the semiapical angle and on the degree of development of the fold; the sense of the rotation (clockwise or counter-clockwise) will depend on the sense of rotation the fold axis.The western External Sierras provide an excellent case study of apparent rotations due to the presence of a conical fold in the footwall (Ebro foreland basin) of the South Pyrenean sole thrust. In addition, a vertical-axis clockwise rotation up to 47° (32° in average) has been detected in the hagingwall. An apparent rotation up to 28° (20° in average) is observed in the footwall of the structure when a simple bedding correction is used. This deviation does not fit with the expected Ebro basin direction (reference) and is caused by the effect of the Riglos conical syncline, developed by the flexure of the foot wall ramp of the South Pyrenean sole thrust. The forward modelling carried out considering the geometry and kinematics (non significant rotations in the autochthonous foot wall) of this structure predicts very well the paleomagnetic observations in the field (geographic coordinates) with angular departures of only 5° (in average). The only application of the bedding correction would introduce errors (spurious rotations up to 21°, 12 in average) related to the conical geometry that would not allow the differentiation of these distinct structural units.  相似文献   

4.
Paleomagnetic studies in conjunction with fission-track dating on the western arc of Sulawesi yield important evidence bearing on the tectonic history of the area. During the Paleogene to Early Miocene time interval the paleomagnetic pole for southwestern Sulawesi was situated at 36.5°E 44.8°N. This pole position is significantly different from that in the time interval Middle Miocene to Recent, which is consistent with the north pole of the axial geocentric dipole. This fact suggests that subsequent to the Paleogene to Early Miocene period, possibly 19–13 m.y. B.P., a major tectonic event occurred which caused about 40 degrees of anticlockwise rotation of the area. It is suggested by the present work that the postulated collision followed by welding of eastern Sulawesi with western Sulawesi during the Pliocene (Katili, 1978) may be the tectonic event mentioned above. In addition, our data does not support the hypothesis that western Sulawesi has been derived from the dispersal of Gondwanaland.  相似文献   

5.
With the aim of obtaining Tertiary palaeomagnetic directions for the Adriatic Foreland of the Dinaric nappe system, we carried out a palaeomagnetic study on platform carbonates from stable Istria, from the northwestern and the Central Dalmatia segment of imbricated Adria. Despite the weak to very weak natural remanences of these rocks, we obtained tectonically useful palaeomagnetic directions for 25 sites from 20 localities. All exhibit westerly declinations, both before and after tilt correction. Concerning the age of the magnetizations, we conclude that five subhorizontal and magnetite bearing Eocene localities from stable Istria are likely to carry primary remanence, whereas three tilted and hematite-bearing ones were remagnetized. In the northwestern segment of imbricated Adria the cluster of the mean directions improved after tectonic correction indicating pre-tilting magnetization. In contrast, Maastrichtian–Eocene platform carbonates from Central Dalmatian were remagnetized in connection with the late Eocene–Oligocene deformation or Miocene hydrocarbon migration. Based on the appropriate site/locality means, we calculate mean palaeomagnetic directions for the above three areas and suggest an alternative interpretation of the data of Kissel et al. [J. Geophys. Res. 100 (1995) 14999] for the flysch of Central Dalmatia. The four area mean direction define a regional palaeomagnetic direction of Dec=336°, Inc=+52°, k=107, α95=9°. From these data we conclude that stable Istria, in close coordination with imbricated Adria, must have rotated by 30° counterclockwise in the Tertiary, relative to Africa and stable Europe. We suggest that the latest Miocene–early Pliocene counterclockwise rotations observed in northwestern Croatia and northeastern Slovenia were driven by that of the Adriatic Foreland, i.e. the rotation of the latter took place between 6 and 4 Ma.  相似文献   

6.
Since the pioneering studies of Van der Voo [Tectonophysics 7 (1969) 5] and Van der Voo and Boessenkool [J. Geophys. Res. 78 (1973) 5118], paleomagnetism of Permo-Triassic redbeds and volcanics from the Western Pyrenees has furnished important contributions for delineating the Mesozoic boundary between the Iberian and Eurasian plates. In this paper, we present a new paleomagnetic study focussed on Triassic red beds (23 sites) of the Paleozoic Basque Massifs (PBM). The aim of this study is to complement previous studies done in those massifs to better constrain the complex kinematics of the Western Pyrenees. Two stable magnetic components have been isolated: (1) a dual polarity, pre-folding magnetisation carried by specular hematite; and (2) a secondary, normal polarity component also carried by hematite. Our data confirm both the origin and the rotation pattern of the primary remanence described in previous works. Nevertheless, field tests performed on the secondary component do not confirm the earlier interpretations by Schott and Peres [Tectonophysics 156 (1988) 75] as they indicate a synfolding nature of the remagnetisation instead of a post-folding origin. We consider that the secondary component is better explained if a Cretaceous age is considered. The presence of such remagnetisation in the western Pyrenees strengthens the widespread occurrence of similar remagnetisation events reported in northern Iberia in connection with the extensional tectonic events that occurred during Cretaceous times. A comparison of the rotations recorded by the Triassic component and by the remagnetisation indicate that the Paleozoic units underwent variable tectonic rotations before the remagnetisation was acquired, most likely in connection with the counterclockwise rotation of Iberia with respect to Eurasia. These results favour that the Mesozoic plate boundary between the Iberian and Eurasian plates was a wide domain of distributed deformation and therefore contradict previous interpretations claiming for a discrete plate boundary.  相似文献   

7.
Counterclockwise rotation is a characteristic feature of the results of most paleomagnetic studies of the Pontides and Anatolides of central Turkey, applicable to regions both north and south of the North Anatolian fault zone. In this paper, we report new data from Eocene volcanics and assess existing data from the calc-alkaline volcanic suites of this age. Although there are regional variations, probably resulting from rotations of individual fault blocks, an average counterclockwise rotation of ~33° is identified across a region extending from 34° to 38° E Long. A mean Eocene paleolatitude of 27° N is compatible with ongoing northward movement and residual closure of a few degrees across the Pontide orogen during the latter part of its paleotectonic history. It seems probable that this rotated domain extends as far west as the Aegean graben system of western Turkey and as far south as the Taurides. Paleomagnetic evidence from younger volcanics suggests that the bulk of the rotation occurred during Quaternary time. The counterclockwise rotation of central Turkey is complemented by contemporaneous clockwise rotation of Greece, and the combined differential motion has produced the Aegean Sea in between them.  相似文献   

8.
We present paleomagnetic results of Paleocene welded tuffs of the 53–50 Ma Bogopol Group from the northern region (46°N, 137°E) of the Sikhote Alin volcanic belt. Characteristic paleomagnetic directions with high unblocking temperature components above 560 °C were isolated from all the sites. A tilt-corrected mean paleomagnetic direction from the northern region is D=345.8°, I=49.9°, α95=14.6° (N=9). The reliability of the magnetization is ascertained through the presence of normal and reversed polarities. The mean paleomagnetic direction from the northern region of the Sikhote Alin volcanic belt reflects a counterclockwise rotation of 29° from the Paleocene mean paleomagnetic direction expected from its southern region. The counterclockwise rotation of 25° is suggested from the paleomagnetic data of the Kisin Group that underlies the Bogopol Group. These results establish that internal tectonic deformation occurred within the Sikhote Alin volcanic belt over the past 50 Ma. The northern region from 44.6° to 46.0°N in the Sikhote Alin volcanic belt was subjected to counterclockwise rotational motion through 29±17° with respect to the southern region. The tectonic rotation of the northern region is ascribable to relative motion between the Zhuravlevka terrane and the Olginsk–Taukhinsk terranes that compose the basements of the Sikhote Alin volcanic belt.  相似文献   

9.
In order to assess the structural evolution of the Brive basin and the Paleozoic activity of surrounding major faults in the French Massif Central, we carried out a paleomagnetic study on Early Permian rocks from this basin. Positive-fold tests and solely reversed polarities indicate that the characteristic remanent magnetization is likely to be primary. Early Permian tilt-corrected site mean declinations vary from 207°–167° indicating that the Brive basin experienced internal vertical-axis rotations. On the contrary, Late Permian paleomagnetic site means exhibit a circular Fisherian distribution showing no relative rotations. Detailed analyses of Permian paleomagnetic data from five contemporaneous basins of the French Massif Central reveal that these basins share the same equatorial paleolatitude with stable Europe throughout the Permian. However, in Early Permian, three of the five basins experienced differential rotations. The Saint-Affrique basin not only suffered internal deformation during the Early Permian, but the basin as a whole underwent a full-scale counterclockwise vertical-axis block rotation with respect to stable Europe. As a consequence, paleomagnetic data from similar late orogenic basins have to be thus carefully considered for establishment of Apparent Polar Wander paths.  相似文献   

10.
The age of spreading of the Liguro–Provençal Basin is still poorly constrained due to the lack of boreholes penetrating the whole sedimentary sequence above the oceanic crust and the lack of a clear magnetic anomaly pattern. In the past, a consensus developed over a fast (20.5–19 Ma) spreading event, relying on old paleomagnetic data from Oligo–Miocene Sardinian volcanics showing a drift-related 30° counterclockwise (CCW) rotation. Here we report new paleomagnetic data from a 10-m-thick lower–middle Miocene marine sedimentary sequence from southwestern Sardinia. Ar/Ar dating of two volcanoclastic levels in the lower part of the sequence yields ages of 18.94±0.13 and 19.20±0.12 Ma (lower–mid Burdigalian). Sedimentary strata below the upper volcanic level document a 23.3±4.6° CCW rotation with respect to Europe, while younger strata rapidly evolve to null rotation values. A recent magnetic overprint can be excluded by several lines of evidence, particularly by the significant difference between the in situ paleomagnetic and geocentric axial dipole (GAD) field directions. In both the rotated and unrotated part of the section, only normal polarity directions were obtained. As the global magnetic polarity time scale (MPTS) documents several geomagnetic reversals in the Burdigalian, a continuous sedimentary record would imply that (unrealistically) the whole documented rotation occurred in few thousands years only. We conclude that the section contains one (or more) hiatus(es), and that the minimum age of the unrotated sediments above the volcanic levels is unconstrained. Typical back-arc basin spreading rates translate to a duration ≥3 Ma for the opening of the Liguro–Provençal Basin. Thus, spreading and rotation of Corsica–Sardinia ended no earlier than 16 Ma (early Langhian). A 16–19 Ma, spreading is corroborated by other evidences, such as the age of the breakup unconformity in Sardinia, the age of igneous rocks dredged west of Corsica, the heat flow in the Liguro–Provençal Basin, and recent paleomagnetic data from Sardinian sediments and volcanics. Since Corsica was still rotating/drifting eastward at 16 Ma, it presumably induced significant shortening to the east, in the Apennine belt. Therefore, the lower Miocene extensional basins in the northern Tyrrhenian Sea and margins can be interpreted as synorogenic “intra-wedge” basins due to the thickening and collapse of the northern Apennine wedge.  相似文献   

11.
12.
Xixi Zhao  Masako Tominaga   《Tectonophysics》2009,474(3-4):435-448
Integrated Ocean Drilling Program (IODP) Expeditions 304/305 recovered a total of 1.4 km sequence of lower crustal gabbroic and minor ultramafic rocks from the Atlantis Massif oceanic core complex on the western flank of the Mid Atlantic Ridge (MAR) at 30°N. We conducted an integrated paleomagnetic and rock magnetic study on this sequence to help address the interplay between magmatism and detachment faulting. Detailed thermal and alternating-field demagnetization results demonstrate that stable components of magnetization of mainly reversed polarity with unblocking temperatures below the Curie temperature of magnetite are retained in gabbroic rocks at IODP Site U1309. Several samples also contain multicomponent remanences of both normal and reversed polarities that were acquired over sharply defined blocking temperature intervals, providing evidence for localized reheating of some intervals during both normal and reversed polarity periods. Results from a series of rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier rocks recovered at Site U1309D. The overall magnetic inclination of Hole U1309D is -35°, implying significant (up to ~ 50° counterclockwise, viewed to the north) rotation of the footwall around a horizontal axis parallel to the rift axis (010°) may have occurred. The tectonic rotations inferred by the paleomagnetic data suggest that the original fault orientation dipped relative steeply toward the spreading axis and subsequently rotated to a shallower angle. Coupled with the newly published U–Pb zircon ages for Hole U1309D rocks [Grimes, C.B., John, B.E., Wooden, J.L., 2008. Protracted construction of gabbroic crust at a slow-spreading ridge: Constraints from 206Pb/238U zircon ages from Atlantis Massif and IODP Hole 1309D, (30°N, MAR). Geochem. Geophys. Geosyst. 9, Q08012. doi:1029/2008GC002063], the new paleomagnetic data provide temporal and thermal constraints on the accretion history of the Atlantis Massif.  相似文献   

13.
A new tectonic model for the Aegean block is outlined in an effort to explain the widespread extension observed in this region. A key element in this model is the concept of “side arc collision” This term is used to describe the interaction of subducted oceanic lithosphere with continental lithosphere in a subduction arc in which oblique subduction occurs. In the Hellenic arc side arc collision is proposed for the northeast corner near Rhodes. The collision involves subducted African lithosphere, moving to the northeast almost parallel to the arc, with the continental mass of southwest Turkey. It affects the motion of the Anatolian-Aegean plate complex, but is not similar to continental collision since it occurs mostly at depth and involves only little, if any, of the shallow and rigid part of the continental lithosphere. The model assumes that Anatolia and the Aegean are part of one plate complex which undergoes counterclockwise rotation; if it were not for the side arc collision near Rhodes, the two blocks would exhibit similar deformation and might, in effect, be indistinguishable. At present, however, free and undisturbed rotation is possible only for the Anatolian block (excluding western Anatolia) where the motion is accommodated by subduction along the Cyprean arc. Further west the side arc collision inhibits this rotation along the subduction front. Still further west, undisturbed subduction along the central and western parts of the Hellenic arc is again possible and is well documented. On the other side of the Anatolian-Aegean plate complex, relatively free motion occurs along the North Anatolian fault zone including in the Aegean Sea. The combination of this motion in the north with the local obstruction of the rotation near Rhodes, must create a torque and a new pattern of rotation for the western part of the plate complex, thus creating a separate Aegean block. Since, however, the two blocks are not separated by a plate boundary, the Aegean block cannot move freely according to the new torque. Effective motion of the Aegean block relative to Europe and Anatolia, particularly in the north, is achieved through extension of the crust (lithosphere?). Thus the greatest amount of deformation (extension) is observed along the suture zone between the two blocks and, in particular, in the northeastern part of the Aegean block where motion relative to Anatolia must be greatest.  相似文献   

14.
Em Mrton  Lszl Fodor 《Tectonophysics》2003,363(3-4):201-224
We carried out an integrated paleomagnetic and structural study in the Transdanubian Range, western and central Hungary. As a result, the Tertiary tectonic history of this area can be characterized by three events of counterclockwise (CCW) rotation and four or five phases of brittle deformation. The change of the orientation of stress axes between phases is mainly apparent and reflects the rotation of the faults predating a particular rotation event. The first two rotation events (R1 and R2) were probably governed by the rollback mechanism of the subducting European plate. We suggest that these rotations were taking place from 18–17 and 16–14.5 Ma, respectively, i.e. simultaneously with the rotations of the North Hungarian Paleogene Basin and the main part of the Western Carpathians. However, the angle of both rotations was less in the Transdanubian Range due to increasing distance from the subduction front. The differential rotation was accommodated by extensional faulting by formation of a graben system. On the other hand, the youngest rotation event R3 seems to be connected to the renewed rotation of the Adriatic plate around 5 Ma. Our combined data set strongly supports earlier conclusions, namely, that the different subunits of the Eastern Alpine–Western Carpathian–Northern Pannonian unit (Alcapa) did not form a rigid unit, although they moved in similar manner.  相似文献   

15.
Following final closure of the Neotethyan Ocean during the late Miocene, deformation in central Turkey has led to crustal thickening and uplift to produce the Anatolian Plateau followed by westward extrusion of terranes by strike–slip. Widespread volcanism has accompanied this latter (neotectonic) phase, and palaeomagnetic study of the volcanism shows a coherent record of differential block rotations, indicating that the Anatolian region is not a plate (or ‘platelet’) sensu stricto but is undergoing distributed internal deformation. To evaluate the scale of neotectonic rotations in the transition zone near the western limit of tectonic escape and the border of the extensional domain in central-west Turkey, we have studied the palaeomagnetism at 82 sites in volcanic suites distributed along a 140-km lineament with north–south trend and ranging in age from 18 to 8 Ma. Comparable deflection of magnetic remanence from the present field direction is identified along the full length of the lineament. A mean clockwise rotation of 12.3±4.2° is determined for this western sector of the Anatolian strike–slip province. Since similar rotations are observed in the youngest and oldest units, this cumulative rotation occurred after the late Miocene. When interpreted together with results elsewhere in Anatolia, it is inferred that the rotation is later than crustal thickening and uplift of the Anatolian Plateau and entirely a facet of the tectonic escape. Inclinations are mostly 10° shallower than the predicted Miocene field and are considered to reflect the presence of a persistent inclination anomaly in the Mediterranean region. Larger rotations departing from the regional trend are also observed within the study region, but are confined to the vicinity of major faults, notably those bounding the Afyon-Ak ehir Graben.The pattern of neotectonic declinations across Anatolia identifies strong anticlockwise rotation in the east near the Arabian pincer with progressive reduction in the amount of rotation towards the west; it becomes zero or slightly clockwise at the western extremity of the accreted terrane collage. Rotations also appear to become generally younger towards the south. Crustal deformation has therefore been distributed, and the net effect of terrane extrusion to the west and south has been to expand the curvature of the Tauride Arc. The westward radial expansion of the extruded terranes is inferred to combine with backroll on the Hellenic Arc to produce the contemporary extensional province in western Turkey.  相似文献   

16.
The Gran Sasso range is a striking salient formed by two roughly rectilinear E–W and N–S limbs. In the past 90° counterclockwise (CCW) rotations from the eastern Gran Sasso were reported [Tectonophysics 215 (1992) 335], suggesting west–east increase of rotation-related northward shortening along the E–W limb. In this paper, we report on paleomagnetic data from Meso-Cenozoic sedimentary dykes and strata cropping out at Corno Grande (central part of the E–W Gran Sasso limb), the highest summit of the Apennine belt. Predominant northwestward paleomagnetic declinations (in the normal polarity state) from both sedimentary dykes and strata are observed. When compared to the expected declination values for the Adriatic foreland, our data document no thrusting-related rotation at Corno Grande. The overall paleomagnetic data set coupled with the available geological information shows that the Gran Sasso arc is in fact a composite structure, formed by an unrotated-low shortening western (E–W trending) limb and a strongly CCW rotated eastern salient. Late Messinian and post-early Pliocene shortening episodes documented along the Gran Sasso front indicate that belt building and arc formation occurred during two distinct episodes. We suggest that the southern part of a late Messinian N–S front was reactivated during early–middle Pliocene time, forming a tight range salient due to CCW rotations and differential along-front shortening rates. The formation of a northward displacing bulge in an overall NW–SE chain is likely a consequence of the collision between the Latium-Abruzzi and Apulian carbonate platforms during northeastward propagation of the Apennine wedge, inducing lateral northward extrusion of Latium-Abruzzi carbonates towards ductile basinal sediment areas.  相似文献   

17.
280 core samples were collected from Upper Jurassic, Cretaceous and Eocene sediments outcropping in the Istria peninsula (Yugoslavia). Due to the very low intensities of the initial natural remanent magnetizations, more than 50% of the collection, consisting mainly of rock samples of Jurassic and Eocene sediments, was not suitable for paleomagnetic studies.The Cretaceous samples yield a mean paleomagnetic pole (lat. 53°, long. 275° and α95 = 4.8°), which is significantly different from the African and European paleomagnetic poles of the same age. The position of the Istria peninsula on the autochthonous Adriatic platform allows the result to be interpreted as applicable to all the autochthonous Periadriatic region. This new paleomagnetic result indicates that the autochthonous Adriatic platform rotated counterclockwise over an angle of about 30° with respect to Africa in post-Mesozoic times.  相似文献   

18.
A deflection of the fault controlled southwestern coastline of Vancouver Island suggests the presence of a minor orocline, with a Southern Crustal Block (south of Barkley Sound–Alberni Inlet) rotated 20° counterclockwise relative to a Northern Fixed Crustal Block about a pole of rotation located northeast of Port Alberni. In this paper two models of orocline development, one of pure block rotation and one of pure bending, are proposed. The predictions of these models are tested against available geological maps, structural orientation data, identified regions of extension and contraction, and paleomagnetic data. Structural orientation and paleomagnetic data are consistent with 18° of post-Late Cretaceous counter clockwise rotation of the Southern Crustal Block relative to the Northern Fixed Crustal Block. A southward increase in the magnitude of rotation evident in the structural orientation data argues for a model of bending. Both bending and block rotation models predict the development of a zone of contraction along the northeast margin of the Southern Crustal Block, coincident with the location of the Eocene Cowichan fold-and-thrust belt, that diminishes northward toward the pole of rotation. As predicted, the fold-and-thrust belt is characterized by a northerly decrease in the amount of shortening, from >30% at the south end of the thrust belt, to 0% shortening north of Port Alberni. The northerly decrease in shortening is complemented by a north to south change in structural style from cylindrical to conical folds, and finally to planar, undeformed strata. The model of block rotation predicts the presence of a zone of extension extending southwest from the zone of rotation, coincident with the location of Eocene extensional structures within Barkley Sound and with horst and graben structures in the offshore Eocene to Miocene Tofino basin. Extension is less than predicted by a model of pure block rotation and suggests that much of the oroclinal rotation was accommodated by bending. Timing constraints indicate that orocline development was coeval with, and resulted from, the Eocene accretion of seamounts of the Crescent terrane. These findings demonstrate that oroclinal orogeny, the buckling of a linear crustal beam about vertical axes of rotation, can significantly impact the geometry, structure and character of an orogenic belt, even where the buckles are minor (<20° of rotation).  相似文献   

19.
Early Paleozoic paleomagnetic data from NW Argentina and Northern Chile have shown large systematic rotations within two domains: one composed of the Western Puna that yields very large (up to 80°) counter-clockwise rotations, and the other formed by the Famatina Ranges and the Eastern Puna that shows (~40°) clockwise rotations around vertical axes. In several locations, lack of significant rotations in younger rocks constrains this kinematic pattern to have occurred during the Paleozoic. Previous tectonic models have explained these rotations as indicative of rigid-body rotations of large para-autochthonous crustal blocks or terranes. A different but simple tectonic model that accounts for this pattern is presented in which rotations are associated to crustal shortening and tectonic escape due to the collision of the allochthonous terrane of Precordillera in the Late Ordovician. This collision should have generated dextral shear zones in the back arc region of the convergent SW Gondwana margin, where systematic domino-like clockwise rotations of small crustal blocks accommodate crustal shortening. The Western Puna block, bordering the Precordillera terrane to the north, might have rotated counterclockwise as an independent microplate due to tectonic escape processes, in a fashion similar to the present-day relationship between the Anatolia block and the Arabian microplate.  相似文献   

20.
We are reporting the first paleomagnetic results from the Podhale Flysch, which crops out in the area between the Pieniny Klippen Belt and the Tatra Mts., where claystones and mudstones were drilled at 10 localities, mainly from subhorizontal strata. In all cases, the magnetic fabric was found to be typical of undeformed sediments, with well developed magnetic lineation (aligned with the sedimentary transport direction) at some of the localities; the dominant magnetic mineral was identified as magnetite, accompanied by iron sulphides. For six of the localities, with one exception for those with poorly developed lineation, we obtained statistically well-defined paleomagnetic mean directions, on AF or on combined AF and thermal demagnetization.The overall-mean paleomagnetic direction is D=298° 1=53° k=121, a95=6°, in tectonic coordinates. Similar direction was observed for Inner Carpathian flysch from the Levoča basin (Slovakia). We conclude, that the flysch of the two basins must have travelled a few hundred kilometres to the North, after the early Miocene tectonic phase: this displacement was accompanied by about 60° counterclockwise rotation with respect to Stable Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号