首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
This paper describes the numerical simulation of two dynamic centrifuge tests on reduced scale models of shallow tunnels in dry sand, carried out using both an advanced bounding surface plasticity constitutive soil model and a simple Mohr–Coulomb elastic-perfectly plastic model with embedded nonlinear and hysteretic behaviour. The predictive capabilities of the two constitutive models are assessed by comparing numerical predictions and experimental data in terms of accelerations at several positions in the model, and bending moment and hoop forces in the lining. Computed and recorded accelerations match well, and a quite good agreement is achieved also in terms of dynamic bending moments in the lining, while numerical and experimental values of the hoop force differ significantly with one another. The influence of the contact assumption between the tunnel and the soil is investigated by comparing the experimental data and the numerical results obtained with different interface conditions with the analytical solutions. The overall performance of the two models is very similar indicating that at least for dry sand, where shear-volumetric coupling is less relevant, even a simple model can provide an adequate representation of soil behaviour under dynamic conditions.  相似文献   

2.
A numerical Round Robin on tunnels under seismic actions   总被引:3,自引:0,他引:3  
Although the seismic behaviour of shallow circular tunnels in soft ground is generally safer than aboveground structures, some tunnels were recently damaged during earthquakes. In some cases, damage was associated with strong ground shaking and site amplification, which increased the stress level in the tunnel lining. Pseudo-static and simplified dynamic analyses enable to assess transient changes in internal forces during shaking. Nevertheless, experimental evidences of permanent changes in internal loads in the tunnel lining would suggest that a full dynamic analysis including plastic soil behaviour should be performed when modelling the dynamic interaction between the tunnel and the ground. While sophisticated numerical methods can be used to predict seismic internal forces on tunnel structures during earthquakes, the accuracy of their predictions should be validated against field measurements, but the latter are seldom available. A series of centrifuge tests were therefore carried out at the University of Cambridge (UK) on tunnel models in sand, in the framework of a research project funded by the Italian Civil Protection Department. A numerical Round Robin on Tunnel Tests was later promoted among some research groups to predict the observed behaviour by means of numerical modelling. In this paper, the main results of five selected numerical predictions are summarized and compared with the experimental results.  相似文献   

3.
Numerical prediction of tunnel performance during centrifuge dynamic tests   总被引:2,自引:1,他引:1  
In this paper, a comparison between numerical analyses and centrifuge test results relative to the seismic performance of a circular tunnel is provided. The considered experimental data refer to two centrifuge tests performed at Cambridge University, aimed at investigating the transverse dynamic behaviour of a relatively shallow tunnel located in a sand deposit. For the same geometry, different soil relative densities characterise the two tests. The four seismic actions considered, of the pseudo-harmonic type, are characterised by increasing intensity. The 2D numerical analyses were performed adopting an advanced soil constitutive model implemented in a commercial finite element code. The comparison between numerical simulations and measurements is presented in terms of acceleration histories and Fourier spectra as well as of profiles of maximum acceleration along free-field and near-tunnel verticals. In addition, loading histories of normal stress and bending moments acting in the tunnel lining were considered. In general, very good agreement was found with reference to the ground response analyses, while a less satisfactory comparison between observed and predicted results was obtained for the transient and permanent loadings acting in the lining, as discussed in the final part of the paper.  相似文献   

4.
A series of dynamic centrifuge tests were conducted on square aluminum model tunnels embedded in dry sand. The tests were carried out at the Schofield Centre of the Cambridge University Engineering Department, aiming to investigate the dynamic response of these types of structures. An extensive instrumentation scheme was employed to record the soil-tunnel system response, which comprised of miniature accelerometers, total earth pressures cells and position sensors. To record the lining forces, the model tunnels were strain gauged. The calibration of the strain gauges, the data from which was crucial to furthering our understanding on the seismic performance of box-type tunnels, was performed combining physical testing and numerical modelling. This technical note summarizes this calibration procedure, highlighting the importance of advanced numerical simulation in the calibration of complex construction models.  相似文献   

5.
This paper examines the effect of the stress disturbance induced by tunnel construction on the completed tunnel’s seismic response. The convergence-confinement method is used to simulate the tunnel construction prior to the dynamic analysis. The analysis is performed using the finite element method and drained soil behaviour is simulated with an advanced multi-mechanism elastoplastic model, utilising parameters derived from laboratory testing of Toyoura sand. The response of the soil and of the lining during dynamic loading is studied. It is shown that stress disturbance due to tunnel construction may significantly increase lining forces induced by earthquake loading, and Wang’s elastic solution appears to underestimate the increase.  相似文献   

6.
A numerical model of a centrifuge experiment on tunnel located in sand is being presented. The experiment was carried out under seismic loading using a dynamic actuator. The responses of the tunnel and of the sand were measured. The numerical model is based on a hypoplastic constitutive model with intergranular strains implemented in the FE-code TOCHNOG. The calculated accelerations in the sand match the measured results, while the surface settlement and the bending moments in the tunnel lining are only qualitatively reproduced by the numerical model.  相似文献   

7.
The paper summarizes the numerical simulation of the round robin numerical test on tunnels performed in Aristotle University of Thessaloniki. The main issues of the numerical simulation are presented along with representative comparisons of the computed response with the recorded data. For the simulation, the finite element method is implemented, using ABAQUS. The analyses are performed on prototype-scale models under plane strain conditions. While the tunnel behavior is assumed to be elastic, the soil nonlinear behavior during shaking is modeled using a simplified kinematic hardening model combined with a von Mises failure criterion and an associated plastic flow rule. The model parameters are adequately calibrated using available laboratory test results for the specific fraction of sand. The soil–tunnel interface is also accounted and simulated adequately. The effect of the interface friction on the tunnel response is investigated for one test case, as this parameter seems to affect significantly the tunnel lining axial forces. Finally, the internal forces of the tunnel lining are also evaluated with available closed-form solutions, usually used in the preliminary stages of design and compared with the experimental data and the numerical predictions. The numerical analyses can generally reproduce reasonably well the recorded response. Any differences between the experimental data and the numerical results are mainly attributed to the simplification of the used model and to differences between the assumed and the actual mechanical properties of the soil and the tunnel during the test.  相似文献   

8.
采用FLAC3D软件建立了交叉隧道的三维有限差分模型,以人工数定激励力模拟列车荷载,计算列车动荷载作用下土体的变形和应力。采用修正动偏应力长期沉降计算模型,结合分层总和法计算软土的沉降,预测交叉隧道的长期沉降规律。分析3种不同行车工况下地基长期沉降,工况1为一辆列车单独通过1#隧道,工况2为一辆列车单独通过2#隧道,工况3为两辆列车同时通过1#和2#隧道。对比不同的列车行驶速度、隧道衬砌刚度及厚度对隧道地基的长期影响。结果表明,由列车荷载引起的地基沉降主要集中在距隧道中心轴20 m范围内;在工况3下土体沉降大于工况1、2沉降之和;车速越快,沉降越小;衬砌刚度和厚度越小,沉降越大,且衬砌厚度对沉降的影响较大,衬砌刚度影响较小。  相似文献   

9.
楼云锋  杨颜志  金先龙 《岩土力学》2014,35(7):2095-2102
为研究浅埋输水隧道内部流体对隧道地震响应的影响,考虑黏弹性人工边界、土壤的非线性、隧道结构刚度有效率及流-固耦合作用,建立了双线隧道-土体-流体相互耦合作用的力学模型。通过刚度折减试验得到衬砌环环向、径向、轴向刚度,进而引入正交各向异性连续材料作为衬砌材料模型。采用基于任意拉格朗日-欧拉(ALE)描述法的流-固耦合方法,对上海某大直径双线输水隧道在流体作用下的地震响应进行了分析。通过与等效密度法对比,验证耦合模型对于处理输水隧道多物质非线性耦合抗震问题的可行性。计算结果表明,在水平方向地震激励下,无论一致激励或是非一致激励流体对隧道地震变形和内力都有较大影响,但对位移影响较小;对于不同隧道内水量,隧道弯矩均集中于衬砌隧道45°交叉斜线位置;相比于一致激励,非一致激励增强隧道地震位移和变形响应是明显的。  相似文献   

10.
Failure of retaining walls during earthquakes has occurred many times in the past. Although significant progress has been made in analysing the seismic response of rigid gravity type retaining walls, considerable difficulties still exist in the seismic-resistant design of the flexible cantilever type of retaining walls because of the complex nature of the dynamic soil–structure interaction. In this paper the seismic response of cantilever retaining walls with dry backfill is simulated using centrifuge modelling and numerical modelling. It is found that bending moments on the wall increased significantly during an earthquake. After the end of base shaking, the residual moment on the wall was significantly higher than the moment under static loading. The numerical simulation is able to model quite accurately the main characteristics of acceleration, bending moment, and displacement recorded in the centrifuge test.  相似文献   

11.
马险峰  陈斌  田小芳  王俊淞 《岩土力学》2012,33(12):3604-3610
随着地铁网络不断完善,越来越多的新建盾构隧道近距离穿越既有隧道,然而对于盾构隧道近距离穿越既有隧道影响的研究尚不够完善。以上海典型软弱地层为背景,通过离心模型试验,研究了不同注浆率下的盾构上穿越施工对既有隧道以及周围地层的影响。选用排液法在离心场中模拟盾构施工,在不停机状态下成功模拟隧道开挖卸载、地层损失和注浆效应。分析了在不同的注浆率条件下,既有隧道在上穿越施工期和工后长期的位移、周围孔压和纵向应力的变化规律。试验结果表明,新建隧道近距离上穿越既有隧道时,隧道开挖的卸载效应等会导致既有隧道的隆起,但随着注浆率增大,既有隧道的隆起量减小。但过高注浆率对周围土体扰动较大,从而导致工后既有隧道的沉降也越大。  相似文献   

12.
This paper presents an analytical solution for the prediction of internal forces and displacements of a jointed segmental precast circular tunnel lining. The effects of joint stiffness on the performance of the tunnel lining are discussed. The ‘force method’ is used to determine the internal forces and displacements of jointed tunnel lining. Five shield‐driven tunnel cases are adopted to study the effects of joint stiffness, soil resistance, joint distribution and joint number on the internal forces and displacements of circular tunnels. Laboratory model tests are conducted to verify the proposed analytical solution. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Based on previous experimental findings and theoretical developments, this paper presents the formulation and numerical algorithms of a novel constitutive model for sand with special considerations for cyclic behaviour and accumulation of large post-liquefaction shear deformation. Appropriate formulation for three volumetric strain components enables the model to accurately predict loading and load reversal behaviour of sand, fully capturing the features of cyclic mobility. Compliance with the volumetric compatibility condition, along with reversible and irreversible dilatancy, allows for physically based simulation of the generation and accumulation of shear strain at zero effective stress after initial liquefaction. A state parameter was incorporated for compatibility with critical state soil mechanics, enabling the unified simulation of sand at various densities and confining pressures with a same set of parameters. The determination methods for the 14 model parameters are outlined in the paper. The model was implemented into the open source finite-element framework OpenSees using a cutting-plane stress integration scheme with substepping. The potentials of the model and its numerical implementation were explored via simulations of classical drained and undrained triaxial experiments, undrained cyclic torsional experiments, and a dynamic centrifuge experiment on a single pile in liquefiable soil. The results showed the model’s great capabilities in simulating small to large deformation in the pre- to post-liquefaction regime of sand.  相似文献   

14.
Measurements on a 14.5‐m diameter bored tunnel have shown that the mechanised assembly of a segmented tunnel lining results in a permanent longitudinal bending moment in the tunnel lining. An analytical model for the beam action of the tunnel lining during the construction phase of bored tunnels is presented. The model incorporates many of the essentials in staged beam construction. It takes into account the influence of forces from the TBM, the loading of the tunnel lining by the grout in the liquid phase, and linear elastic properties of the tunnel lining and soil. Calculations are compared with measurements at the Groene Hart Tunnel (GHT), 20 km south of Amsterdam: the bending moment curve and vertical inclination of tunnel lining segments were compared. The measured bending moment curve is well reproduced. The measured vertical inclination of the lining segments is found to be governed by the beam action of the tunnel lining plus the influence of shear force in the lining. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Numerical modeling of the effects of explosions relies on suitable material models appropriate for large deformation problems. Available results of a wide range of static and dynamic tests on Nevada #120 sand, completed as part of an earlier project (VELACS), were utilized to calibrate a numerical model for sand, suitable for modeling surface explosions. A fully-coupled Euler–Lagrange Interaction was utilized to correctly model pressures created by the explosion simultaneously with the large deformations in the soil. The model was used to study two cases – the first with a 2-D axisymmetric case of crater formation; and the second with a 3-D case of surface explosion above an underground tunnel. The results of numerical analyses were found to closely match those from other analyses, field tests, and centrifuge model tests.  相似文献   

16.
Appropriate evaluation of shear modulus and damping characteristics of soils subjected to dynamic loading is key to accurate seismic response analysis and soil modeling programs. Dynamic centrifuge experiments were conducted at C-CORE (Memorial University of Newfoundland) centrifuge center to investigate the dynamic properties and seismic response of soft clay and dry loose sand strata. Soft clay with shear strength of about 30 kPa and well graded silica sand at about 35% relative density were employed in a rigid container to simulate local site effects. Several earthquake-like shaking events were applied to the model to evaluate variation of shear modulus and damping ratio with shear strain amplitude and confining pressure, and to assess their effects on site response. The estimated modulus reduction and damping ratio were compared to the predictions of empirical formulae and resonant column tests for both soft clay and loose sand. The evaluated shear modulus and damping ratio were found to be dependent on confining pressure in both soil types. Modulus variation in both soils agreed well with the empirical curves and resonant column test results. However, the sand modulus values were slightly higher than the empirical relations and resonant column tests. This discrepancy is attributed to higher stress and densification of sand during large amplitude shaking applied to the model. The damping ratio at shear strains lower than 0.5% was in reasonable agreement with the empirical curves and the resonant column tests in both clay and sand models, but was generally higher at shear strain larger than 0.5%.  相似文献   

17.
《Computers and Geotechnics》2006,33(4-5):234-247
For shield-driven tunnels, the influence of the soil and grout material properties and of the cover depth on the surface settlements, the loading and deformation of the tunnel lining and the steering of the TBM is investigated numerically. To this end, comparative numerical simulations of a mechanised tunnel advance in homogeneous, overconsolidated, soft, cohesive soil below the ground water table are performed and sensitivities are evaluated. The advancement of the step-by-step tunnel construction process is modelled using a three-dimensional finite element model, which takes into account all relevant components of shield tunnelling. The material behaviour of the saturated soil and the tail void grout is modelled by a two-field finite element formulation in conjunction with an elasto-plastic Cam-Clay model for the soil and a hydration-dependent constitutive model for the grout. The analyses provide valuable information with regard to the significance of the investigated parameters and demonstrate the complexity of the various interactions in shield tunnelling.  相似文献   

18.
不同埋置深度的山岭隧道地震响应分析   总被引:2,自引:0,他引:2  
蒋树屏  方林  林志 《岩土力学》2014,35(1):211-216
根据大量震害资料的调查分析发现,地下结构埋置深度对其地震破坏程度影响很大。通过有限元方法计算8种不同埋置深度条件下的山岭隧道地震响应,并对计算模型的地震输入方法进行了验证,证明地震波输入处理方式的合理性。讨论埋深对结构动力响应的影响,提取衬砌关键节点的竖直向和水平向加速度、位移峰值,分析随着埋深的增大,加速度和位移峰值的变化情况,并以拱顶为例,计算每个埋深变化段的加速度和位移峰值变化率,得到了一定的规律性,如埋置深度从5 m增大到50 m,衬砌结构动力响应峰值大小下降较快。此外,还分析了埋深增大对衬砌结构内力峰值的影响。最后,提出在高烈度地震区修建隧道时其埋置深度尽可能不小于50 m,这为相关工程的修建提供了参考依据。  相似文献   

19.
A series of centrifuge shaking table model tests are conducted on 4?×?4 pile groups in liquefiable ground in this study, achieving horizontal–vertical bidirectional shaking in centrifuge tests on piles for the first time. The dynamic distribution of forces on piles within the pile groups is analysed, showing the internal piles to be subjected to greater bending moment compared with external piles, the mechanism of which is discussed. The roles of superstructure–pile inertial interaction and soil–pile kinematic interaction in the seismic response of the piles within the pile groups are investigated through cross-correlation analysis between pile bending moment, soil displacement, and structure acceleration time histories and by comparing the test results on pile groups with and without superstructures. Soil–pile kinematic interaction is shown to have a dominant effect on the seismic response of pile groups in liquefiable ground. Comparison of the pile response in two tests with and without vertical input ground motion shows that the vertical ground motion does not significantly influence the pile bending moment in liquefiable ground, as the dynamic vertical total stress increment is mainly carried by the excess pore water pressure. The influence of previous liquefaction history during a sequence of seismic events is also analysed, suggesting that liquefaction history could in certain cases lead to an increase in liquefaction susceptibility of sand and also an increase in dynamic forces on the piles.  相似文献   

20.
胡垚  雷华阳  雷峥  刘英男 《岩土力学》2022,43(Z2):104-116
叠交隧道是涉及隧道之间、隧道与土体相互作用的复杂体系,其安全性将严重影响城市轨道交通建设。目前,对于叠交隧道振动台试验的研究集中在水平平行和交叉叠交隧道、单向和双向地震动输入。鉴于此,利用自行设计的层状三向剪切模型箱,对竖直平行叠交隧道开展三向地震作用下的振动台模型试验,研究地基土−叠交隧道模型体系动力特性、地基土加速度、叠交隧道加速度、地表沉降、地基土孔压、叠交隧道动土压力及叠交隧道应变等地震响应。结果表明:随着震波峰值加速度(peak ground acceleration,简称PGA)依次增加,地基土−叠交隧道模型体系的自振频率随之减小,而阻尼比随之增大;叠交隧道周围地基土加速度和孔压的梯度差随着地震波PGA的增大而增大,且上隧道周围梯度差比下隧道更大;地基土对加速度的放大效应随着地震波PGA的增大而减弱;相同地震波作用下,相同位置处的叠交隧道加速度傅里叶谱形状相似,但幅值随着地震波PGA的增大而增大。此外,与顶部和底部位置相比,腰部位置加速度傅里叶谱频段范围变宽,幅值峰值有所降低;地表沉降峰值随着地震波PGA的增大而减小,相比地基土两侧位置,中心位置的沉降峰值明显较小;地震波的类型对叠交隧道动土压力峰值和应变峰值影响较小;对于动土压力峰值,两隧道的最大值均为腰部,而上、下隧道的最小值分别为底部、顶部;对于应变峰值,上隧道在腰部明显大于顶部和底部,而下隧道在4个位置相差不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号