首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The number of larger tunnels in seismic regions has grown significantly over the last decades. The behaviour of tunnels under seismic actions may be assessed using simplified or more complex approaches. Plane–strain centrifuge tests with dynamic loading on a model tunnel are used as experimental benchmark on the seismic behaviour of tunnels, with the ultimate aim of calibrating numerical and analytical design methods. Two models with dry uniform fine sand were prepared at two different densities, in which an aluminium-alloy tube was installed. This paper describes the numerical simulation of these tests with an elastoplastic model. The tunnel response recorded in the centrifuge tests is compared with the numerical prediction, showing the evolution of accelerations and internal forces along the tunnel lining during the model earthquakes. In general, the numerical simulation diverges from the recorded at the centrifuge tests. The numerical simulation largely amplifies the motion at the fundamental frequency of the soil deposit, while this effect is not significant in the centrifuge tests. It is shown that the peak increments in lining forces during dynamic loading measured in the centrifuge test disagree with the values from the numerical simulation and from the Wang’s elastic solution. The divergence observed between simulation and centrifuge tests may result mainly from the real initial stiffness of the sand in the centrifuge tests which are lower than those measured in laboratory tests and to the insufficient knowledge of all relevant stress paths to be imposed to soil for the calibration of model parameters.  相似文献   

2.
The paper summarizes the numerical simulation of the round robin numerical test on tunnels performed in Aristotle University of Thessaloniki. The main issues of the numerical simulation are presented along with representative comparisons of the computed response with the recorded data. For the simulation, the finite element method is implemented, using ABAQUS. The analyses are performed on prototype-scale models under plane strain conditions. While the tunnel behavior is assumed to be elastic, the soil nonlinear behavior during shaking is modeled using a simplified kinematic hardening model combined with a von Mises failure criterion and an associated plastic flow rule. The model parameters are adequately calibrated using available laboratory test results for the specific fraction of sand. The soil–tunnel interface is also accounted and simulated adequately. The effect of the interface friction on the tunnel response is investigated for one test case, as this parameter seems to affect significantly the tunnel lining axial forces. Finally, the internal forces of the tunnel lining are also evaluated with available closed-form solutions, usually used in the preliminary stages of design and compared with the experimental data and the numerical predictions. The numerical analyses can generally reproduce reasonably well the recorded response. Any differences between the experimental data and the numerical results are mainly attributed to the simplification of the used model and to differences between the assumed and the actual mechanical properties of the soil and the tunnel during the test.  相似文献   

3.
闫高明  申玉生  高波  郑清  范凯祥  黄海峰 《岩土力学》2019,40(11):4450-4458
数次大地震震害调查表明,隧道穿越断层处是受地震破坏较为严重的区域。为此,基于地震动能量的传播与释放特征,建立了一种穿越断层隧道结构抗减震的设计理念,并提出了一种穿越断层隧道节段接头形式。以跨断层龙溪隧道为依托,采用振动台模型试验研究了单一错动方式与断层错动-震动综合加载方式下带有接头的衬砌结构响应。研究结果证明:强震作用下,地震波对穿越断层隧道的影响是不可忽略的,断层错动-震动综合加载方式是合理的;新型接头能够自身适应性变形协调减轻隧道结构震害,节段间接头的设置改变了隧道的变形形态,提高隧道整体抗震能力;同时减小了衬砌的环向破坏,消弱了节段间地震力的传递,实现了衬砌震害的局部化。由于接头的设置,上盘隧道结构震害集中在距断层1.8倍洞径的范围内,下盘处隧道衬砌震害集中在距断层1.2倍洞径范围内;上盘的衬砌震害主要是由错动-震动联合作用造成的,而下盘衬砌震害主要受地震动的影响。  相似文献   

4.
Underground structures are well known to be earthquake resistant. However, the recent earthquakes showed that underground structures are also vulnerable to seismic damage. There may be several reasons such as high ground motions and permanent ground movements. This study attempts to describe various forms of damage to underground structures such as tunnels, caverns, natural caves and abandoned mines during major earthquakes. Results of various model tests on shaking table are also presented to show the effect of ground shaking on the response and collapse of underground structures in continuum and discontinuum. Furthermore, some empirical equations are proposed to assess the damage to underground structures, which may be useful for quick assessments of possible damage.  相似文献   

5.
Severe cases of damages of mountain tunnels following 1995 Hyogoken-Nanbu (Japan), 1999 Chi-Chi (Taiwan), 2004 Mid-Niigata Prefecture (Japan) and 2008 Wenchuan (China) earthquakes have challenged the traditional belief of tunnel structures being seldom damaged in seismic events. These experiences are a reminder that seismic behaviour of mountain tunnels must be further studied in detail. Such investigations assume greater significance as more number of tunnels are being planned to be constructed to meet the infrastructural needs of mountainous regions all around the world. In this paper, seismic damages of mountain tunnels have been reviewed. Prominent failure patterns have been identified based on the case histories of damages. Damages in the form of cracking of tunnel lining, portal cracking, landslide induced failures, uplift of bottom pavement, failures of sidewalls, shearing failure of tunnel liner and spalling of concrete have been majorly observed. Based on the damage patterns and earthquake data, main factors leading to instabilities have been discussed. Probable failure mechanisms of mountain tunnels under seismic loading conditions have been explained. Seismic analyses of a circular lined tunnel in blocky rock mass have been carried out through discrete element based approach. The significant role of different seismic parameters like frequency, peak ground acceleration has been identified. Moreover, effect of tunnel depth on the seismic response of tunnels has been investigated. It is believed that the present study will help in advancing the present state of understanding with regard to the behavior of tunnels under seismic conditions.  相似文献   

6.
This paper describes the numerical simulation of two dynamic centrifuge tests on reduced scale models of shallow tunnels in dry sand, carried out using both an advanced bounding surface plasticity constitutive soil model and a simple Mohr–Coulomb elastic-perfectly plastic model with embedded nonlinear and hysteretic behaviour. The predictive capabilities of the two constitutive models are assessed by comparing numerical predictions and experimental data in terms of accelerations at several positions in the model, and bending moment and hoop forces in the lining. Computed and recorded accelerations match well, and a quite good agreement is achieved also in terms of dynamic bending moments in the lining, while numerical and experimental values of the hoop force differ significantly with one another. The influence of the contact assumption between the tunnel and the soil is investigated by comparing the experimental data and the numerical results obtained with different interface conditions with the analytical solutions. The overall performance of the two models is very similar indicating that at least for dry sand, where shear-volumetric coupling is less relevant, even a simple model can provide an adequate representation of soil behaviour under dynamic conditions.  相似文献   

7.
Over the past few years, accompanied by big and frequent earthquakes, more attention was paid to the tunnel earthquake resistance. To reduce tunnel seismic damage and explore the reasonable aseismic measures, the tunnel earthquake disaster investigation was employed to analyze and summarize the tunnel seismic damage on the basis of Wenchuan earthquake. Fifty-two tunnels near the epicenter of Sichuan Province were investigated: Only 7 tunnels did not show structure damage, 6 tunnels suffered the most serious damage, and the rest appeared damage to various extents. It indicates that most serious seismic damage happens to fault fracture zone, followed by entrance and common section of the tunnel. Additionally, the results display that the typical seismic damage of tunnels is lining cracking, collapsing, dislocation, construction joints cracking, and uplifting of invert, and usually lining cracking and collapsing account for a larger proportion. Therefore, the tunnel aseismic design should emphasize the fault fracture zone and tunnel entrance. Tunnel design should adopt the composite lining structure with shock absorber and whole chain alternative grouting to prevent the lining cracking and collapsing in the seismic fortification zone.  相似文献   

8.
Residential RC framed structures suffered heavily during the 2001 Bhuj earthquake in Gujarat, India. These types of structures also saw severe damage in other earthquakes such as the 1999 Kocaeli earthquake in Turkey and 921 Ji-Ji earthquake in Taiwan. In this paper the seismic response of residential structures was investigated using physical modelling. Idealised soft storey and top heavy, two degrees of freedom (2DOF) portal frame structures were developed and tested on saturated and dry sand models at 25 g using the Schofield Centre 10-m Beam Centrifuge. It was possible to recreate observed field behaviour using these models. As observed in many of the recent earthquakes, soft storey structures were found to be particularly vulnerable to seismic loads. Elastic response spectra methods are often used in the design of simple portal frame structures. The seismic risk of these structures can be significantly increased due to modifications such as removal of a column or addition of heavy water tanks on the roof. The experimental data from the dynamic centrifuge tests on such soft storey or top-heavy models was used to evaluate the predictions obtained from the response spectra. Response spectra were able to predict seismic response during small to moderate intensity earthquakes, but became inaccurate during strong earthquakes and when soil structure interaction effects became important. Re-evaluation of seismic risk of such modified structures is required and time domain analyses suggested by building codes such as IBC, UBC or NEHRP may be more appropriate.  相似文献   

9.
水底隧道饱水地层衬砌作用荷载研究   总被引:3,自引:1,他引:2  
张志强  何本国  何川 《岩土力学》2010,31(8):2465-2470
与山岭隧道所不同,采用矿山法修建水底隧道,二次衬砌将承受很大外水压力,特别是穿越饱水破碎地层时,具有很大的施工风险。以厦门翔安海底隧道为工程背景,针对F4风化深槽地层,研究不同水位条件下,衬砌荷载与排放流量及排放方式之间相关关系。研究得出:当控制排放量为全排条件流量1/3左右时,可卸掉80%外水压力;从环境和经济角度考虑,可将出现拐点折减系数0.2作为水底隧道限量排放的设计基准值;从支护结构体系组成考虑,对于F4强风化深槽破碎围岩,必须施作注浆圈,才可以保证在水压、土压共同作用下衬砌结构安全,结果显示施作注浆圈能够减少衬砌作用荷载30%~40%,提高安全系数几乎一倍;从主体结构受力特征看,水底隧道最不利受力位置在墙脚和仰拱,因此,无论是防水型还是排水型隧道,均应对仰拱形式及支护参数加强设计。  相似文献   

10.
不同埋置深度的山岭隧道地震响应分析   总被引:2,自引:0,他引:2  
蒋树屏  方林  林志 《岩土力学》2014,35(1):211-216
根据大量震害资料的调查分析发现,地下结构埋置深度对其地震破坏程度影响很大。通过有限元方法计算8种不同埋置深度条件下的山岭隧道地震响应,并对计算模型的地震输入方法进行了验证,证明地震波输入处理方式的合理性。讨论埋深对结构动力响应的影响,提取衬砌关键节点的竖直向和水平向加速度、位移峰值,分析随着埋深的增大,加速度和位移峰值的变化情况,并以拱顶为例,计算每个埋深变化段的加速度和位移峰值变化率,得到了一定的规律性,如埋置深度从5 m增大到50 m,衬砌结构动力响应峰值大小下降较快。此外,还分析了埋深增大对衬砌结构内力峰值的影响。最后,提出在高烈度地震区修建隧道时其埋置深度尽可能不小于50 m,这为相关工程的修建提供了参考依据。  相似文献   

11.
胡垚  雷华阳  雷峥  刘英男 《岩土力学》2022,43(Z2):104-116
叠交隧道是涉及隧道之间、隧道与土体相互作用的复杂体系,其安全性将严重影响城市轨道交通建设。目前,对于叠交隧道振动台试验的研究集中在水平平行和交叉叠交隧道、单向和双向地震动输入。鉴于此,利用自行设计的层状三向剪切模型箱,对竖直平行叠交隧道开展三向地震作用下的振动台模型试验,研究地基土−叠交隧道模型体系动力特性、地基土加速度、叠交隧道加速度、地表沉降、地基土孔压、叠交隧道动土压力及叠交隧道应变等地震响应。结果表明:随着震波峰值加速度(peak ground acceleration,简称PGA)依次增加,地基土−叠交隧道模型体系的自振频率随之减小,而阻尼比随之增大;叠交隧道周围地基土加速度和孔压的梯度差随着地震波PGA的增大而增大,且上隧道周围梯度差比下隧道更大;地基土对加速度的放大效应随着地震波PGA的增大而减弱;相同地震波作用下,相同位置处的叠交隧道加速度傅里叶谱形状相似,但幅值随着地震波PGA的增大而增大。此外,与顶部和底部位置相比,腰部位置加速度傅里叶谱频段范围变宽,幅值峰值有所降低;地表沉降峰值随着地震波PGA的增大而减小,相比地基土两侧位置,中心位置的沉降峰值明显较小;地震波的类型对叠交隧道动土压力峰值和应变峰值影响较小;对于动土压力峰值,两隧道的最大值均为腰部,而上、下隧道的最小值分别为底部、顶部;对于应变峰值,上隧道在腰部明显大于顶部和底部,而下隧道在4个位置相差不大。  相似文献   

12.
A series of dynamic centrifuge tests were conducted on square aluminum model tunnels embedded in dry sand. The tests were carried out at the Schofield Centre of the Cambridge University Engineering Department, aiming to investigate the dynamic response of these types of structures. An extensive instrumentation scheme was employed to record the soil-tunnel system response, which comprised of miniature accelerometers, total earth pressures cells and position sensors. To record the lining forces, the model tunnels were strain gauged. The calibration of the strain gauges, the data from which was crucial to furthering our understanding on the seismic performance of box-type tunnels, was performed combining physical testing and numerical modelling. This technical note summarizes this calibration procedure, highlighting the importance of advanced numerical simulation in the calibration of complex construction models.  相似文献   

13.
马险峰  陈斌  田小芳  王俊淞 《岩土力学》2012,33(12):3604-3610
随着地铁网络不断完善,越来越多的新建盾构隧道近距离穿越既有隧道,然而对于盾构隧道近距离穿越既有隧道影响的研究尚不够完善。以上海典型软弱地层为背景,通过离心模型试验,研究了不同注浆率下的盾构上穿越施工对既有隧道以及周围地层的影响。选用排液法在离心场中模拟盾构施工,在不停机状态下成功模拟隧道开挖卸载、地层损失和注浆效应。分析了在不同的注浆率条件下,既有隧道在上穿越施工期和工后长期的位移、周围孔压和纵向应力的变化规律。试验结果表明,新建隧道近距离上穿越既有隧道时,隧道开挖的卸载效应等会导致既有隧道的隆起,但随着注浆率增大,既有隧道的隆起量减小。但过高注浆率对周围土体扰动较大,从而导致工后既有隧道的沉降也越大。  相似文献   

14.
The main purpose of this study was to provide a three-dimensional numerical model, which would allow the tunnel lining behaviour and the displacement field surrounding the tunnel to be evaluated. Most of the processes that occur during mechanized excavation have been simulated in this model. The influence of the lining joint pattern, including segmental lining joints and their connections, has in particular been taken into consideration. The impact of the processes during mechanized excavation, such as the grouting pressure and the jacking forces in the structural forces induced in the tunnel lining, has been presented. These values depend on the tunnel advancement. However, a negligible influence of the joint pattern on the ground displacement field surrounding the tunnel has been observed. Generally, a variation in the structural forces in successive rings along the tunnel axis has been found in a staggered segmental lining, indicating the necessity of simulating the joints in the tunnel lining and using a full three-dimensional numerical model to obtain an accurate estimation. In addition, the considerable influence of the coupling effect between successive rings on the lining behaviour has been highlighted.  相似文献   

15.
白广斌  赵杰  易剑 《岩土力学》2014,35(Z2):488-494
针对某核电取水隧洞工程,采用非线性的动力分析方法,用Flac3D建立大型三维有限差分模型,模拟隧洞洞口段在场址时程地震波作用下的地震响应规律,同时通过建立隧洞洞口处回填高边坡的二维有限元模型,进行洞口边坡在地震动作用下的稳定性分析,得出其边坡滑动面位置和动力安全系数时程曲线。通过场址地震波的输入,探讨隧洞洞口及边坡的结构响应特点,得出隧洞洞口衬砌内力随地震波作用的时程变化曲线,绘制隧洞衬砌内力图,同时给出隧洞洞口段高边坡安全系数。分析结果表明,隧洞洞口抗震的薄弱部位位于隧洞拱肩及边墙位置。分析方法及结论对于隧洞的抗震设计具有一定的参考价值。  相似文献   

16.
In order to study the interdependencies between the overall lining damage indices for mountain tunnels and ground motion parameters, a total of 89 ground motion records were selected for analysis. These records were divided into three groups: (1) near-field ground motion with velocity pulses, (2) near-field ground motion without velocity pulses, and (3) far-field ground motion. Calculations of Pearson’s linear correlation coefficient have been used to clarify the grade of interrelationships between ground motion parameters. Further, nonlinear dynamic analyses were carried out on mountain tunnels to determine overall lining damage indices under seismic actions. Based on numerical results, linear correlation coefficients between ground motion parameters and overall lining damage indices for mountain tunnels were then calculated and analyzed. Overall lining damage indices were found to be highly correlated to the velocity-related seismic parameters but not so well correlated to spectra-related parameters.  相似文献   

17.
Strong earthquakes and faults have significant effect on the stability capability of underground tunnel structures. This study used a 3-Dimensional Discrete Element model and the real records of ground motion in the Wenchuan earthquake to investigate the dynamic response of tunnel-fault system. The typical tunnel-fault system was composed of one planned railway tunnel and one seismically active fault. The discrete numerical model was prudentially calibrated by means of the comparison between the field survey and numerical results of ground motion. It was then used to examine the detailed quantitative information on the dynamic response characteristics of tunnel-fault system, including stress distribution, strain, vibration velocity and tunnel failure process. The intensive tunnel-fault interaction during seismic loading induces the dramatic stress redistribution and stress concentration in the intersection of tunnel and fault. The tunnel-fault system behavior is characterized by the complicated nonlinear dynamic failure process in response to a real strong seismic event. It can be qualitatively divided into 5 main stages in terms of its stress, strain and rupturing behaviors: (1) strain localization, (2) rupture initiation, (3) rupture acceleration, (4) spontaneous rupture growth and (5) stabilization. This study provides the insight into the further stability estimation of underground tunnel structures under the combined effect of strong earthquakes and faults.  相似文献   

18.
Swelling deformations leading to convergence of tunnels may result in significant difficulties during the construction, in particular for long term use of tunnels. By extracting an experimental based explicit analytical solution for formulating swelling strains as a function of time and stress, swelling strains are predicted from the beginning of excavation and during the service life of tunnel. Results obtained from the analytical model show a proper agreement with experimental results. This closed-form solution has been implemented within a numerical program using the finite element method for predicting time-dependent swelling strain around tunnels. Evaluating effects of swelling parameters on time-dependent strains and tunnel shape on swelling behavior around the tunnel according to this analytical solution is considered. The ground-support interaction and consequent swelling effect on the induced forces in tunnel lining is considered too. Effect of delay in lining installation on swelling pressure which acting on the lining and its structural integrity, is also evaluated. A MATLAB code of “SRAP” is prepared and applied to calculate all swelling analysis around tunnels based on analytical solution.  相似文献   

19.
The vibrations of existing service tunnels induced by blast-excavation of adjacent tunnels have attracted much attention from both academics and engineers during recent decades in China. The blasting vibration velocity (BVV) is the most widely used controlling index for in situ monitoring and safety assessment of existing lining structures. Although numerous in situ tests and simulations had been carried out to investigate blast-induced vibrations of existing tunnels due to excavation of new tunnels (mostly by bench excavation method), research on the overall dynamical response of existing service tunnels in terms of not only BVV but also stress/strain seemed limited for new tunnels excavated by the full-section blasting method. In this paper, the impacts of blast-induced vibrations from a new tunnel on an existing railway tunnel in Xinjiang, China were comprehensively investigated by using laboratory tests, in situ monitoring and numerical simulations. The measured data from laboratory tests and in situ monitoring were used to determine the parameters needed for numerical simulations, and were compared with the calculated results. Based on the results from in situ monitoring and numerical simulations, which were consistent with each other, the original blasting design and corresponding parameters were adjusted to reduce the maximum BVV, which proved to be effective and safe. The effect of both the static stress before blasting vibrations and the dynamic stress induced by blasting on the total stresses in the existing tunnel lining is also discussed. The methods and related results presented could be applied in projects with similar ground and distance between old and new tunnels if the new tunnel is to be excavated by the full-section blasting method.  相似文献   

20.
Numerical prediction of tunnel performance during centrifuge dynamic tests   总被引:2,自引:1,他引:1  
In this paper, a comparison between numerical analyses and centrifuge test results relative to the seismic performance of a circular tunnel is provided. The considered experimental data refer to two centrifuge tests performed at Cambridge University, aimed at investigating the transverse dynamic behaviour of a relatively shallow tunnel located in a sand deposit. For the same geometry, different soil relative densities characterise the two tests. The four seismic actions considered, of the pseudo-harmonic type, are characterised by increasing intensity. The 2D numerical analyses were performed adopting an advanced soil constitutive model implemented in a commercial finite element code. The comparison between numerical simulations and measurements is presented in terms of acceleration histories and Fourier spectra as well as of profiles of maximum acceleration along free-field and near-tunnel verticals. In addition, loading histories of normal stress and bending moments acting in the tunnel lining were considered. In general, very good agreement was found with reference to the ground response analyses, while a less satisfactory comparison between observed and predicted results was obtained for the transient and permanent loadings acting in the lining, as discussed in the final part of the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号