首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We describe the products of the hitherto poorly known 512 AD eruption at Vesuvius, Italy. The deposit records a complex sequence of eruptive events, and it has been subdivided into eight main units, composed of stratified scoria lapilli or thin subordinate ash-rich layers. All the units formed by deposition from tephra fallout, pyroclastic density currents of limited extent being restricted to the initial stages of the eruption (U2). The main part of the deposit (U3 and U5) is characterized by a striking grain size alternation of fine to coarse lapilli, similar to that often described for mid-intensity, explosive eruptions. The erupted products have a phonotephritic composition, with progressively less evolved composition from the base to the top of the stratigraphic sequence. Based on different dispersal, sedimentological and textural features of the products, we identify five phases related to different eruptive styles: opening phase (U1, U2), subplinian phase (U3 to U5), pulsatory phreatomagmatic phase (U6), violent strombolian phase (U7) and final ash-dominated phase (U8). A DRE volume of 0.025 km3 has been calculated for the total fallout deposit. Most of the magma was erupted during the subplinian phase; lithic dispersal data indicate peak column heights of between 10 and 15 km, which correspond to a mass discharge rate (MDR) of 5 × 106 kg s−1. The lower intensity, violent strombolian phase coincided with the eruption of the least evolved magma; a peak column height of 6–9 km, corresponding to an MDR of 1 ×10 6 kg s −1, is estimated from field data. Phreatomagmatic activity played a minor role in the eruption, only contributing to the ash-rich deposits of U1, U4, U6 and U8.  相似文献   

2.
The Middle Scoria deposit represents an explosive eruption of basaltic andesite magma (54 wt. % SiO2) from Okmok volcano during mid-Holocene time. The pattern of dispersal and characteristics of the ejecta indicate that the eruption opened explosively, with ash textural evidence for a limited degree of phreatomagmatism. The second phase of the eruption produced thick vesicular scoria deposits with grain texture, size and dispersal characteristics that indicate it was violent strombolian to subplinian in style. The third eruptive phase produced deposits with a shift towards grain shapes that are dense, blocky, and poorly vesicular, and intermittent surge layers, indicating later transitions between magmatic (violent strombolian) to phreatomagmatic (vulcanian) eruptive styles. Isopach maps yield bulk volume estimates that range from 0.06 to 0.43 km3, with ~ 0.04 to 0.25 km3 total DRE. The associated column heights and mass discharge values calculated from isopleth maps of individual Middle Scoria layers are 8.5 – 14 km and 0.4 to 45 × 106 kg/s. The Middle Scoria tephras are enriched in plagioclase microlites that have the textural characteristics of rapid magma ascent and relatively high degrees of effective undercooling. Those textures probably reflect the rapid magma ascent accompanying the violent strombolian and subplinian phases of the eruption. In the later stages of the eruption, the plagioclase microlite number densities decrease and textures include more tabular plagioclase, indicating a slowing of the ascent rate. The findings on the Middle Scoria are consistent with other explosive mafic eruptions, and show that outside of the two large caldera-forming eruptions, Okmok is also capable of producing violent mafic eruptions, marked by varying degrees of phreatomagmatism.  相似文献   

3.
The eruption of 1631 A.D. was the most violent and destructive event in the recent history of Vesuvius. More than fifty primary documents, written in either Italian or Latin, were critically examined, with preference given to the authors who eyewitnessed volcanic phenomena. The eruption started at 7 a.m. on December 16 with the formation of an eruptive column and was followed by block and lapilli fallout east and northeast of the volcano until 6 p.m. of the same day. At 10 a.m. on December 17, several nuées ardentes were observed to issue from the central crater, rapidly descending the flanks of the cone and devastating the villages at the foot of Vesuvius. In the night between the 16th and 17th and on the afternoon of the 17th, extensive lahars and floods, resulting from rainstorms, struck the radial valleys of the volcano as well as the plain north and northeast.Deposits of the eruption were identified in about 70 localities on top of an ubiquitous paleosol formed during a long preeruptive volcanic quiescence. The main tephra unit consists of a plinian fallout composed of moderately vesicular dark green lapilli, crystals and lithics. Isopachs of the fallout are elongated eastwards and permit a conservative volume calculation of 0.07 km3. The peak mass flux deduced from clast dispersal models is estimated in the range 3–6 × 107 kg/s, corresponding to a column height of 17–21 km. East of the volcano the plinian fallout is overlain by ash-rich low-grade ignimbrite, surges, phreatomagmatic ashes and mud flows. Ash flows occur in paleovalleys around the cone of Vesuvius but are lacking on the Somma side, suggesting that pyroclastic flows had not enough energy to overpass the caldera wall of Mt. Somma. Deposits are generally unconsolidated, massive with virtually no ground layer and occasionally bearing sparse rests of charred vegetation. Past interpretations of the products emitted on the morning of December 17 as lava flows are inconsistent with both field observations and historical data. Features of the final phreatomagmatic ashes are suggestive of alternating episodes of wet ash fallout and rainfalls. Lahars interfingered with primary ash fallout confirm episodes of massive remobilization of loose tephra by heavy rainfalls during the final stage of the eruption.Chemical analyses of scoria clasts suggest tapping of magma from a compositionally zoned reservoir. Leucite-bearing, tephritic-phonolite (SiO2 51.17%) erupted in the early plinian phase was in fact followed by darker and slightly more mafic magma richer in crystals (SiO2 49.36%). During the nuées ardentes phase the composition returned to that of the early phase of the eruption.The reconstruction of the 1631 eruptive scenario supplies new perspectives on the hazards related to plinian eruptions of Vesuvius.  相似文献   

4.
Analysis of the historical records of Etnas eruptive activity for the past three centuries shows that, after the large 1669 eruption, a period of about 60 years of low-level activity followed. Starting from 1727, explosive activity (strombolian, lava fountaining and subplinian) at the summit crater increased exponentially to the present day. Since 1763, the frequency of flank eruptions also increased and this value remained high until 1960; afterward it further increased sharply. In fact, the number of summit and flank eruptions between 1961 and 2003 was four times greater than that of the pre-1960 period. This long-term trend of escalating activity rules out a pattern of cyclic behaviour of the volcano. We propose instead that the 1670–2003 period most likely characterises a single eruptive cycle which began after the large 1669 eruption and which is still continuing.On the basis of the eruptive style, two distinct types of flank eruptions are recognised: Class A and Class B. Class A eruptions are mostly effusive with associated weak strombolian activity; Class B eruptions are characterised by effusive activity accompanied by intense, long-lasting, strombolian and lava fountaining activity that produces copious tephra fallouts, as during the 2001 and 2002–2003 eruptions. Over the past three centuries, seven Class B eruptions have taken place with vents located mainly on the south-eastern flank, indicating that this sector of the volcano is a preferential zone for the intrusion of volatile-rich magma rising from the deeper region of the Etna plumbing system.Electronic Supplementary Material Supplementary material is available for this article at Editorial responsibility: M. Carroll  相似文献   

5.
Intense explosive activity occurred repeatedly at Vesuvius during the nearly 1,600-year period between the two Plinian eruptions of Avellino (3.5 ka) and Pompeii (79 A.D.). By correlating stratigraphic sections from more than 40 sites around the volcano, we identify the deposits of six main eruptions (AP1-AP6) and of some minor intervening events. Several deposits can be traced up to 20 km from the vent. Their stratigraphic and dispersal features suggest the prevalence of two main contrasting eruptive styles, each involving a complex relationship between magmatic and phreatomagmatic phases. The two main eruption styles are (1) sub-Plinian to phreato-Plinian events (AP1 and AP2 members), where deposits consist of pumice and scoria fall layers alternating with fine-grained, vesiculated, accretionary lapilli-bearing ashes; and (2) mixed, violent Strombolian to Vulcanian events (AP3-AP6 members), which deposited a complex sequence of fallout, massive to thinly stratified, scoria-bearing lapilli layers and fine ash beds. Morphology and density variations of the juvenile fragments confirm the important role played by magma-water interaction in the eruptive dynamics. The mean composition of the ejected material changes with time, and shows a strong correlation with vent position and eruption style. The ranges of intensity and magnitude of these events, derived by estimations of peak column height and volume of the ejecta, are significantly smaller than the values for the better known Plinian and sub-Plinian eruptions of Vesuvius, enlarging the spectrum of the possible eruptive scenarios at Vesuvius, useful in the assessment of its potential hazard.  相似文献   

6.
The activity of Vesuvius between A.D. 79 and 1631 has been investigated by means of precise archaeomagnetic dating of primary volcanic deposits and taking into account the stratigraphy of lavas and tephra, historical written accounts, archaeological evidence related to the developing urbanisation, and radiocarbon ages. We found that the historical records are highly useful in constraining the timing of the main events, even if the data are often too scarce and imprecise for ascertaining the details of all phases of activity, especially their magnitude and emplacement of all the deposit types. In addition, some eruptions that took place in the 9th and 10th centuries appear to be unnoticed by historians. The archaeomagnetic study involved 26 sites of different lavas and 2 pyroclastic deposits. It shows that within the 15 centuries which elapsed between A.D. 79 and 1631, the effusive activity of Vesuvius clustered in the relatively short period of time between A.D. 787 and 1139 and was followed by a 5-century-long repose period. During this time Vesuvius prepared itself for the violent explosive eruption of 1631. The huge lavas shaping the morphology of the coast occurred largely through parasitic vents located outside the Mount Somma caldera. One of these parasitic vents is located at low elevation, very close to the densely inhabited town of Torre Annunziata. Among the various investigated lavas, a number of which were previously attributed to the 1631 eruption, none is actually younger than the 12th century. Therefore it is definitively concluded that the destructive 1631 event was exclusively explosive.Editorial handling: J. McPhie  相似文献   

7.
During the period 1631–1944, Vesuvius was in persistent activity with alternating mild strombolian explosions, quiet effusive eruptions, and violent strombolian eruptions. The major difference between the predominant style of activity and the violent strombolian stages is the effusion rate. The lava effusion rate during major eruptions was in the range 20–100 m3/s, higher than during mild activity and quiet effusion (0.1–1 m3/s). The products erupted during the mild activity and major paroxysms have different degree of crystallization. Highly porphyritic lava flows are slowly erupted during years-long period of mild activity. This activity is fed by a magma accumulating at shallow depth within the volcanic edifice. Conversely, during the major paroxysms, a fast lava flow precedes the eruption of a volatile-rich, crystal-poor magma. We show that the more energetic eruptions are fed by episodic, multiple arrival of discrete batches of magma rising faster and not degassing during the ascent. The rapidly ascending magma pushes up the liquid residing in the shallow reservoir and eventually reaches the surface with its full complement of volatiles, producing kilometer-high lava fountains. Rapid drainage of the shallow reservoir occasionally caused small caldera collapses. The major eruptions act to unplug the upper part of the feeding system, erupting the cooling and crystallizing magma. This pattern of activity lasted for 313 y, but with a progressive decrease in the number of more energetic eruptions. As a consequence, a cooling plug blocked the volcano until it eventually prevented the eruption of new magma. The yearly probability of having at least one violent strombolian eruption has decreased from 0.12 to 0.10 from 1944 to 2007, but episodic seismic crises since 1979 may be indicative of new episodic intrusions of magma batches.  相似文献   

8.
 Akutan Volcano is one of the most active volcanoes in the Aleutian arc, but until recently little was known about its history and eruptive character. Following a brief but sustained period of intense seismic activity in March 1996, the Alaska Volcano Observatory began investigating the geology of the volcano and evaluating potential volcanic hazards that could affect residents of Akutan Island. During these studies new information was obtained about the Holocene eruptive history of the volcano on the basis of stratigraphic studies of volcaniclastic deposits and radiocarbon dating of associated buried soils and peat. A black, scoria-bearing, lapilli tephra, informally named the "Akutan tephra," is up to 2 m thick and is found over most of the island, primarily east of the volcano summit. Six radiocarbon ages on the humic fraction of soil A-horizons beneath the tephra indicate that the Akutan tephra was erupted approximately 1611 years B.P. At several locations the Akutan tephra is within a conformable stratigraphic sequence of pyroclastic-flow and lahar deposits that are all part of the same eruptive sequence. The thickness, widespread distribution, and conformable stratigraphic association with overlying pyroclastic-flow and lahar deposits indicate that the Akutan tephra likely records a major eruption of Akutan Volcano that may have formed the present summit caldera. Noncohesive lahar and pyroclastic-flow deposits that predate the Akutan tephra occur in the major valleys that head on the volcano and are evidence for six to eight earlier Holocene eruptions. These eruptions were strombolian to subplinian events that generated limited amounts of tephra and small pyroclastic flows that extended only a few kilometers from the vent. The pyroclastic flows melted snow and ice on the volcano flanks and formed lahars that traveled several kilometers down broad, formerly glaciated valleys, reaching the coast as thin, watery, hyperconcentrated flows or water floods. Slightly cohesive lahars in Hot Springs valley and Long valley could have formed from minor flank collapses of hydrothermally altered volcanic bedrock. These lahars may be unrelated to eruptive activity. Received: 31 August 1998 / Accepted: 30 January 1999  相似文献   

9.
The Quaternary Herchenberg composite tephra cone (East Eifel, FR Germany) with an original bulk volume of 1.17·107 m3 (DRE of 8.2·106 m3) and dimensions of ca. 900·600·90 m (length·width·height) erupted in three main stages: (a) Initial eruptions along a NW-trending, 500-m-long fissure were dominantly Vulcanian in the northwest and Strombolian in the southeast. Removal of the unstable, underlying 20-m-thick Tertiary clays resulted in major collapse and repeated lateral caving of the crater. The northwestern Lower Cone 1 (LC1) was constructed by alternating Vulcanian and Strombolian eruptions. (b) Cone-building, mainly Strombolian eruptions resulted in two major scoria cones beginning initially in the northwest (Cone 1) and terminating in the southeast (Cones 2 and 3) following a period of simultaneous activity of cones 1 and 2. Lapilli deposits are subdivided by thin phreatomagmatic marker beds rich in Tertiary clays in the early stages and Devonian clasts in the later stages. Three dikes intruded radially into the flanks of cone 1. (c) The eruption and deposition of fine-grained uppermost layers (phreatomagmatic tuffs, accretionary lapilli, and Strombolian fallout lapilli) presumably from the northwestern center (cone 1) terminated the activity of Herchenberg volcano. The Herchenberg volcano is distinguished from most Strombolian scoria cones in the Eifel by (1) small volume of agglutinates in central craters, (2) scarcity of scoria bomb breccias, (3) well-bedded tephra deposits even in the proximal facies, (4) moderate fragmentation of tephra (small proportions of both ash and coarse lapilli/bomb-size fraction), (5) abundance of dense ellipsoidal juvenile lapilli, and (6) characteristic depositional cycles in the early eruptive stages beginning with laterally emplaced, fine-grained, xenolith-rich tephra and ending with fallout scoria lapilli. Herchenberg tephra is distinguished from maar deposits by (1) paucity of xenoliths, (2) higher depositional temperatures, (3) coarser grain size and thicker bedding, (4) absence of glassy quenched clasts except in the initial stages and late phreatomagmatic marker beds, and (5) predominance of Strombolian, cone-building activity. The characteristics of Herchenberg deposits are interpreted as due to a high proportion of magmatic volatiles (dominantly CO2) relative to low-viscosity magma during most of the eruptive activity.  相似文献   

10.
Mount Vesuvius had eruptions ranging between VEI 5+ to 0–1 during the last 2000 years. Infrequent explosive eruptions are recorded during the period 79 AD to 1631. Since the violent explosive eruption of 1631, the volcano has been in persistent activity, rebuilding the morphology that it had before that eruption. A succession of explosive and effusive eruptions occurred until 1944, with a predominance of short and violent episodes until 1872 and longer effusive eruptions since that date. Two factors mainly controlled the character of volcanic activity during this period: (1) the strength of the cone, which allowed, in the earlier period, an easy fracturing, rapid drainage, and pressure release of the magma column; (2) the interaction between magma and water, which enhanced the explosivity of several eruptions.The volcano appears to have reached a stage of quiescence because it finally attained a shape of equilibrium in which the height of the mountain is sufficient to counterbalance the buoyancy of the magma.  相似文献   

11.
Quantitative hazard assessments of active volcanoes require an accurate knowledge of the past eruptive activity in terms of eruption dynamics and the stratified products of eruption. Teide–Pico Viejo (TPV) is one of the largest volcanic complexes in Europe, but the associated eruptive history has only been constrained based on very general stratigraphic and geochronological data. In particular, recent studies have shown that explosive activity has been significantly more frequently common than previously thought. Our study contributes to characterization of explosive activity of TPV by describing for the first time the subplinian eruption of El Boquerón (5,660?yBP), a satellite dome located on the northern slope of the Pico Viejo stratovolcano. Stratigraphic data suggest complex shifting from effusive phases with lava flows to highly explosive phase that generated a relatively thick and widespread pumice fallout deposit. This explosive phase is classified as a subplinian eruption of VEI 3 that lasted for about 9–15?h and produced a plume with a height of up to 9?km above sea level (i.e. 7?km above the vent; MER of 6.9–8.2?×?105?kg/s). The tephra deposit (minimum bulk volume of 4–6?×?107?m3) was dispersed to the NE by up to 10?m/s winds. A similar eruption today would significantly impact the economy of Tenerife (e.g. tourism and aviation), with major consequences mainly for the communities around the Icod Valley, and to a minor extent, the Orotava Valley. This vulnerability shows that a better knowledge of the past explosive history of TPV and an accurate estimate of future potentials to generate violent eruptions is required in order to quantify and mitigate the associated volcanic risk.  相似文献   

12.
A new proposal for the classification of Somma-Vesuvius (SV) explosive activity is presented, based on a critical revision of a large set of published and unpublished stratigraphic, compositional, and physical volcanology data on the products of the past 20,000 years of activity. The new database is used to discuss the general behaviour of the volcano in terms of frequency, magnitude and intensity of the events, as well as of the length of the repose time which preceded each eruption. Several different types of eruption are recognized, each characterised by specific physical eruptive parameters: plinian, subplinian (further subdivided in subplinian I and subplinian II), violent strombolian, ash emission events. For each eruption type, a complex scenario is described, with phases of different style, duration, magnitude and intensity occurring during the course of the eruption itself. The name given to each eruption type is derived from the style of the most representative part of the eruption (in terms of duration or volume).  相似文献   

13.
The 2000 AD eruption of Miyakejima was characterized by a series of phreatomagmatic eruptions from the subsiding caldera. Six major eruptive events occurred, and they can be divided into the first and second periods separated by a 25-day hiatus. The phreatomagmatic eruptions produced a total of ~ 2 × 1010 kg of tephra, which mainly comprised fine-grained volcanic ash. The tephra layers could be divided into six fall units corresponding to the six major eruptive events.  相似文献   

14.
Major- and trace-element systematics of the magmas erupted during the recent activity of Vesuvius (1631–1944) show that composition ranges are narrow and identical in each activity cycle except for the 1631 eruption which emitted also more differentiated products. These rocks are the most basic magmas erupted in Vesuvius. The high K and incompatible-element contents of these products are characteristic of the whole Roman-Campanian Province.Lavas and tephra of the 1906 and 1944 eruptions are highly porphyric. Geochemical modelling shows that these products are mechanical mixing of a slightly differentiated melt and various proportions of phenocrysts. Except ratios of highly incompatible trace elements (Th/La, Th/Ta, Th/Ba), no chemical characteristics of primary and differentiated melts can be simply inferred from bulk erupted products. An inverse method for calculating melt and mineral compositions is presented. Calculated weigth fractions are consistent with measured modal compositions. A model of crystal differential accumulation controlled by relative phase densities and eruption rates is proposed.  相似文献   

15.
Since the onset of their eruptive activity within the Cañadas caldera, about 180 ka ago, Teide–Pico Viejo stratovolcanoes have mainly produced lava flow eruptions of basaltic to phonoltic magmas. The products from these eruptions partially fill the caldera, and the adjacent Icod and La Orotava valleys, to the north. Although less frequent, explosive eruptions have also occurred at these composite volcanoes. In order to assess the possible evolution Teide–Pico Viejo stratovolcanoes and their potential for future explosive activity, we have analysed their recent volcanic history, assuming that similar episodes have the highest probability of occurrence in the near future. Explosive activity during the last 35000 years has been associated with the eruption of both, mafic (basalts, tephro–phonolites) and felsic (phono–tephrites and phonolites) magmas and has included strombolian, violent strombolian and sub-plinian magmatic eruptions, as well as phreatomagmatic eruptions of mafic magmas. Explosive eruptions have occurred both from central and flank vents, ranging in size from 0.001 to 0.1 km3 for the mafic eruptions and from 0.01 to < 1 km3 for the phonolitic ones. Comparison of the Teide–Pico Viejo stratovolcanoes with the previous cycles of activity from the central complex reveals that all them follow a similar pattern in the petrological evolution but that there is a significant difference in the eruptive behaviour of these different periods of central volcanism on Tenerife. Pre-Teide central activity is mostly characterised by large-volume (1–> 20 km3, DRE) eruptions of phonolitic magmas while Teide–Pico Viejo is dominated by effusive eruptions. These differences can be explained in terms of the different degree of evolution of Teide–Pico Viejo compared to the preceding cycles and, consequently, in the different pre-eruptive conditions of the corresponding phonolitic magmas. A clear interaction between the basaltic and phonolitic systems is observed from the products of phonolitic eruptions, indicating that basaltic magmatism is the driving force of the phonolitic eruptive activity. The magmatic evolution of Teide–Pico Viejo stratovolcanoes will continue in the future with a probably tendency to produce a major volume of phonolitic magmas, with an increasing explosive potential. Therefore, the explosive potential of Teide–Pico Viejo cannot be neglected and should be considered in hazard assessment on Tenerife.  相似文献   

16.
Geological surveys, tephrostratigraphic study, and 40Ar/39Ar age determinations have allowed us to chronologically constrain the geological evolution of the lower NW flank of Etna volcano and to reconstruct the eruptive style of the Mt Barca flank eruption. This peripheral sector of the Mt Etna edifice, corresponding to the upper Simeto valley, was invaded by the Ellittico volcano lava flows between 41 and 29 ka ago when the Mt Barca eruption occurred. The vent of this flank eruption is located at about 15 km away from the summit craters, close to the town of Bronte. The Mt Barca eruption was characterized by a vigorous explosive activity that produced pyroclastic deposits dispersed eastward and minor effusive activity with the emission of a 1.1-km-long lava flow. Explosive activity was characterized by a phreatomagmatic phase followed by a magmatic one. The geological setting of this peripheral sector of the volcano favors the interaction between the rising magma and the shallow groundwater hosted in the volcanic pile resting on the impermeable sedimentary basement. This process produced phreatomagmatic activity in the first phase of the eruption, forming a pyroclastic fall deposit made of high-density, poorly vesicular scoria lapilli and lithic clasts. Conversely, during the second phase, a typical strombolian fall deposit formed. In terms of hazard assessment, the possible occurrence of this type of highly explosive flank eruption, at lower elevation in the densely inhabited areas, increases the volcanic risk in the Etnean region and widens the already known hazard scenario.  相似文献   

17.
Impact of large-scale explosive eruptions largely depends on the dynamics of transport, dispersal and deposition of ash by the convective system. In fully convective eruptive columns, ejected gases and particles emitted at the vent are vertically injected into the atmosphere by a narrow, buoyant column and then dispersed by atmosphere dynamics on a regional scale. In fully collapsing explosive eruptions, ash partly generated by secondary fragmentation is carried and dispersed by broad co-ignimbrite columns ascending above pyroclastic currents. In this paper, we investigate the transport and dispersion dynamics of ash and lapillis during a transitional plinian eruption in which both plinian and co-ignimbrite columns coexisted and interacted. The 800 BP eruptive cycle of Quilotoa volcano (Ecuador) produced a well-exposed tephra sequence. Our study shows that the sequence was accumulated by a variety of eruptive dynamics, ranging from early small phreatic explosions, to sustained magmatic plinian eruptions, to late phreatomagmatic explosive pulses. The eruptive style of the main 800 BP plinian eruption (U1) progressively evolved from an early fully convective column (plinian fall bed), to a late fully collapsing fountain (dense density currents) passing through an intermediate transitional eruptive phase (fall + syn-plinian dilute density currents). In the transitional U1 regime, height of the convective plinian column and volume and runout of the contemporaneous pyroclastic density currents generated by partial collapses were inversely correlated. The convective system originated from merging of co-plinian and co-surge contributions. This hybrid column dispersed a bimodal lapilli and ash-fall bed whose grain size markedly differs from that of classic fall deposits accumulated by fully convective plinian columns. Sedimentological analysis suggests that ash dispersion during transitional eruptions is affected by early aggregation of dry particle clusters.  相似文献   

18.
Holocene explosive activity of Hudson Volcano, southern Andes   总被引:3,自引:1,他引:2  
 Fallout deposits in the vicinity of the southern Andean Hudson Volcano record at least 12 explosive Holocene eruptions, including that of August 1991 which produced ≥4 km3 of pyroclastic material. Medial isopachs of compacted fallout deposits for two of the prehistoric Hudson eruptions, dated at approximately 3600 and 6700 BP, enclose areas at least twice that of equivalent isopachs for both the 1991 Hudson and the 1932 Quizapu eruptions, the two largest in the Andes this century. However, lack of information for either the proximal or distal tephra deposits from these two prehistoric eruptions of Hudson precludes accurate volume estimates. Andesitic pyroclastic material produced by the 6700-BP event, including a  1 10-cm-thick layer of compacted tephra that constitutes a secondary thickness maximum over 900 km to the south in Tierra del Fuego, was dispersed in a more southerly direction than that of the 1991 Hudson eruption. The products of the 6700-BP event consist of a large proportion of fine pumiceous ash and accretionary lapilli, indicating a violent phreatomagmatic eruption. This eruption, which is considered to be the largest for Hudson and possibly for any volcano in the southern Andes during the Holocene, may have created Hudson's 10-km-diameter summit caldera, but the age of the caldera has not been dated independently. Received: 31 January 1997 / Accepted: 29 October 1997  相似文献   

19.
Contemporary accounts of the violent eruption of Vesuvius in 1631 are reviewed, and recorded events are correlated with resulting volcanic deposits. Field study of the deposits in the proximal area revealed the presence of tephra falls, pyroclastic flows and lava, with subordinate surge deposits. A total volume of 1.1 km3 (0.55 km3 DRE) of phono-tephritic to phonolitic magma was ejected during 24 hours.The different magma compositions correspond with a transition from a lower, white, aphyric, highly vesiculated pumice (layer 1) to an upper, gray, crystal-rich, poorly vesiculated pumice (layer 3), showing reverse grading. Isopach and isopleth maps of the tephra-falls have been constructed to determine changes in the eruptive style and temporal evolution of the eruption column which reached a maximum height of 16 to 28 km.The recorded column height variations show a change in the mass discharge rate (8.9 × 106 kg/s to 8.2 × 107 kg/s) and the occurrence of pyroclastic flows during the deposition of the weakly vesiculated, dense pumice of the upper part of layer 3. Pyroclastic flows are crystal-rich and show St. Vincent-type features. The explosive phase demolished the upper part of the pre-existing cone, and debris flows invaded the southern side of the volcano. In the afternoon of December 17, 1631 an outbreak of lava flow from a southern lateral fracture system occurred, and effusion of lava continued up to midnight of December 18. Intermittent steam blasts continued to the end of December, when the eruption ended and Mount Vesuvius entered a solfataric phase. The earthquakes that had marked both the pre-eruptive and eruptive phases, continued, however, well into March 1632.  相似文献   

20.
Acid rain and ongoing eruptive activity at Rincón de la Vieja volcano in northwestern Costa Rica have created a triangular, deeply eroded “dead zone” west-southwest of the Active Crater. The barren, steep-walled canyons in this area expose one of the best internal stratigraphic profiles of any active or dormant volcano in Costa Rica. Geologic mapping along the southwestern flank of the volcano reveals over 300 m of prehistoric volcanic stratigraphy, dominated by tephra deposits and two-pyroxene andesite lavas. Dense tropical forests and poor access preclude mapping elsewhere on the volcano. In the “dead zone” four stratigraphic groups are distinguished by their relative proportions of lava and tephra. In general, early volcanism was dominated by voluminous lava emissions, with explosive plinian eruptions becoming increasingly more dominant with time. Numerous phreatic eruptions have occurred in historic times, all emanating from the Active Crater. The stratigraphic sequence is capped by the Río Blanco tephra deposit, erupted at approximately 3500 yr B.P. Approximately 0.25 km3 (0.1 km3 DRE) of tephra was deposited in a highly asymmetrical dispersal pattern west-southwest of the source vent, indicating strong prevailing winds from the east and east-northeast at the time of the eruption. Grain-size studies of the deposit reveal that the eruption was subplinian, attaining an estimated column height of 16 km. A qualitative hazards assessment at Rincón de la Vieja indicates that future eruptions are likely to be explosive in style, with the zone of greatest hazard extending several kilometers north from the Active Crater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号