首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The global distribution of phosphine (PH3) on Jupiter and Saturn is derived using 2.5 cm−1 spectral resolution Cassini/CIRS observations. We extend the preliminary PH3 analyses on the gas giants [Irwin, P.G.J., and 6 colleagues, 2004. Icarus 172, 37-49; Fletcher, L.N., and 9 colleagues, 2007a. Icarus 188, 72-88] by (a) incorporating a wider range of Cassini/CIRS datasets and by considering a broader spectral range; (b) direct incorporation of thermal infrared opacities due to tropospheric aerosols and (c) using a common retrieval algorithm and spectroscopic line database to allow direct comparison between these two gas giants.The results suggest striking similarities between the tropospheric dynamics in the 100-1000 mbar regions of the giant planets: both demonstrate enhanced PH3 at the equator, depletion over neighbouring equatorial belts and mid-latitude belt/zone structures. Saturn's polar PH3 shows depletion within the hot cyclonic polar vortices. Jovian aerosol distributions are consistent with previous independent studies, and on Saturn we demonstrate that CIRS spectra are most consistent with a haze in the 100-400 mbar range with a mean optical depth of 0.1 at 10 μm. Unlike Jupiter, Saturn's tropospheric haze shows a hemispherical asymmetry, being more opaque in the southern summer hemisphere than in the north. Thermal-IR haze opacity is not enhanced at Saturn's equator as it is on Jupiter.Small-scale perturbations to the mean PH3 abundance are discussed both in terms of a model of meridional overturning and parameterisation as eddy mixing. The large-scale structure of the PH3 distributions is likely to be related to changes in the photochemical lifetimes and the shielding due to aerosol opacities. On Saturn, the enhanced summer opacity results in shielding and extended photochemical lifetimes for PH3, permitting elevated PH3 levels over Saturn's summer hemisphere.  相似文献   

2.
《Planetary and Space Science》1999,47(10-11):1331-1340
The discovery that Titan, the largest satellite of Saturn, has an atmosphere and that methane is a significant constituent of it, was the starting point for a systematic study of Titan’s atmospheric organic chemistry. Since then, the results from numerous ground-based observations and two flybys of Titan, by Voyager I and II, have led to experimental laboratory simulation studies and photochemical and physical modeling. All these works have provided a more detailed picture of Titan. We report here a continuation of such a study performing an experimental laboratory simulation of Titan’s atmospheric chemistry, and considering the two physical phases involved: gases and aerosols. Concerning the gaseous phase, we report the first detection of C4N2 and we propose possible atmospheric abundances for 70 organic compounds on Titan’s upper atmosphere. Concerning the solid phase, we have characterized aerosol analogues synthesized in conditions close to those of Titan’s environment, using elemental analysis, pyrolysis, solubility studies and infrared spectroscopy.  相似文献   

3.
A new method is developed to determine the concentration profiles of chemical species from satellite measurements. The method takes into account the interaction of photochemical and radiative processes in the stratosphere and is applied for chemical species (nitric oxide and nitrogen dioxide) experiencing large diurnal changes. It is found that if the interaction of the photochemical and radiative processes is neglected, that is if the temporal and spatial variations of NO and NO2 are not considered in the radiative transfer calculations, the resulting errors for the concentration profiles for altitudes less than 20 km reach 100 and 5% respectively, for both sunset and sunrise. A photochemical scheme is developed capable of providing the mixing ratio profiles of NO and NO2 for different latitudes, altitudes and seasons and a retrieval code combining an iterative inversion algorithm, working from top of the atmosphere downwards, and a parameterization of the variability of NO and NO2 is also constructed. The method is used to examine the accuracy of the retrieval of the vertical concentration profiles and the new results show that the recovered profiles are in good agreement (error 5–15%) with measured profiles (WMO, 1985) and reflect the trends of NO and NO2 at sunset and sunrise.  相似文献   

4.
This paper deals with two common problems and then considers major aspects of chemistry in the atmospheres of Mars and Venus. (1) The atmospheres of the terrestrial planets have similar origins but different evolutionary pathways because of the different masses and distances to the Sun. Venus lost its water by hydrodynamic escape, Earth lost CO2 that formed carbonates and is strongly affected by life, Mars lost water in the reaction with iron and then most of the atmosphere by the intense meteorite impacts. (2) In spite of the higher solar radiation on Venus, its thermospheric temperatures are similar to those on Mars because of the greater gravity acceleration and the higher production of O by photolysis of CO2. O stimulates cooling by the emission at 15 μm in the collisions with CO2. (3) There is a great progress in the observations of photochemical tracers and minor constituents on Mars in the current decade. This progress is supported by progress in photochemical modeling, especially by photochemical GCMs. Main results in these areas are briefly discussed. The problem of methane presents the controversial aspects of its variations and origin. The reported variations of methane cannot be explained by the existing data on gas-phase and heterogeneous chemistry. The lack of current volcanism, SO2, and warm spots on Mars favor the biological origin of methane. (4) Venus’ chemistry is rich and covers a wide range of temperatures and pressures and many species. Photochemical models for the middle atmosphere (58-112 km), for the nighttime atmosphere and night airglow at 80-130 km, and the kinetic model for the lower atmosphere are briefly discussed.  相似文献   

5.
The precision of the rates of the photolysis processes initiating the complex chemistry of Titan’s upper atmosphere conditions strongly the predictivity of photochemical models. Recent studies in sensitivity analysis of such models point out photolysis rate constants as key parameters. However, they have been treated approximately so far. We deal here directly with uncertainty in the absorption cross-sections to derive the uncertain altitude-dependent photolysis rate constants. We observe that the uncertainty on the photolysis rate constants of the major species, N2 and CH4, varies strongly with altitude and rather surprisingly vanishes at specific altitudes. We propose a simple model to interpret these features and we demonstrate that they are transferable to any major absorber distributed barometrically in an atmosphere.  相似文献   

6.
The formation of cometary CN, C2 and C3 radicals is investigated in a photochemical reaction scheme. From an analysis of the observed brightness profiles of these radicals, it is shown that CN is formed as a primary product in the photolysis of its parent molecules, whereas C2 and C3 are formed via two-step photodissociation of their parents. We suggest that major parent of C2 is different species from those of CN and C3 on the basis of the difference of the variation with heliocentric distance of the sublimation rate of the parents of these radicals. Parent molecules and reaction schemes for the formation of these radicals are discussed.  相似文献   

7.
Benzene has recently been observed in the atmosphere of Jupiter, Saturn and also Titan. This compound is required as a precursor for larger aromatic species (PAHs) that may be part of aerosol particles. Several photochemical models have tried to reproduce the observed quantities of benzene in the atmospheres of Jupiter (both low- and high-latitudes regions), Saturn and Titan. In this present work, we have conducted a sensitivity study of benzene and PAHs formation, using similar photochemical schemes both for Titan and Jupiter (low-latitudes conditions). Two different photochemical schemes are used, for which the modeled composition fairly agrees with observational constraints, both for Jupiter and Titan. Some disagreements are specific to each atmospheric case, which may point to needed improvements, especially in kinetic data involved in the corresponding chemical cycles. The observed benzene mole fraction in Titan's stratosphere is reproduced by the model, but in the case of Jupiter, low-latitudes benzene abundance is only 3% of the observed column density, which may indicate a possible influence of latitudinal transport, since abundance of benzene is much higher in auroral regions. Though, the photochemical scheme of C6 compounds at temperature and pressure conditions of planetary atmospheres is still very uncertain. Several variations are therefore done on key reactions in benzene production. These variations show that benzene abundance is mainly sensitive to reactions that may affect the propargyl radical. The effect of aerosol production on hydrocarbons composition is also tested, as well as possible heterogenous recombination of atomic hydrogen in the case of Titan. PAHs are a major pathway for aerosol production in both models. The mass production profiles for aerosols are discussed for both Titan and Jupiter. Total production mass fluxes are roughly three times the one expected by observational constraints in both cases. Such comparative studies are useful to bring more constraints on photochemical models.  相似文献   

8.
Density distribution in cometary comae resulting from photodissociation, ionization and ion-molecule reaction of H2O is investigated in an analytic manner. It is assumed that particles expand isotropically around the nucleus, and that each species has its own constant radial velocity. Formulae for the density distribution of photochemical products are presented throught the coma, and approximate formulae are given for the distribution of ion-molecule reaction products in the inner coma. Characterictics of the density profile are discussed on the basis of these analytic formulae.  相似文献   

9.
《Planetary and Space Science》2007,55(10):1470-1489
Uncertainties carried by the different kinetic parameters included in photochemical models of planetary atmospheres have rarely been considered even if they are supposed to be contributing mostly to the inconsistencies between observations and computed predictions. In this paper, we report the first detailed analysis of the propagation of uncertainties carried by the reaction rate coefficients included in an up-to-date photochemical model of Titan's atmosphere. Monte Carlo calculations performed on these reaction rate coefficients have been used to introduce their uncertainties and to investigate their significance on the photochemical modeling of Titan's atmosphere. Crude approximations in the implemented physical processes have been adopted to limit the number of free parameters. This allows us to pinpoint specifically the importance of chemical processes uncertainties in Titan's photochemical models and to evaluate their chemical robustness. First implications of this preliminary study related to purely chemical rate coefficient uncertainties are discussed. They are important enough to question indeed any comparisons between theoretical models with observations as well as any potential conclusions subsequently inferred. Since the latest missions, such as Cassini–Huygens, are likely to induce an ever-increasing interest for such kind of comparing studies, our conclusions show that it is crucial to reform the way we think of, and use, current photochemical models to understand the processes occurring in the atmospheres of the outer Solar System.  相似文献   

10.
We show that photochemical models of Titan's atmosphere can give rise to bimodal distributions in the abundances of some major compounds, like C2H2 and C2H4. Sensitivity analysis enabled us to identify the causes and conditions of this bimodality. We propose several methods to control this behavior in photochemical models. In particular, we point out the importance of two key reactions and the needs for a critical evaluation of the kinetic data. We also show that the abundances of some compounds are hypersensitive to the ratio [CH4]/[H], suggesting that a time-dependent variation of this ratio might lead to a real bistability in the high atmosphere of Titan.  相似文献   

11.
In response to the observations of the ultravioler deficiencies shown by all of the outer planets and Titan, models have been proposed to explain the low albedos by absorption by particles in the upper atmospheres of these objects. These particles are generally believed to be photochemically formed from gases in the upper atmospheres, primarily methane and hydrogen. Such processes may also be operative on Titan. The results of some laboratory experiments of the proton irradiation of mixtures of gases including CH4 H2, NH3, etc., have shown that liquid and solid materials are produced that are strong ultraviolet absorbers. However, the material produced from the CH4 + H2 mixture was colorless, indicating that species containing elements other than carbon and hydrogen are necessary for the production of color. Two such elements are nitrogen (as NH3 or N2) and sulfur (as H2S) and colored materials have been produced from such mixtures. None of these materials has spectral properties identical to those shown by the planets. Therefore it is necessary that mixtures (and/or cloud layers) of the photochemical materials be present.  相似文献   

12.
Some absorption features in the ultraviolet spectrum of Venus observed by the OAO-2 cannot be interpreted in terms of H2SO4. Carbon suboxide polymer has a yellow colour and absorption at 2000 Å. Fine graphite grains have an absorption band at about 2175 Å as is well known in the case of the interstellar extinction curves. A mixture of these substances which is inevitably formed in the Venus atmosphere by photochemical reactions is the best candidate for explaining the Venus absorption features in the ultraviolet.  相似文献   

13.
Solar UV radiation is a major source of energy for chemical evolution of organic materials in the Solar System. Therefore studies on the photostability of organic compounds in extraterrestrial environments are of prime importance for the understanding of the extraterrestrial origin of organic materials on Earth. A series of organic samples have been photolysed in Earth orbit during the ESA BIOPAN 6 mission (14-26/09/2007). Their photochemical lifetime has been measured and compared to results recorded in the laboratory using a lamp that simulates the solar radiation in the VUV domain. The half-lives at a distance of 1 AU from the Sun have been measured for glycine, xanthine, hypoxanthine, adenine, guanine, urea, carbon suboxide polymer ((C3O2)n) and HCN polymer. They range from a few days to a lower limit of a few tens of days for the most photoresistant (e.g. adenine, guanine, hypoxanthine). Lifetimes measured in terrestrial orbit are very different from those derived with laboratory experiments. These measurements confirm that it is difficult to simulate the solar spectrum below 200 nm in the laboratory. Results are discussed and highlight the necessity to conduct experiments in orbit, and for longer duration. It also appears that the laboratory measurements made in VUV must be extrapolated very cautiously to the different environments they are supposed to simulate.  相似文献   

14.
We report photochemical studies of thin cryogenic ice films composed of N2, CH4 and CO in ratios analogous to those on the surfaces of Neptune’s largest satellite, Triton, and on Pluto. Experiments were performed using a hydrogen discharge lamp, which provides an intense source of ultraviolet light to simulate the sunlight-induced photochemistry on these icy bodies. Characterization via infrared spectroscopy showed that C2H6 and C2H2, and HCO are formed by the dissociation of CH4 into H, CH2 and CH3 and the subsequent reaction of these radicals within the ice. Other radical species, such as C2, , CN, and CNN, are observed in the visible and ultraviolet regions of the spectrum. These species imply a rich chemistry based on formation of radicals from methane and their subsequent reaction with the N2 matrix. We discuss the implications of the formation of these radicals for the chemical evolution of Triton and Pluto. Ultimately, this work suggests that , CN, HCO, and CNN may be found in significant quantities on the surfaces of Triton and Pluto and that new observations of these objects in the appropriate wavelength regions are warranted.  相似文献   

15.
Cassini results indicate that solar photons dominate energy deposition in Titan’s upper atmosphere. These dissociate and ionize nitrogen and methane and drive the subsequent complex organic chemistry. The improved constraints on the atmospheric composition from Cassini measurements demand greater precision in the photochemical modeling. Therefore, in order to quantify the role of solar radiation in the primary chemical production, we have performed detailed calculations for the energy deposition of photons and photoelectrons in the atmosphere of Titan and we validate our results with the Cassini measurements for the electron fluxes and the EUV/FUV emissions. We use high-resolution cross sections for the neutral photodissociation of N2, which we present here, and show that they provide a different picture of energy deposition compared to results based on low-resolution cross sections. Furthermore, we introduce a simple model for the energy degradation of photoelectrons based on the local deposition approximation and show that our results are in agreement with detailed calculations including transport, in the altitude region below 1200 km, where the effects of transport are negligible. Our calculated, daytime, electron fluxes are in good agreement with the measured fluxes by the Cassini Plasma Spectrometer (CAPS), and the same holds for the measured FUV emissions by the Ultraviolet Imaging Spectrometer (UVIS). Finally, we present the vertical production profiles of radicals and ions originating from the interaction of photons and electrons with the main components of Titan’s atmosphere, along with the column integrated production rates at different solar zenith angles. These can be used as basis for any further photochemical calculations.  相似文献   

16.
We investigate the chemical transition of simple molecules like C2H2 and HCN into aerosol particles in the context of Titan's atmosphere. Experiments that synthesize analogs (tholins) for these aerosols can help illuminate and constrain these polymerization mechanisms. Using information available from these experiments, we suggest chemical pathways that can link simple molecules to macromolecules, which will be the precursors to aerosol particles: polymers of acetylene and cyanoacetylene, polycyclic aromatics, polymers of HCN and other nitriles, and polyynes. Although our goal here is not to build a detailed kinetic model for this transition, we propose parameterizations to estimate the production rates of these macromolecules, their C/N and C/H ratios, and the loss of parent molecules (C2H2, HCN, HC3N and other nitriles, and C6H6) from the gas phase to the haze. We use a one-dimensional photochemical model of Titan's atmosphere to estimate the formation rate of precursor macromolecules. We find a production zone slightly lower than 200 km altitude with a total production rate of 4×10−14 g cm−2 s−1 and a C/N?4. These results are compared with experimental data, and to microphysical model requirements. The Cassini/Huygens mission will bring a detailed picture of the haze distribution and properties, which will be a great challenge for our understanding of these chemical processes.  相似文献   

17.
We report the first detection of propane, C3H8, in Saturn's stratosphere. Observations taken on September 8, 2002 UT at NASA's IRTF using TEXES, show multiple emission lines due to the 748 cm−1ν21 band of C3H8. Using a line-by-line radiative transfer code, we are able to fit the data by scaling the propane vertical mixing ratio profile from the photochemical model of Moses et al. [2000. Icarus 143, 244-298]. Multiplicative factors of 0.7 and 0.65 are required to fit the −20° and −80° planetocentric latitude spectra. The resultant profiles are characterized by a 5 mbar mixing ratio of 2.7±0.8×10−8 at −20° and at −80° latitude. These results suggest that the time scale for meridional circulation lies between the net photochemical lifetimes of C2H2 and C3H8, ≈30-600 years.  相似文献   

18.
Far-IR (25-50 μm, 200-400 cm−1) nadir and limb spectra measured during Cassini's four year prime mission by the Composite InfraRed Spectrometer (CIRS) instrument have been used to determine the abundances of cyanogen (C2N2), methylacetylene (C3H4), and diacetylene (C4H2) in Titan's stratosphere as a function of latitude. All three gases are enriched at northern latitudes, consistent with north polar subsidence. C4H2 abundances agree with those derived previously from mid-IR data, but C3H4 abundances are about 2 times lower, suggesting a vertical gradient or incorrect band intensities in the C3H4 spectroscopic data. For the first time C2N2 was detected at southern and equatorial latitudes with an average volume mixing ratio of 5.5±1.4×10−11 derived from limb data (>3-σ significance). This limb result is also corroborated by nadir data, which give a C2N2 volume mixing ratio of 6±3×10−11 (2-σ significance) or alternatively a 3-σ upper limit of 17×10−11. Comparing these figures with photochemical models suggests that galactic cosmic rays may be an important source of N2 dissociation in Titan's stratosphere. Like other nitriles (HCN, HC3N), C2N2 displays greater north polar relative enrichment than hydrocarbons with similar photochemical lifetimes, suggesting an additional loss mechanism for all three of Titan's main nitrile species. Previous studies have suggested that HCN requires an additional sink process such as incorporation into hazes. This study suggests that such a sink may also be required for Titan's other nitrile species.  相似文献   

19.
Recent cryochemical and photochemical findings for cyanoacetylene and cyanopolyacetylene-related molecules (including various isomeric species), backed up with quantum-chemical predictions, are analysed. A new class of interstellar molecules, distinguished by bare (hydrogen-less), unsaturated carbon-nitrogen chains of the general formula C n N2 is postulated. It is recommended to look for some relevant IR spectral features in space. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Limb and nadir spectra acquired by Cassini/CIRS (Composite InfraRed Spectrometer) are analyzed in order to derive, for the first time, the meridional variations of diacetylene (C4H2) and methylacetylene (CH3C2H) mixing ratios in Saturn’s stratosphere, from 5 hPa up to 0.05 hPa and 80°S to 45°N. We find that the C4H2 and CH3C2H meridional distributions mimic that of acetylene (C2H2), exhibiting small-scale variations that are not present in photochemical model predictions. The most striking feature of the meridional distribution of both molecules is an asymmetry between mid-southern and mid-northern latitudes. The mid-southern latitudes are found depleted in hydrocarbons relative to their northern counterparts. In contrast, photochemical models predict similar abundances at north and south mid-latitudes. We favor a dynamical explanation for this asymmetry, with upwelling in the south and downwelling in the north, the latter coinciding with the region undergoing ring shadowing. The depletion in hydrocarbons at mid-southern latitudes could also result from chemical reactions with oxygen-bearing molecules.Poleward of 60°S, at 0.1 and 0.05 hPa, we find that the CH3C2H and C4H2 abundances increase dramatically. This behavior is in sharp contradiction with photochemical model predictions, which exhibit a strong decrease towards the south pole. Several processes could explain our observations, such as subsidence, a large vertical eddy diffusion coefficient at high altitudes, auroral chemistry that enhances CH3C2H and C4H2 production, or shielding from photolysis by aerosols or molecules produced from auroral chemistry. However, problems remain with all these hypotheses, including the lack of similar behavior at lower altitudes.Our derived mean mixing ratios at 0.5 hPa of (2.4 ± 0.3) × 10−10 for C4H2 and of (1.1 ± 0.3) × 10−9 for CH3C2H are compatible with the analysis of global-average ISO observations performed by Moses et al. (Moses, J.I., Bézard, B., Lellouch, E., Gladstone, G.R., Feuchtgruber, H., Allen, M. [2000a]. Icarus 143, 244-298). Finally, we provide values for the ratios [CH3C2H]/[C2H2] and [C4H2]/[C2H2] that can constrain the coupled chemistry of these hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号