首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Tertiary Kuqa depression is a foreland basin generated by flexural subsidence resulting from the southward thrusting of the southern Tianshan Mountains. Tertiary basin fills of the depression can be classified into four tectonic sequences bounded by gentle angular unconformities. The sequences are composed of two parts, the lower transgressive and the upper progradational successions, which are separated by a regional maximum transgressive surface. The development of these sequences is attributed to the foreland tectonic process from flexural subsidence caused by thrust loading to rebounded uplift due to the erosion and stress release. The generation of the angular unconformities defining the tectonic sequences has been interpreted as the result of the rebounded uplift and the following thrusting. It has been found that there is a significant difference in depositional pattern between the northeastern and the northwestern margins. The relatively strong thrusting and mountain building occurring along the northwestern margin resulted in the development of thick-bedded alluvial fan and angular unconformities. The northeastern margin, in contract, lacks thick alluvial fan accumulation due to weak thrusting. This difference is likely related to the pre-existing east-west partition of the basin basement.  相似文献   

2.
This paper describes the significant depositional setting information derived from well and seismic survey data for the Upper Cretaceous to Lower Eocene forearc basin sediments in the central part of the Sanriku‐oki basin, which is regarded as a key area for elucidating the plate tectonic history of the Northeast Japan Arc. According to the results of well facies analysis utilizing cores, well logs and borehole images, the major depositional environments were of braided and meandering fluvial environments with sporadically intercalated marine incursion beds. Seismic facies, reflection terminations and isopach information provide the actual spatial distributions of fluvial channel zones flowing in a north–south trending direction. The transgression and regression cycles indicate that the Upper Cretaceous to Lower Eocene successions can be divided into thirteen depositional sequences (Sequences SrCr‐0 to SrCr‐5, and SrPg‐1 to SrPg‐7). These depositional sequences demonstrate three types of stacking patterns: Types A to C, each of which shows a succession mainly comprising a meandering fluvial system, a braided fluvial system with minor meandering aspects in the upper part, and major marine incursion beds in the middle part, respectively, although all show an overall transgressive to regressive succession. The Type C marine incursion beds characteristically comprise bay center and tidal‐dominated bay margin facies. Basin‐transecting long seismic sections demonstrate a roll up structure on the trench slope break (TSB) side of the basin. These facts suggest that during the Cretaceous to Eocene periods, the studied fluvial‐dominated forearc basin was sheltered by the uplifted TSB. The selective occurrences of the Type C sequences suggest that when a longer‐scale transgression occurred, especially in Santonian and early Campanian periods, a large bay basin was developed, creating accommodation space, which induced the deposition of the Cretaceous Kuji Group along the arc‐side basin margin.  相似文献   

3.

Two kinds of margin respectively occur in the Ordos Basin during the Middle-Late Triassic (Yanchang Age), one is foreland margin developed under the background of flexural subsidence by thrusting intensively in the southwest margin, and the other is intracratonic basin margin by stable subsidence in northern and central parts of the basin. The Middle-Late Triassic Yanchang Formation can be divided into four regional third-order sequences, which are separated by gentle angular unconformity or regional erosion surface, made up of lowstand system tract (LST), expanding system tract (EST) and highstand system tract (HST) from lower to upper within a sequence. But there are distinct differences of the sequence framework between the southwest margin and northern and central parts of the basin. The southwest margin develops heavy conglomerate layer and unconformity as a result of orogeny by thrusting, and the intracratonic basin margin by stable subsidence in the northern and central parts grows aggradational sandstone, conglomerate in fluvio-delta system and parallel unconformity. The depositional framework of southwest margin reflects the tectonic evolution from flexural subsidence by thrusting to rebounded uplift. The formation of sequence boundary is related to the resilient uplift and erosion. The sequence stratigraphic framework and depositional system tract configuration in the foreland basin are controlled by structural activity of the fold and thrust belt, and the sequence succession reflects episodic thrusting of the Middle-Late Triassic toward the foreland basin. The sequence evolution in northern and central parts reflects the depositional succession of fluvio-delta system under intracratonic background, composed of coarse-grained sediment in braided channel deposit at the lower, meandering channel deposit in the middle and fine-grained sediment in the flood plain at the upper, dominated by lake level fluctuation. During the deposit of the LST in the intracraton basin, accommodation space is limited, and results in abundant fluvial sediment migration laterally, erosion and transport, forming laterally sandstone composite and aggradational deposit on the alluvial plain, which constitutes specific erosion unconformity boundary.

  相似文献   

4.
Two kinds of margin respectively occur in the Ordos Basin during the Middle-Late Triassic (Yanchang Age), one is foreland margin developed under the background of flexural subsidence by thrusting intensively in the southwest margin, and the other is intracratonic basin margin by stable subsidence in northern and central parts of the basin. The Middle-Late Triassic Yanchang Formation can be divided into four regional third-order sequences, which are separated by gentle angular unconformity or regional erosion surface, made up of lowstand system tract (LST), expanding system tract (EST) and highstand system tract (HST) from lower to upper within a sequence. But there are distinct differences of the sequence framework between the southwest margin and northern and central parts of the basin. The southwest margin develops heavy conglomerate layer and unconformity as a result of orogeny by thrusting, and the intracratonic basin margin by stable subsidence in the northern and central parts grows aggradational sandstone, conglomerate in fluvio-delta system and parallel unconformity. The depositional framework of southwest margin reflects the tectonic evolution from flexural subsidence by thrusting to rebounded uplift. The formation of sequence boundary is related to the resilient uplift and erosion. The sequence stratigraphic framework and depositional system tract configuration in the foreland basin are controlled by structural activity of the fold and thrust belt, and the sequence succession reflects episodic thrusting of the Middle-Late Triassic toward the foreland basin. The sequence evolution in northern and central parts reflects the depositional succession of fluvio-delta system under intracratonic background, composed of coarse-grained sediment in braided channel deposit at the lower, meandering channel deposit in the middle and fine-grained sediment in the flood plain at the upper, dominated by lake level fluctuation. During the deposit of the LST in the intracraton basin, accommodation space is limited, and results in abundant fluvial sediment migration laterally, erosion and transport, forming laterally sandstone composite and aggradational deposit on the alluvial plain, which constitutes specific erosion unconformity boundary.  相似文献   

5.
With a comprehensive geological and geophysical data base,the Paleogene in the Liaodong Bay area,which consists of the Kongdian,Shahejie and Donghying Formations from the base to top,was divided into 4 second-order sequences and 8 third-order sequences based on the characteristics of the se-quence boundaries. Each third-order sequence is subdivided into the lowstand,lake transgressive and highstand systems tracts. The Lowstand systems tract (LST) is mainly composed of progradational parasequence sets,while the lake transgressive systems tract (TST) largely consists of the retrograda-tional parasequence sets and the highstand systems tract (HST) is dominated by the progradational parasequence sets. The main types of depositional systems include the shallow lake,semi-deep lake,deep lake,delta,fan delta,braided fluvial delta and nearshore subaqueous fan. The braided fluvial delta and fan delta depositional systems are mainly confined to the sequences of the lower SEs4-Ek,SEs3 and SEs1 2,while the sequences of SEd3,SEd2 and SEd1 are dominated by the delta and nearshore subaqueous fan depositional systems with the latter being developed at the downthrown side of the basin-bounding fault in each sequence. The evolution of the depositional systems is always con-trolled by the paleo-tectonic setting and the ancient landform in the space and geological time. It is concluded that the most favorable reservoirs are distributed in the Liaoxi low uplift and the central Liaozhong sag.  相似文献   

6.
The southern foreland basin of the Alborz Mountains of northern Iran is characterized by an approximately 7.3‐km‐thick sequence of Miocene sedimentary rocks, constituting three basin‐wde coarsening‐upward units spanning a period of 106 years. We assess available magnetostratigraphy, paleoclimatic reconstructions, stratal architecture, records of depositional environments, and sediment‐provenance data to characterize the relationships between tectonically‐generated accommodation space (A) and sediment supply (S). Our analysis allows an inversion of the stratigraphy for particular forcing mechanisms, documenting causal relationships, and providing a basis to decipher the relative contributions of tectonics and climate (inferred changes in precipitation) in controlling sediment supply to the foreland basin. Specifically, A/S > 1, typical of each basal unit (17.5–16.0, 13.8–13.1 and 10.3–9.6 Ma), is associated with sharp facies retrogradation and reflects substantial tectonic subsidence. Within these time intervals, arid climatic conditions, changes in sediment provenance, and accelerated exhumation in the orogen suggest that sediment supply was most likely driven by high uplift rates. Conversely, A/S < 1 (13.8 and 13.8–11 Ma, units 1, and 2) reflects facies progradation during a sharp decline in tectonic subsidence caused by localized intra‐basinal uplift. During these time intervals, climate continued to be arid and exhumation active, suggesting that sediment supply was again controlled by tectonics. A/S < 1, at 11–10.3 Ma and 9‐6–7.6 Ma (and possibly 6.2; top of units 2 and 3), is also associated with two episodes of extensive progradation, but during wetter phases. The first episode appears to have been linked to a pulse in sediment supply driven by an increase in precipitation. The second episode reflects a balance between a climatically‐induced increase in sediment supply and a reduction of subsidence through the incorporation of the proximal foreland into the orogenic wedge. This in turn caused an expansion of the catchment and a consequent further increase in sediment supply. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The Yezo Group has a wide longitudinal distribution across Hokkaido, northern Japan. It represents a Cretaceous (Early Aptian–Late Maastrichtian) and Late Paleocene forearc basin‐fill along the eastern margin of the paleo‐Asian continent. In the Nakagawa area of northern Hokkaido, the uppermost part of the Yezo Group consists of the Hakobuchi Formation. Along the western margin of the Yezo basin, 24 sedimentary facies (F) represent 6 facies associations (FA), suggesting prevailing storm‐dominated inner shelf to shoreface environments, subordinately associated with shoreface sand ridges, outer shelf, estuary and fluvial environments. The stacking patterns, thickness and facies trends of these associations allow the discrimination of six depositional sequences (DS). Inoceramids Sphenoceramus schmidti and Inoceramus balticus, and the ammonite Metaplacenticeras subtilistriatum, provide late Early to Late Campanian age constraints to this approximately 370‐m thick final stage of deposition and uplift of the Yezo forearc basin. Six shallow‐marine to subordinately non‐marine sandstone‐dominated depositional sequences include four 10 to 110‐m thick upward‐coarsening regressive successions (FS1), occasionally associated with thin, less than 10‐m thick, upward‐fining transgressive successions (FS2). The lower DS1–3, middle DS4–5 and upper DS6 represent three depositional sequential sets (DSS1–3). These eastward prograding and westward retrograding recurring shallow‐marine depositional systems may reflect third‐ and fourth‐order relative sealevel changes, in terms of sequence stratigraphy.  相似文献   

8.
Abstract   The present paper describes the newly discovered early Miocene unconformity in the northern Noto Peninsula, on the Japan Sea side, central Japan. The unconformity marks the boundary between an early Miocene non-marine to marine succession and a more extensive, late early to early middle Miocene marine succession, and contains a time gap of an order of 1 million years or less from 18 Ma or earlier to 17 Ma. The early Miocene succession likely represents an early phase of marine transgression and initial slow rifting. The overlying early to early middle Miocene succession records the climax of the opening of the Japan Sea at ca  16 Ma with widespread, rapid subsidence of the Japan Arc. The unconformity between the two transgressive successions may represent a global sealevel fall or, more likely, crustal uplifting because no upward-shallowing or regressive facies remains between the two successions. Early Miocene unconformities that are thought to be correlative with this unconformity in the northern Noto Peninsula occur in places along the Japan Sea coast of Sakhalin and Japan. They are likely to have been produced during rifting in response to upwelling of asthenospheric mantle, although more accurate age constraints are necessary to evaluate this idea.  相似文献   

9.
Sequence stratigraphy which began in the late seventies of the previous century has not only enriched and widened the scope of stratigraphy, but also has been widely used in sedimentary geology, basin analy-sis, exploration of oil and gas, and other fields of ge-ology. In the last two decades and more, sequence stratigraphy, as a new branch of stratigraphical disci-pline, has become a cornerstone of modern stratigra-phy, and has produced more profound influences than all others. The currently …  相似文献   

10.
Recently, some scholars have proposed that the South China Block (SCB) was controlled by a compressive tectonic regime in the middle–late Early Cretaceous, challenging the belief that the SCB was under an extensional setting during the Cretaceous. The Early Cretaceous tectonic setting constraint in the SCB can offer vital insight to clarify the Mesozoic subduction history of the Paleo-Pacific. Therefore, to determine the SCB tectonic regime during the Early Cretaceous, this study investigated sedimentary rocks from the Lower Cretaceous Heshui Formation in the Xingning Basin, a foreland basin located in the southeastern SCB. Provenance analysis was performed using sandstone modal analysis, sandstone geochemical characteristics, and detrital zircon geochronology. Based on the results, we discussed basin sediment sources and the SCB tectonic regime during the Early Cretaceous. The results showed that the maximum Heshui Formation depositional age was 103 Ma ± 1.6 Ma in the Early Cretaceous Albian. Detrital framework modes and geochemical characteristics of sandstone indicated that Heshui Formation's source rocks were granites and sedimentary rocks. The detrital zircon U–Pb ages could be classified into two major and four subordinate age populations. The Wuyi Terrane to the north and southeast coastal regions to the east were the primary potential Heshui Formation source areas. However, the lower and upper sandstones are different in the peak ages, ~437 and ~146 to 104 Ma, respectively, indicating that the major source area shifted from the Wuyi Terrane to the southeastern coastal regions during the late Early Cretaceous. The sandstone modal analysis results indicated that the source area comprised mainly collisional–orogenic material. The SCB was under a compressive tectonic regime during the late Early Cretaceous and this compression action continued until at least 103 Ma ± 1.6 Ma.  相似文献   

11.

Sediments shed from the northern margin of the Tibetan Plateau, the Qilian Mountains, are widely deposited in the foreland basin, the Jiuxi Basin, archiving plenty of information about the mountain surface uplift and erosion history. The Laojunmiao section, 1960 m thick, representing the upper sequence of the Cenozoic basin sediments, is paleomagnetically dated to about 13-0 Ma BP. Detailed sedimentary study of this sequence has revealed five sedimentary facies associations which determine four stages of sedimentary environment evolution. They are: (I) the half-deep lake system before 12.18 Ma BP, (II) the shallow lake system between 12.18 and 8.26 Ma BP, (III) the fan delta dominated sedimentary system in dry climate between 8.26 and 6.57 Ma BP, and (IV) alluvial fan system since 6.57 Ma BP. The associated mountain erosion and uplift are suggested to have experienced three phases, that is, tectonic stable (13-8.26 Ma BP), gradual uplift (8.26-<4.96 Ma BP), and rapid intermittent uplift (>3.66-0 Ma BP). The uplift at ∼3.66 Ma BP is of great importance in tectonics and geomorphology. Since then, tectonic uplift and mountain building have been accelerated and become strong intermittent. At least three significant tectonic events took place with ages at <1.80-1.23, 0.93-0.84 and 0.14 Ma BP, respectively. Thus, the uplift of the northern Tibetan Plateau is a complex process of multiple phases, unequal speed and irregular movements.

  相似文献   

12.
潮汕坳陷MZ-1井揭示的中生界为深入分析南海北部晚中生代的构造演化提供了关键性的资料.基于MZ-1井的标定,开展了系统的地震剖面构造-地层解释,在中生代地层内识别出Tm30区域性不整合面,同位素定年确定该界面发育于早白垩世末至晚白垩世初,落实了潮汕坳陷上白垩统的分布.此外,在研究区西南部识别出大型的兴宁—东沙逆冲推覆带,主要由多条NW—SE向延伸、西倾的叠瓦状逆冲断层及其伴生的不对称褶皱组成,其明显控制了上白垩统厚度分布.由此可见,上白垩统构造层不具有张裂盆地的典型特征,因此南海北部主动陆缘向被动陆缘的转换不会早于晚白垩世末.研究认为,在南海地区特提斯残留洋盆关闭的总背景下,在约80 Ma时期,南海地块与华南陆块强烈碰撞挤压,在靠近碰撞带处的礼乐滩、潮汕坳陷西南部形成褶皱冲断构造体系,进而控制了潮汕坳陷晚白垩世周缘前陆盆地的发育.  相似文献   

13.
The volcanic island of Milos, Greece, comprises an Upper Pliocene –Pleistocene, thick (up to 700 m), compositionally and texturally diverse succession of calc-alkaline, volcanic, and sedimentary rocks that record a transition from a relatively shallow but dominantly below-wave-base submarine setting to a subaerial one. The volcanic activity began at 2.66±0.07 Ma and has been more or less continuous since then. Subaerial emergence probably occurred at 1.44±0.08 Ma, in response to a combination of volcanic constructional processes and fault-controlled volcano-tectonic uplift. The architecture of the dominantly felsic-intermediate volcanic succession reflects contrasts in eruption style, proximity to source, depositional environment and emplacement processes. The juxtaposition of submarine and subaerial facies indicates that for part of the volcanic history, below-wave base to above-wave base, and shoaling to subaerial depositional environments coexisted in most areas. The volcanic facies architecture comprises interfingering proximal (near vent), medial and distal facies associations related to five main volcano types: (1) submarine felsic cryptodome-pumice cone volcanoes; (2) submarine dacitic and andesitic lava domes; (3) submarine-to-subaerial scoria cones; (4) submarine-to-subaerial dacitic and andesitic lava domes and (5) subaerial lava-pumice cone volcanoes. The volcanic facies are interbedded with a sedimentary facies association comprising sandstone and/or fossiliferous mudstone mainly derived from erosion of pre-existing volcanic deposits. The main facies associations are interpreted to have conformable, disconformable, and interfingering contacts, and there are no mappable angular unconformities or disconformities within the volcanic succession.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

14.
Through rock acoustic emission experiments and structural deformation analysis, the tectonic stages in Meso-Cenozoic in the Kuqa depression of the Tarim basin are firstly divided. Then, combining with rock magnetic fabric analysis and memory information, the distribution characteristics of tectonic stress field of every tectonic stage are quantificationally resumed. At the same time, according to the distribution relation of tectonic stress field of hydrocarbon formation stage by the finite element numerical simulation method and the known hydrocarbon reservoirs, the effects of tectonic stress field on hydrocarbon migration and accumulation are further analyzed. The Kuqa depression has mainly experienced six tectonic movements since Mesozoic. Except that the tectonic stress field of the Early Yanshan stage (208-135 Ma) showed northeast-southwest extensional stress field where the orientation of the maximum principal compressive stress (σ1) was northwest-southeast, the others were compressive stress field where the orientations of the maximum principal compressive stress (σ1) were near north-south. Along with the closure of the paleo-Tethys ocean, the Kuqa depression in the Indosinian stage (250-208 Ma) was in strong compressive circumstance with apparently big maximum principal stress (σ1) magnitude. Due to the equilibrium adjustment of interior Eurasia, the Kuqa depression in the Early Yanshan stage (208-135 Ma) was in weak extensional circumstance with apparently small maximum principal stress (σ1) magnitude. From the Late Yanshan stage (135-65 Ma) on, with a series of collision events occurring at the south edge of Eurasia, the Kuqa depression was in compressive circumstance again in which the maximum principal stress (σ1) magnitude was from small to big in turn. The Late Himalayan stage (2.6-0.7 Ma) was the main tectonic deformation stage with the biggest principal compressive stress (σ1) magnitude. Tectonic stress field plays a dominant role in hydrocarbon formation, it not only forms migration channels and trap structures for hydrocarbon accumulation, but also is the main drive power for hydrocarbon migration vertically along faults.  相似文献   

15.
The steps and methods for the establishment of the global boundary stratotype section and point (GSSP) are summed up briefly as follows. (i) Select rock sequences of approximately the same age duration in a region, make a thorough study of their properties or attributes in order to establish the high-resolution stratigraphic units reflecting the natural rhythms in Earth's history, and proceed by multidisciplinary comprehensive studies to reveal the relationship, including time-space relation and possible mutual causality, among the various stratigraphic units and the different natural rhythms established. (ii) Seek for the "natural break" that represents the "major natural changes in the historical development of the Earth" in shallow marine facies areas, which is frequently the third-order sequence boundaries. (iii) Trace from shallow marine facies areas toward the continental slope and bathyal areas to seek for a continuous depositional sequence that corresponds in time span to the "natural break" of shallow marine facies areas. (iv) Seek for a horizon within the continuous depositional sequence that approximately coincides with the maximum regressive point in the "natural break". This horizon is commonly within a lowerstand systems tract (LST) or a shelf margin systems tract (SMST) of the relevant third-order sequence. (v) Seek immediately above this horizon of maximum marine regression for an organic radiation or explosion event closely related to the natural boundary, which is generally the first flooding surface (FFS) of the relevant third-order sequence. (vi) Select within the organic event deposits closely related to the FFS the base boundary of a fossil taxon with widest geographical range as the Leading Group biozone for designation of the stratigraphic boundary. (vii) Select from among the sections with continuous depositional sequence formed under similar sedimentary palaeogeographic background (in general continental slope or bathyal environments) the section which possesses the shortest distance between the base boundary of the Leading Group biozone and the immediately underlying FFS of the relevant third-order sequence as the global stratotype section. The first appearance datum (FAD) of the Leading Group biozone species in the section may be regarded as the ideal GSSP. The steps suggested above are a supplement and improvement of the currently used procedures and methods for establishing GSSP. The GSSP established by using the steps and methods suggested here would make the stratigraphic boundaries better reflect the "major natural changes in the historical development of the Earth", more readily distinguishable and easily operable in recognition and correlation, and at the same time also make the designation of boundaries more objective.  相似文献   

16.
Wave analysis of basins is not only important to the crustal undation theory but also significant to petro-leum exploration by providing information such as the unconformity formation, migration and interchanges between uplifts and depressions, the migrations of sedimentary facies, and basin evolutionary stages. Early in the last century, Haarmann (1930, cited in Jacobs[1] and Scheidegger[2]) and Bemmelen (1933, cited in Jacobs[1] and Scheidegger[2]) put forward the theory of crustal undatio…  相似文献   

17.
Thick terminal Proterozoic–lowest Cambrian successions allow reference of the Saint John, New Brunswick, and MacCodrum Brook, southern Cape Breton Island, areas to the marginal platform of the Avalon microcontinent. Marginal-platform siliciclastic-dominated sequences form a cover on Late Precambrian arc successions from southern New Brunswick to North Wales. Their deposition in fault-bounded basins began with the origin of the Avalon microcontinent and development of a persistent transtensional regime in the latest Precambrian. The terminal Proterozoic–lowest Cambrian on the Avalonian marginal platform consists of three successive lithofacies associations: lower subaerial rift to marginal-marine facies; overlying cool-water, wave-influenced, marine platform sandstones and shales; and higher macrotidal quartz arenites (=Avalonian depositional sequences 1–2). Only the Lower Cambrian macrotidal quartz arenites onlap southeast, where they form the oldest Cambrian unit on the inner platform. These major lithofacies are the Rencontre, Chapel Island, and Random formations, respectively, in Avalonian North America. Southwest thinning of the Rencontre–Chapel Island–Random interval in southern New Brunswick reflects slower subsidence of a fault-bounded area in the city of Saint John. The depositional sequence 1–2 unconformity, which falls in the sub-trilobitic Lower Cambrian Watsonella crosbyi Zone of the Chapel Island Formation, persists for 650 km along the marginal platform from southeastern Newfoundland to southern New Brunswick and, potentially, appears in Cape Breton Island. Latest Precambrian-earliest Cambrian epeirogenic and depositional history was very uniform along the marginal platform, and a unified lithostratigraphic nomenclature is appropriate.  相似文献   

18.
Abstract A multidisciplinary study was conducted on the section of the Siwalik Group sediments, approximately 5000 m thick, exposed along the Karnali River. Analysis of facies, clay mineralogy and neodymium isotope compositions revealed significant changes in the sedimentary record, allowing discussion of their tectonic or climatic origin. Two major changes within the sedimentary fill were detected: the change from a meandering to a braided river system at ca 9.5 Ma and the change from a deep sandy braided to a shallow sandy braided river system at ca 6.5 Ma. The 9.5‐Ma change in fluvial style is contemporaneous with an abrupt increase of ?Nd(0) values following a ?Nd(0) minimum. This evolution indicates a change in source material and erosion of Lesser Himalayan rocks within the Karnali catchment basin between 13 and 10 Ma. The tectonic activity along the Ramgarh thrust caused this local exhumation. By changing the proximity and morphology of relief, the forward propagation of the basal detachment to the main boundary thrust was responsible for the high gradient and sediment load required for the development of the braided river system. The change from a deep sandy braided to a shallow sandy braided river system at approximately 6.5 Ma was contemporaneous with a change in clay mineralogy towards smectite‐/kaolinite‐dominant assemblages. As no source rock change and no burial effect are detected at that time, the change in clay mineralogy is interpreted as resulting from differences in environmental conditions. The facies analysis shows abruptly and frequently increasing discharges by 6.5 Ma, and could be linked to an increase in seasonality, induced by intensification of the monsoon climate. The major fluvial changes deciphered along the Karnali section have been recognized from central to western Nepal, although they are diachronous. The change in clay mineralogy towards smectite‐/kaolinite‐rich assemblages and the slight decrease of ?Nd(0) have also been detected in the Bengal Fan sedimentary record, showing the extent and importance of the two major events recorded along the Karnali section.  相似文献   

19.
The magmatic province of the northern Lhasa Terrane includes an Early Cretaceous (120–130 Ma) plutonic event, and a Late Cretaceous (80–110 Ma) volcanic event. The plutonic association constitutes an older suite of granodiorites, monzogranites and tonalites and a younger peraluminous leucogranite facies. Plutonism occurred about 20 Ma after obduction of the Banggong ophiolite, following closure between the Lhasa and Qiantang Terranes.The earlier suite is of broadly calc-alkaline in composition but differs from arc-related magmas in that only more evolved compositions are represented (SiO2 > 58%) and Rb/Zr ratios are elevated relative to the Gangdese batholith to the south. Trace-element and isotopic constraints are consistent with derivation from a Late Proterozoic amphibole-bearing crustal source requiring temperatures > 950°C during anatexis. The leucogranites require a pelitic source which is tentatively identified as the Nyaingentanglha basement exposed south of the plutonic province. Unlike the High Himalaya leucogranites, trace elements and field relations require a high degree of melting at source (> 50%) suggesting fluid-absent melting at temperatures > 850°C. Such high crustal temperatures indicate convective heat transfer from the mantle.Thermal constraints together with a tectonic setting of post-emplacement uplift followed by a marine transgression in the northern Lhasa Terrane can not be reconciled with a model of tectonically thickened crust but are consistent with post-collision attenuation of the lithosphere.  相似文献   

20.
塔里木盆地北缘库车前陆盆地地温梯度分布特征   总被引:35,自引:7,他引:35       下载免费PDF全文
结合塔里木库车前陆盆地的109口井的地温数据,给出了库车盆地的地温场分布特征. 库车盆地各构造单元的平均地温梯度值为18~28℃/km,与我国其他大、中型沉积盆地相比,仍然偏低. 库车前陆盆地整体上是属于低温冷盆,山前带部位,依奇克里克、克拉苏和大宛齐等构造分区是低温冷盆中的高地温梯度带;从山前带由北向南,地温梯度逐渐降低. 在盆地的南部,地温梯度又存在明显差异. 总体上,地温梯度随深度的增加而降低,趋于一致,但在不同地质构造条件下其变化的速率不同. 在此基础上,进一步探讨地温梯度与盆地形成和构造演化的关系以及油气勘探意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号