首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A case is described in which complex auroral forms varied slightly at Lovozero Observatory over the course of more than an hour in the morning hours during the auroral recovery phase. Pc3 and Pc5 auroral and geomagnetic pulsations were observed during the event. The phenomenon is compared with recurrent pulsating auroras, which are described in the literature.  相似文献   

2.
Simultaneous morning Pc5 pulsations (f ~ 3–5 mHz) in the geomagnetic field, aurora intensities (in the 557.7 and 630.0 nm oxygen emissions and the 471.0 nm nitrogen emission), and riometer absorption, were studied based on the CARISMA, CANMOS, and NORSTAR network data for the event of January 1, 2000. According to the GOES-8 satellite observations, these Pc5 geomagnetic pulsations are observed as incompressible Alfvén waves with toroidal polarization in the magnetosphere. Although the Pc5 pulsation frequencies in auroras, the geomagnetic field, and riometer absorption are close to one another, stable phase relationships are not observed between them. Far from all trains of geomagnetic Pc5 pulsations are accompanied by corresponding auroral pulsations; consequently, geomagnetic pulsations are primary with respect to auroral pulsations. Both geomagnetic and auroral pulsations propagate poleward, and the frequency decreases with increasing geomagnetic latitude. When auroral Pc5 pulsations appear, the ratio of the 557.7/630.0 nm emission intensity sharply increases, which indicates that auroral pulsations result from not simply modulated particle precipitation but also an additional periodic acceleration of auroral electrons by the wave field. A high correlation is not observed between Pc5 pulsations in auroras and the riometer absorption, which indicates that these pulsations have a common source but different generation mechanisms. Auroral luminosity modulation is supposedly related to the interaction between Alfvén waves and the region with the field-aligned potential drop above the auroral ionosphere, and riometer absorption modulation is caused by the scattering of energetic electrons by VLF noise pulsations.  相似文献   

3.
We analyse long-lasting (several hours) Pc1 pearl pulsations with decreasing, increasing or constant central frequencies. We show that nonstationary pearl events (those with either decreasing or increasing central frequency) are observed simultaneously with increasing auroral magnetic activity at the nightside magnetosphere while the stationary events (constant central frequency) correspond to quiet magnetic conditions. Events with decreasing central frequency are observed mostly in the late morning and daytime whereas events with increasing central frequency appear either early in the morning or in the afternoon. We explain the diurnal distribution of the nonstationary pearl pulsations in terms of proton drifts depending on magnetic activity, and evaluate the magnetospheric electric field based on the variation of the central frequency of pearl pulsations.  相似文献   

4.
Photometric measurements of pulsating auroras have been carried out in the Pi3 range of geomagnetic pulsations with periods of 2–10 min with the use of auroral all-sky camera films obtained at the Lovozero Observatory. The new all-sky camera developed at the Polar Geophysical Institute uses the CCD matrix. This makes it possible to obtain simultaneous images in red, green, and blue spectral ranges and thus to investigate temporal luminosity variations in these spectral regions. The hardness of penetrating auroral electrons with a time resolution of a few seconds is qualitatively estimated. It is found that the energy of the electrons that cause auroras in the Pi3 pulsation range is not constant over the pulsation period. It is maximal at the lowest luminosity and minimal at its peaks. Luminosity pulsations are compared with geomagnetic pulsations, and it is established that large differences between luminosity variations in different parts of the sky explain the incomplete correspondence between the records of auroral and geomagnetic pulsations.  相似文献   

5.
A new type of high-latitude magnetic bays is revealed at geomagnetic latitudes higher than 71°, called ??polar substorms.?? It is shown that polar substorms differ from both classical substorms and high-latitude geomagnetic disturbances of the type of polar boundary intensifications (PBIs). While classical substorms start at latitudes below 67° and then expand poleward, polar substorms start almost simultaneously in the evening-night polar region of the oval. In contrast to PBIs, accompanied by auroral streamers expanding southward, polar substorms are accompanied by auroral arcs quickly traveling northward. It is shown that polar substorms are observed before midnight (20?C22 MLT) under weak geomagnetic activity (Kp ?? 2) during the late recovery phase of a magnetic storm. It is shown that a typical feature of polar substorms is the simultaneous excitation of highly intensive Pi2 and Pi3 geomagnetic pulsations at high latitudes, which exceed the typical amplitude of these pulsations at auroral latitudes by more than an order of magnitude. The duration of pulsations is determined by the substorm duration, and their amplitude decreases sharply at geomagnetic latitudes below ??71°. It is suggested that pulsations reflect fluctuations in ionospheric currents connected with polar substorms.  相似文献   

6.
The latitudinal position of subauroral proton spots (special proton auroras observed from the IMAGE satellite) has been compared with the Pc1 pulsation intensity distribution determined using the data from the Finnish meridional network of induction magnetometers. It has been indicated that a Pc1 intensity maximum is always observed at the station that is closer to the proton aurora projection. Two Pc1 bands were registered in the event when two proton auroral spots were simultaneously observed at different latitudes. In this case, the Pc1 intensity distribution maximum at lower frequencies was related to a proton auroral spot at a higher latitude and vice versa. Such a spatial correlation between Pc1 pulsations and proton auroral spots, together with the previously established time correlation between these phenomena, demonstrates that subauroral proton spots reflect the region of ion cyclotron instability in the equatorial magnetosphere at the level of the ionosphere.  相似文献   

7.
A search for Pc3–4 wave activity was performed using data from a trans-Antarctic profile of search-coil magnetometers extending from the auroral zone through cusp latitudes and deep into the polar cap. Pc3–4 pulsations were found to be a ubiquitous element of ULF wave activity in all these regions. The diurnal variations of Pc3 and Pc4 pulsations at different latitudes have been statistically examined using discrimination between wave packets (pulsations) and noise. Daily variations of the Pc3–4 wave power differ for the stations at the polar cap, cusp, and auroral latitudes, which suggests the occurrence of several channels of propagation of upstream wave energy to the ground: via the equatorial magnetosphere, cusp, and lobe/mantle. An additional maximum of Pc3 pulsations during early-morning hours in the polar cap has been detected. This maximum, possibly, is due to the proximity of the geomagnetic field lines at these hours to the exterior cusp. The statistical relation between the occurrence of Pc3–4 pulsations and interplanetary parameters has been examined by analyzing normalized distributions of wave occurrence probability. The dependences of the occurrence probability of Pc3–4 pulsations on the IMF and solar wind parameters are nearly the same at all latitudes, but remarkably different for the Pc3 and Pc4 bands. We conclude that the mechanisms of high-latitude Pc3 and Pc4 pulsations are different: Pc3 waves are generated in the foreshock upstream of the quasi-parallel bow shock, whereas the source of the Pc4 activity is related to magnetospheric activity. Hourly Pc3 power has been found to be strongly dependent on the season: the power ratio between the polar summer and winter seasons is 8. The effect of substantial suppression of the Pc3 amplitudes during the polar night is reasonably well explained by the features of Alfven wave transmission through the ionosphere. Spectral analysis of the daily energy of Pc3 and Pc4 pulsations in the polar cap revealed the occurrence of several periodicities. Periodic modulations with periods 26, 13 and 8–9 days are caused by similar periodicities in the solar wind and IMF parameters, whereas the 18-day periodicity, observed during the polar winter only, is caused, probably, by modulation of the ionospheric conductance by atmospheric planetary waves. The occurrence of the narrow-band Pc3 waves in the polar cap is a challenge to modelers, because so far no band-pass filtering mechanism on open field lines has been identified.  相似文献   

8.
The level of wave geomagnetic activity in the morning, afternoon, and nighttime sectors during strong magnetic storms with Dst varying from ?100 to ?150 nT has been statistically studied based on a new ULF wave index. It has been found out that the intensity of geomagnetic pulsations at frequencies of 2–7 mHz during the magnetic storm initial phase is maximal in the morning and nighttime sectors at polar and auroral latitudes, respectively. During the magnetic storm main phase, wave activity is maximal in the morning sector of the auroral zone, and the pulsation intensity in the nighttime sector is twice as low as in the morning sector. It has been indicated that geomagnetic pulsations excited after substorms mainly contribute to a morning wave disturbance during the magnetic storm main phase. During the storm recovery phase, wave activity develops in the morning and nighttime sectors of the auroral zone; in this case nighttime activity is also observed in the subauroral zone.  相似文献   

9.
The geomagnetic observations, performed at the global network of ground-based observatories during the recovery phase of the superstrong magnetic storm of July 15–17, 2000 (Bastille Day Event, Dst = ?301 nT), have been analyzed. It has been indicated that magnetic activity did not cease at the beginning of the storm recovery phase but abruptly shifted to polar latitudes. Polar cap substorms were accompanied by the development of intense geomagnetic pulsations in the morning sector of auroral latitudes. In this case oscillations at frequencies of 1–2 and 3–4 mHz were observed at geomagnetic latitudes higher and lower than ~62°, respectively. It has been detected that the spectra of variations in the solar wind dynamic pressure and the amplitude spectra of geomagnetic pulsations on the Earth’s surface were similar. Wave activity unexpectedly appeared in the evening sector of auroral latitudes after the development of near-midnight polar substorms. It has been established that the generation of Pc5 pulsations (in this case at frequencies of 3–4 mHz) was spatially asymmetric about noon during the late stage of the recovery phase of the discussed storm as took place during the recovery phase of the superstrong storms of October and November 2003. Intense oscillations were generated in the morning sector at the auroral latitudes and in the postnoon sector at the subauroral and middle latitudes. The cause of such an asymmetry, typical of the recovery phase of superstrong magnetic storms, remains unknown.  相似文献   

10.
Ionospheric heating experiments were done by the EISCAT Heater in Tromsø on 15–19 November, 1993. A low-light TV camera was installed at the VLF receiving station at Porojärvi about 100 km to the south-east of Tromsø. The spectral analysis of the auroral luminosity variations showed that the brightness of the aurora varied at the modulation frequency of the heating wave. The results of this analysis and the numerical simulations of the auroral luminosity variations caused by the HF heating are shown. The variations of the optical emission intensity at the heating frequency occur during the auroral ionosphere modification. The observed intensity variation of the auroral green line during the interval of enhanced electron temperature is explained by a decreasing rate of the O2+ ion dissociative recombination when the electron temperature increases. The brightness variation depends on the characteristic energy and the intensity of the auroral electron flux and the heating wave parameters. The artificial luminosity pulsations caused by HF heating are estimated.  相似文献   

11.
We have examined the spatial and temporal correlation of high-latitude Pi1B and Pi2 pulsations, mid-latitude Pi2 pulsations, and auroral substorm onsets identified in the IMAGE far ultraviolet imager (FUV) data. Numerous search coil and fluxgate magnetometers at high latitudes (65–80° in Antarctica and Greenland) and mid-latitude fluxgate magnetometers are used. We find that Pi1B onset times agree well with onset times of intense isolated auroral substorms identified by the IMAGE FUV instrument: Pi1B onsets occurred within the 2 min cadence of the imager. For any given event, we find that Pi1B are localized to approximately 4 h of local time and 7° of magnetic latitude relative to the initial auroral brightening location as observed by IMAGE FUV. Not surprisingly, we also find that Pi1B pulsations occur typically between 2100 and 0200 MLT. Comparison to Pi2 records from these and other lower-latitude stations shows that in almost all cases Pi1B activity coincides within ±2 min with Pi2 activity. Power law fits showed that Pi1B amplitude fell off with distance−2.9 for two strong events (i.e., similar to the r−3 falloff of the signal from a dipolar source), and only slightly more rapidly than the falloff of Pi2 activity (d−2.8). Given the global nature of Pi2 pulsations versus the localized nature of Pi1B events in this study, we conclude that the mechanism that drives Pi1B pulsations is likely different from that responsible for Pi2 pulsations.  相似文献   

12.
The interrelation between sudden increases in the solar wind dynamic pressure, auroral proton flashes on the dayside equatorward of the oval, and geomagnetic pulsations in the Pc1 range is considered on the basis of simultaneous observations of the solar wind plasma parameters, proton auroras on the IMAGE satellite, and geomagnetic pulsations at the Lovozero Observatory. It is indicated that proton luminosity flashes were observed in 70% of cases equatorward of the auroral oval during sudden changes in the solar wind pressure. In this case, flashes of proton auroras were observed in 85% of cases during sudden changes in the pressure, which were related to interplanetary shocks. Increases in pressure during tangential discontinuities were accompanied by flashes of proton auroras only in 45% of cases. When the ground station was conjugate to the region occupied by a proton aurora flash, the appearance or intensification of existent pulsations in the Pc1 range was observed in 96% of cases. When the ground station was not conjugate to the region of a proton luminosity flash, the response in geomagnetic pulsations was observed in 32% of events. When a sudden change in the solar wind pressure was not accompanied by a proton luminosity flash, the response in pulsations in the Pc1 range was hardly observed.  相似文献   

13.
The analysis results of a complex of phenomena that were developing in the evening and morning magnetospheric and ionospheric sectors during two events (January 18 and February 19, 2008) are presented. The analysis is based on the observation data in the magnetotail from the THEMIS satellites and ground-based observations in the morning (MIRACLE network) and nighttime (THEMIS ground-based network) sectors. The events with moderate substorms in the nighttime sector were preceded by strong geomagnetic Pc5 pulsations in the morning sector, the regime of which changed during the development of auroral disturbances. The substorms were accompanied by dipolizations in the magnetotail at distances of ~10 Re and unexpected jump-like fluxes of ~200-keV electrons. The fluxes appeared within several minutes after a breakup at three central THEMIS satellites simultaneously spaced up to 1.7 Re. According with the ASC data at the NAL observatory (3 frames/min) and with the THEMIS network of ASC data, onset of auroral activations in the night and morning sectors occurred simultaneously. Probable reasons for the sudden suppression or intensification of Pc5 pulsations are discussed.  相似文献   

14.
The optical observations on Heiss Island and the ion drift measurements on the DMSP F8 satellite were used to study the aurora characteristics and ionospheric convection before and after SC registered at 2330 UT on January 13, 1988. It has been indicated that two zones of luminosity can be distinguished in morning-time auroras during the quiet period before SC: the soft zone with auroral arcs and the harder diffuse auroral zone (equatorward of the first zone). After SC, a gradual smooth activation of auroras in both zones was followed (4–5 min later) by a more abrupt intensification of diffuse luminosity and by the appearance of numerous bright discrete auroras throughout the sky. In the diffuse auroral zone, the variations in the luminosity intensity with a period of 6–7 min were observed after SC. Auroral and geomagnetic field pulsations are closely correlated. During the quiet period before SC, sunward convection was concentrated in the soft precipitation region in the form of jets located in the vicinity of auroral arcs. After SC, considerable sunward convection was observed in the diffuse auroral zone. Peaks of the upward ion drift velocity were registered in the vicinity of auroral arcs.  相似文献   

15.
The spatial dynamics of bursts of geomagnetic Pi2-type pulsations during a typical event of a magnetospheric substorm (April 13, 2010) drifting to the pole was investigated using the method of generalized variance characterizing the integral time increment of the total horizontal amplitude of the wave at a given point in the selected time interval. The digital data of Scandinavian profile observations from IMAGE magnetometers with 10-second sampling and data of the INTERMAGNET project observations at the equatorial, middle-latitude and subauroral latitudes with a 1-second sampling were used in the analysis. It was shown that Pi2 pulsation bursts in a frequency band of 8–20 mHz appear simultaneously on a global scale: from the polar to equatorial latitudes with maximum amplitudes at latitudes of the maximum intensity of the auroral electrojet and with a maximum amplitude of geomagnetic pulsations Pi3 within a band of 1.5–6 mHz. The first (left-polarized) intensive Pi2 burst appeared at auroral latitudes several minutes after breakup, while the second (right-polarized) burst occurred 15 min after breakup but at higher (polar) latitudes where the substorm had displaced by that time. The direction of wave-polarization vector rotation was opposite for auroral and subauroral latitudes, but it was identical at the equator and in the subauroral zone. The pulsation amplitude at the equator was maximal in the night sector.  相似文献   

16.
About 100 breakups of different types and intensities are studied on the basis of Lovozero Observatory data. Magnetic pulsations in different frequency ranges, VLF emissions, and auroral activity are analyzed using the TV data. It is found that magnetic pulsations in all frequency ranges lag behind the moment of breakup by 0.5–2.0 min, and bursts of low-intensity broadband VLF emission hiss are observed 3–10 min before breakup. Hiss leading breakup corresponds to feeble auroras located northward of a pre-breakup arc.  相似文献   

17.
A complex of geophysical phenomena (geomagnetic pulsations in different frequency ranges, VLF emissions, riometer absorption, and auroras) during the initial phase of a small recurrent magnetic storm that occurred on February 27–March 2, 2008, at a solar activity minimum has been analyzed. The difference between this storm and other typical magnetic storms consisted in that its initial phase developed under a prolonged period of negative IMF B z values, and the most intense wave-like disturbances during the storm initial phase were observed in the dusk and nighttime magnetospheric sectors rather than in the daytime sector as is observed in the majority of cases. The passage of a dense transient (with N p reaching 30 cm−3) in the solar wind under the southward IMF in the sheath region of the high-speed solar wind stream responsible for the discussed storm caused a great (the AE index is ∼1250 nT) magnetospheric substorm. The appearance of VLF chorus, accompanied by riometer absorption bursts and Pc5 pulsations, in a very long longitudinal interval of auroral latitudes (L ∼ 5) from premidnight to dawn MLT hours has been detected. It has been concluded that a sharp increase in the solar wind dynamic pressure under prolonged negative values of IMF B z resulted in the global (in longitude) development of electron cyclotron instability in the Earth’s magnetosphere.  相似文献   

18.
We document the detailed dynamics of the dayside aurora in the ≈1200–1600 MLT sector in response to a sharp southward turning of the interplanetary magnetic field (IMF) under negative IMF By conditions. Features not documented in previous work are elucidated by using two meridan scanning photometers (separated by 2 h) and an all-sky auroral imager in Ny Ålesund, Svalbard (75.5^MLAT) in combination with magnetograms from stations on Svalbard, covering the latitude range 71^–75^MLAT. The initial auroral response may be divided into three phases consisting of: (1) intensification of both the red (630.0 nm) and green (557.7 nm) line emissions in the cusp aurora near 1200 MLT and ≈100 km equatorward shift of its equatorward boundary, at ≈75^MLAT, (2) eastward and poleward expansions of the cusp aurora, reaching the 1430 MLT meridian after 5–6 min, and (3) east-west expansion of the higher-latitude aurora (at ≈77^–78^MLAT) in the postnoon sector. The associated magnetic disturbance is characterized by an initial positive deflection of the X-component at stations located 100–400 km south of the aurora, corresponding to enhanced Sunward return flow associated with the merging convection cell in the post-noon sector. The sequence of partly overlapping poleward moving auroral forms (PMAFs) during the first 15 min, accompanied by corresponding pulsations in the convection current, was followed by a strong westward contraction of the cusp aurora when the ground magnetograms indicated a temporary return to the pre-onset level. These observations are discussed in relation to the Cowley-Lockwood model of ionospheric response to pulsed magnetopause reconnection.  相似文献   

19.
During an interaction of the Earth’s magnetosphere with the interplanetary magnetic cloud on October 18–19, 1995, a great magnetic storm took place. Extremely intense disturbances of the geomagnetic field and ionosphere were recorded at the midlatitude observatory at Irkutsk (Φ′≈45°, Λ′≈177°, L≈2) in the course of the storm. The most important storm features in the ionosphere and magnetic field are: a significant decrease in the geomagnetic field Z component during the storm main phase; unusually large amplitudes of geomagnetic pulsations in the Pi1 frequency band; extremely low values of critical frequencies of the ionospheric F2-layer; an appearance of intense Es-layers similar to auroral sporadic layers at the end of the recovery phase. These magnetic storm manifestations are typical for auroral and subauroral latitudes but are extremely rare in middle latitudes. We analyze the storm-time midlatitude phenomena and attempt to explore the magnetospheric storm processes using the data of ground observations of geomagnetic pulsations. It is concluded that the dominant mechanism responsible for the development of the October 18–19, 1995 storm is the quasi-stationary transport of plasma sheet particles up to L≈2 shells rather than multiple substorm injections of plasma clouds into the inner magnetosphere.  相似文献   

20.
Intense quasimonchromatic geomagnetic pulsations with a period of ~15 min, observed on the Earth’s surface in the near-noon sector at the beginning of the recovery phase of a very strong (Dst min = ?260 nT) magnetic storm of May 15, 2005, are analyzed. The variations were registered at auroral latitudes only in the X field component, and wave activity shifted into the postnoon sector of the polar cap an hour later; in this case pulsations were observed in the X and Y field components. Within the magnetosphere the source of magnetic pulsations could be the surface waves on the magnetopause caused by the pulse of the solar wind magnetic pressure. Geomagnetic pulsations in the polar cap, observed in phase at different latitudes, could apparently reflect quasiperiodic variations in the NBZ system of field-aligned currents. Such variations can originate due to the series of pulsed reconnections in the postnoon outer cusp at large (~20 nT) positive B z values and large (about ?40 nT) negative values of IMF B x .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号