首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Summary On Diego de Almagro Island in Chilean Patagonia (51°30S), a convergent strike slip zone, the Seno Arcabuz shear zone, separates the Diego de Almagro Metamorphic Complex from very low grade metagreywackes in the east, which were intruded by Jurassic granitoids. The Diego de Almagro Metamorphic Complex is composed of a metapsammopelitic sequence containing blueschist intercalations in the west and (garnet) amphibolite lenses in the east. Peak metamorphic conditions (stage I) at 9.5–13.5kbar, 380–450°C in the blueschist and at 11.2–13.2, 460–565°C in the amphibolite indicate subduction and accretion at different positions within the deepest part of the accretionary wedge. A K–Ar age of 117±28Ma of amphibole approximately dates the peak of metamorphism in the amphibolite. The early retrograde stage of metamorphism occurred under static conditions and resulted in localized equilibration (stage II) at 6.3–9.6kbar, 320–385°C in the blueschist and 6.1–8.4kbar, 310–504°C in the amphibolite. Both P-T paths converge within a midcrustal level.In contrast, an orthogneiss of trondhjemitic composition occurring within the Seno Arcabuz shear zone is associated with a garnet mica-schist containing a high temperature/intermediate pressure assemblage formed at 4.9–6.5kbar, 580–690°C. A muscovite K–Ar age of 122.2±4.6Ma dates cooling after this event which is related to a concomitant magmatic arc. These rocks were overprinted by a mylonitic deformation, which is caused by convergent strike slip shearing and ends during formation of a retrograde phengite-chlorite-stilpnomelane assemblage at a minimum pressure of approximately 5.7kbar (at 300°C).Zircon fission track ages from rocks of the Seno Arcabuz shear zone are 64.9±2.7 and 64.9±2.7Ma; they record the end of shearing in the Seno Arcabuz shear zone that juxtaposed all rocks in the middle crust. Zircon fission track ages ranging from 78 to 105Ma in the South Patagonian batholith to the east indicate earlier cooling through 280°C. The rocks of the Diego de Almagro Metamorphic Complex were initially slowly exhumed and resided at a midcrustal level before being emplaced via shearing in the Seno Arcabuz shear zone. Apatite fission track ages (54±8Ma) from the Seno Arcabuz shear zone show that exhumation and cooling rates increased after this event. The incorporation of continental crust within the subduction system was a late process, which modified the Cretaceous accretionary wedge, resulting in considerable shortening of the convergent margin.  相似文献   

2.
Summary The Ni–Cu–Platinum Group Element (PGE) sulfide deposits of the Sudbury Structure have provided a major portion of the worlds total nickel production and their host rocks have been the subject of numerous research studies, yet a number of perplexing problems remain to be solved. On the one hand, studies seeking to explain the formation of the Sudbury Structure have now converged on a genetic model which proposes that the Main Mass and Offset Dykes of the Sudbury Igneous Complex (SIC) were produced by crystallization of an impact-generated melt sheet. On the other hand, these models have yet to be fully reconciled with the production of the very large volume of magmatic Ni, Cu, Co, and PGE-rich sulfide mineralization and the associated mafic rock types. This paper explores this problem using new precious metal data from the Main Mass and Offset Dykes. These data are used to understand the relationships between these rocks, and to provide constraints on how the Ni–Cu–PGE sulfide ore deposits fit into the geological evolution of the Sudbury Structure.In the two drill cores selected for study in this project, the Mafic Norite has 1–5 modal percent pyrrhotite plus chalcopyrite, and elevated Ni (40–1000ppm), Cu (40–1140ppm), and PGE (1.9–7.8ppb Pd, 1.8–7.3ppb Pt); this is overlain by Felsic Norite that contains pyrrhotite, and has a wide range in concentration of Ni (13–257ppm), Cu (7–328ppm), and PGE (<0.01–6.4ppb Pd, <0.01–5ppb Pt). For a similar range of MgO, the upper portion of the Felsic Norite unit has 5–10 times lower Ni and Cu abundances than within-plate basalts and local crustal rocks, and PGE abundance levels are mostly below analytical determination limits. Stratigraphic studies of other compositional profiles around the SIC demonstrate that this depletion signature of Ni, Cu, and PGE is widespread and developed not only above mineralized embayments and offsets, but also above barren sections of the lower contact of the SIC.The depletion of the upper part of the Felsic Norite in Ni, Cu and PGE is presumably due to equilibration of the magma with magmatic sulfide, and accumulation of this dense sulfide liquid. Results of modeling indicate that the parental magma giving rise to the Mafic and Felsic Norites had initial Ni and Cu contents of 210 and 110ppm, respectively. In addition, Ni, Cu and PGE tenors calculated in 100% sulfide from the Copper Cliff Offset average 13% Cu, 6% Ni, 18ppm Pd, and 19ppm Pt indicating that these sulfides had formed by fractionation from magmas that contained 310ppm Ni, 310ppm Cu, 18ppb Pd and 19ppb Pt. These values are factors of 3 to 5 higher than the Ni, Cu, Pd, and Pt contents of the Onaping Formation with average values of 55ppm Ni, 48ppm Cu, and 4.9ppb Pd as well as the marginal sulfide-poor phase of the Worthington Offset quartz diorite, which has average values of 61ppm Ni, 59ppm Cu, 2.8ppb Pd and 4.0ppb Pt. Both the Onaping Formation and the marginal quartz diorite are believed to represent the initial composition of a large component of the melt sheet. There is therefore a fundamental problem in reconciling the initial metal contents of the SIC magma as indicated by the marginal phases of the Offset dykes and that of the Onaping Formation with the composition of the SIC magma at the times of formation of the sulfides as indicated by their Ni, Cu and PGE tenors.It is proposed that because the SIC melt sheet was initially superheated with a temperature of 1700°C, it was able to dissolve 5 times as much S as it could at its liquidus temperature of 1200°C. It was also initially composed of an emulsion of mafic and felsic melts (Marsh and Zieg, 1999), which may have formed discrete magma cells. As the temperature of the melt sheet decreased, some of these magma cells became S-saturated and the resultant Ni–Cu–PGE sulfides settled downwards and on reaching magma cells lower in the melt sheet were re-dissolved thereby raising the Ni, Cu and PGE contents of the lower magma cells. It was from these enriched magma cells that precipitation of the ore-forming Ni–Cu–PGE sulfide melts eventually took place.The mineral potential of Offset and embayment structures appears to be empirically linked to the thickness of the overlying noritic rocks; for example, the most heavily mineralized embayments and Offset Dykes are located in areas where the Felsic Norite is thickest. It appears unlikely that the entire 1–3km-thick melt sheet was convectively mixing throughout its lateral extent, and so the heterogeneity in sulfide distribution was retained after crystallization and cooling.  相似文献   

3.
Summary A large number of podiform chromitite bodies of massive, disseminated and nodular type have been located in ultramafic units, composed of depleted mantle harzburgite and dunite of the Marmaris Peridotite from Ortaca (Mula, SW Turkey). The chromite ore bodies are surrounded by dunite envelopes of variable thickness, exhibiting transitional boundaries to harzburgite host rocks. Chromitites, containing a large number of inclusions, i.e. silicates, base metal sulphides and alloys, and platinum-group minerals (PGM) have a wide range of chemical composition. The Cr# [Cr/(Cr+Al)] values of most chromitites are high (0.61–0.81) and Mg# [Mg/(Mg+Fe2+)] values range between 0.65 and 0.71 with TiO2 content lower than 0.24wt.%, which may reflect the crystallization of chromites from boninitic magmas in supra-subduction setting environment.Platinum-group minerals (PGM) such as laurite, erlichmanite and Os–Ir alloys, silicates such as olivine, clinopyroxene and amphibole, and base metal sulphides (BM-S), alloys (BM-A) and arsenides (BM-As) are found as inclusions in chromite or in the serpentine matrix. Platinum-group element (PGE) concentrations of the Ortaca chromitites (OC) are low in all samples. Total PGE (Ir+Ru+Rh+Pt+Pd) ranges from 63ng/g to 266ng/g and Pd/Ir ratios range between 0.23 and 4.75. PGE content is higher and the Pd/Ir ratio lower in Cr-rich chromitites compared to Al-rich ones. There is a strong negative correlation between the Cr# and Pd/Ir ratios (r=–0.930). The PGE patterns show a negative slope from Ru to Pt and a positive slope from Pt to Pd. The low PGE content in the majority of the OC may reflect a lack of sulphur saturation during an early stage of their crystallization. The laurite compositions show a wide range of Ru–Os substitution caused by relatively low temperature and increasing f(S2) during the chromite crystallization. The high Cr# of and hydrous silicate mineral inclusions in chromite imply that chromite crystallized in a supra-subduction setting.  相似文献   

4.
Summary A detailed electron microprobe study of P, F, Ge and Ga-contents in rock-forming topaz was performed on a suite of Variscan granites at Podlesí in the western Kruné Hory Mts., Czech Republic. Topaz crystals from the relatively less evolved biotite- and protolithionite granites display homogeneous cathodo-luminescence (CL) intensities, whereas topaz from the marginal pegmatite, highly fractionated zinnwaldite granite and greisens show intense oscillatory zoning. Phosphorus contents reach 1.15wt% P2O5 in topaz from the zinnwaldite granite. Many topaz crystals are distinctly zoned with a maximum P content in the transition zone between core and rim. Phosphorus is incorporated into the topaz lattice by berlinite substitution: Al3++P5+=Si4++Si4+. The majority of analysed topazes are highly saturated in F, reaching 90–97% of the theoretical maximum saturation. Topaz from the marginal pegmatite only reaches 87–90% of F-saturation. There is a positive correlation between Ptopaz and Pwhole rock, but no correlation between Ftopaz and Fwhole rock. No difference has been found in P and F contents between magmatic and the hydrothermal (=greisen stage) topaz. Contents of Ge and Ga vary from around the detection limit (50ppm) up to 200ppm Ge and 100ppm Ga, respectively.  相似文献   

5.
Summary ¶This study experimentally investigated the transformation kinetics of synthetic polycrystalline aragonite to calcite at four temperature/pressure conditions (330°C/200MPa, 380°C/325MPa, 430°C/580MPa, and 480°C/875MPa), close to the calcite-aragonite equilibrium phase boundary. The extents of transformation measured as a function of time in a synthetic system, using in-situ annealed, high purity samples, are consistent with the kinetic model for grain-boundary nucleation and interface-controlled growth. The growth rates are slightly lower than those previously determined for a natural polycrystalline sample at 330 and 380°C. The activation energy (158kJ/mol) for calcite growth from synthetic samples is lower than that (247kJ/mol) from natural samples, but is close to the previously reported value (163kJ/mol) from a single crystal aragonite. The extrapolation of our experimental data to natural conditions reveals unusually fast transformation rates, in contrast to those of natural samples. The presence of deformational strain, fractures, defects or impurities in natural samples, and other factors may account for the discrepancy. This study suggests that the retrograde metamorphism of aragonite to calcite may proceed in a wide range of rates also depending on other geological factors than temperature and pressure.Received July 15, 2002; revised version accepted May 15, 2003  相似文献   

6.
The axial base and skin capacities of piles bored in cohesion less soils are often estimated using empirical, semi-empirical and theoretical methods. The aim of this paper is to assess the applicability and evaluate the accuracy of different predictions methods available in the literature, via comparison with data from 43 field pile load tests conducted on shafts drilled in the region of the United Arab Emirates. Janbu's theoretical method (1989) with the parameter (=75°) and Vesics theoretical method (1975) yielded accurate predictions for the base resistances. Burlands approach (1973) overpredicts the skin capacities with an average predicted-to-estimated ratio (q p /q e) of three times greater than the unity while using values of the coefficient of earth pressure (k=05k o ) and the angle of soil-pile friction (=23).  相似文献   

7.
Pelites, carbonate-silicate rocks and mafic rocks occurring at the base of the Helgeland nappe complex northwest of Grong (N. Norway) were subjected together with the crystalline basement to medium grade metamorphism and threefold deformation during Caledonian times.During the first act of deformation temperature increased and reached a maximum of 600–650°C at 6–7 Kb after the cessation of the first deformation event. At the peak of metamorphism granitic, aplitic and pegmatitic rocks were formed.During the second and third acts of deformation the temperature decreased to 500–400°C. Mylonites, formed during the second act of deformation, indicate that there was nappe movement from NW to SE. Simple shearing with direction of the main elongation parallel to the fold axes was associated with the second deformation. During the third deformation simple shearing also occurred. However, elongation took place oblique to the fold axes and the sense of rotation was opposite to that of the second deformation.
Zusammenfassung An der Basis des Helgeland-Komplexes nordwestlich von Grong (Nord-Norwegen) wurden pelitische, kalksilikatische und basische Gesteine zusammen mit dem Kristallinen Grundgebirge in kaledonischer Zeit von drei aufeinanderfolgenden Faltungsakten erfaßt. Dabei herrschten amphibolitfazielle Temperaturen.Während der ersten Deformation stieg die Temperatur an. Das Maximum von 600–650°C wurde, bei einem Druck von 6–7 Kb, nach der ersten und vor der zweiten Deformation erreicht. Gleichzeitig intrudierten Granite, Aplite und Pegmatite. Während der zweiten und dritten Deformation sank die Temperatur wieder auf 500–400°C. Im Zuge des zweiten Deformationsaktes entstanden stellenweise Mylonite, die auf Deckenbewegungen von NW nach SE hindeuten. Zweite und dritte Deformation sind beide rotational, während der zweiten liegt die Hauptdehnungsrichtung parallel zu den Faltenachsen, während der dritten aber schräg zu ihnen. Der Rotationssinn der dritten Deformation ist dem der zweiten entgegengesetzt.

Résumé En Norvège septentrionale, au NW de Grong, la base du complexe d'Helgeland composée de metapélites, de roches calc-silicatiques et de roches mafiques, et le soubassement cristallin de ce complexe ont subi ensemble trois actes de déformation successifs à des températures du faciès amphibolites, pendant les temps calédoniens.Durant le premier acte la température a monté. Le maximum de 600–650° C, sous une pression de 6–7 kbar, a été atteint après la fin de cette déformation et avant la deuxième; des roches granitiques, aplitiques et pegmatitiques se sont formées au cours de ce stade. Durant le deuxième et le troisième acte de déformation, la température diminuait à 500–400° C. Des mylonites, indiquant un transport des nappes du NW vers le SE, ont été formées au cours de la deuxième phase. Celle-ci est caractérisée par un mouvement rotatoire par cisaillement simple, l'élongation étant parallèle aux axes des plis. La troisième phase était égalément une phase de mouvements rotatoires, mais en sens opposé et avec un élongation oblique aux axes.

( ) , - - , . . . 600– 650° 6 – 7 , . , . 500 – 400°. , . , , — . , .
  相似文献   

8.
The volcanogenic exhalative Tverrfjell deposit occurs in a sequence of predominantely mafic submarine meta-volcanics, interlayered with geosynclinal pelitic sediments, turbidites and volcanic breccias, belonging to the Early Cambrian to Early Arenigian Støren Group. Two major deformational phases and low to medium grade metamorphic conditions are recognized in the study area. Basalts are mainly tholeiitic but alkaline types occur as well. Extensive fractionation produced highly evolved basalts and even andesites. Basalt compositions are comparable to Type II-ocean floor basalt. The copper/zinc ores of the Tverrfjell deposit are strictly confined to an andesitic extrusive body. An extensive magma chamber is postulated to explain magma fractionation, and as a heat source that generated the exhalative Tverrfjell ore body. It is suggested that the deposit was formed at an intraplate volcanic center or back-arc spreading center.
Zusammenfassung Die vulkanogen-exhalativ gebildete Tverrfjell-Lagerstätte befindet sich innerhalb einer Abfolge überwiegend mafischer, submariner Metavulkamte, die mit geosynklinalen pelitischen Sedimenten, Turbiditen und vulkanischen Brekkzien wechsellagern. Diese Gesteine gehören zur Støren-Gruppe, die vom Unterkambrium bis zum frühen Arenig reicht. Zwei Hauptdeformationsphasen in Verbindung mit niedrig bis mittelgradiger Metamorphose können im Arbeitsgebiet nachgewiesen werden. Die Basalte sind zumeist tholeiitisch, jedoch treten auch alkalibasaltische Typen auf. Durch starke Fraktionierung sind hoch entwikkelte Basaltmagmen und sogar Andesite entstanden. Die Basalte können mit Typ II-Ozeanbodenbasalten verglichen werden. Die Kupfer/Zinkerze der Tverrfjell-Lagerstätte sind strikt an einen andesitischen Extrusivkörper gebunden. Eine ausgedehnte Magmenkammer wird postuliert, in welcher die Magmenfraktionierung stattfand, und die als Wärmequelle für die Bildung des Tverrfjellerzkörpers angesehen wird. Aufgrund der Untersuchungsergebnisse wird angenommen, daß die Lagerstätte in einem Intraplatten-Vulkanzentrum oder in einem Back-arc spreading centre gebildet wurde.

Résumé Le gisement volcanogénétique exhalatif du Tverrfjell se trouve au sein d'une série de métavolcanites sous-marines, surtout basiques, qui alternent avec des pélites géosynclinales, des turbidites et des brèches volcaniques. Ces roches appartiennent au groupe de Støren qui s'étend du Cambrien inférieur jusqu'à l'éo-Arénigien. Dans cette région, deux phases déformatives majeures ont été reconnues, liées à un métamorphisme de degré faible à moyen.La plupart des basaltes sont de type tholéiitique, mais il existe aussi des basaltes alcalins. Un fractionnement poussé a engendré magmas basaltiques très évolués et même des andésites. Les compositions des basaltes sont comparables à celles du «basalte océanique de type II». La minéralisation en Cu-Zn de Tverrfjell est liée strictement à une masse extrusive andésitique. Pour expliquer le fractionnement magmatique, on admet l'existence d'une de chaleur lors de la formation du gisement de Tverrfjell. Ce gisement a dû se former soit dans un centre volcanique intraplaque, soit dans une zone d'expansion d'arrière-arc.

- Tvenfjell . . , , . Støren, . , . , . , . . . , , Tverrfjell'e. , .
  相似文献   

9.
Heimefrontfjella and Mannefallknausane, in Dronning Maud Land, Antarctica, comprise an amphibolite-facies terrain and a granulite terrain, separated by a major mylonite zone. The amphibolite terrain is made up of mafic to felsic metavolcanics and metasediments, intruded by granitoid plutons: the granulite terrain has supracrustal rocks with similar lithologies, intruded by felsic plutonic rocks that crystallized as charnockites.U-Pb zircon ages (conventional and ion microprobe) demonstrate that magmatic activity was confined to a relatively short interval between 1130 and 1045 Ma and was followed in the amphibolite terrain by metamorphism around 1060 Ma. Specific ages are as follows: metarhyolite in the amphibolite terrain, 1093 ± 38 Ma; granitoids in the amphibolite terrain, 1045 ± 9 Ma to 1107 ± 16 Ma, charnockites in the granulite terrain, 1073 ± 8 Ma to 1135 ± 8 Ma, metamorphic zircons in garnet amphibolite and a post-metamorphic pegmatite, both 1060 ± 8 Ma. Older zircons were found only in a metasediment which yielded discordant zircon fractions with207Pb/206Pb ages between 1250 and 1450 Ma, and in a granulite facies metaquartzite, which contained concordant zircons with the following ages: 1104 ± 5 Ma, 1215 ± 15 Ma, 1400 Ma, 1700 Ma, 2000 Ma. The youngest age is interpreted as the age of granulite metamorphism, the older ages as those of detrital zircons.A Sm-Nd mineral isochron age of the garnet amphibolite (960 ± 120 Ma) agrees within error with the U-Pb age of metamorphic zircons (1060 ± 8 Ma). Initial Nd values (T = 1.1 Ga) for 15 samples range from +4 to–4. The highest came from a metabasalt and two granitoids from Milorgfjella, the northern area; the lowest from the granulite-facies metasediment and from a charnockite, both from Vardeklettane, a nunatak in the south. The positive but subdued values preclude generation directly from depleted MORB-type mantle Nd + 6 to + 7 at 1.1 Ga) and indicate generation from a source containing older crustal material.
Zusammenfassung Die Gebiete um Heimefrontfjella und Mannefallknausane in Dronning Maud Land, Antarktis, bestehen aus amphibolith- und granulitfaziellen Grundgebirgskomplexen, die durch eine große Mylonitzone voneinander getrennt sind. Der amphibolithfazielle Komplex besteht aus mafisch bis felsischen Metavulkaniten und Metasedimenten, die von Granitplutonen intrudiert werden. Der Granulitkomplex enthält Suprakrustalgesteine ähnlicher Art, die von Charnockiten intrudiert werden.U-Pb-Alter, die mit der konventionellen Multikorn-Methode und an der Ionen-Mikrosonde an Einzelkörner bestimmt wurden, engen die magmatische Aktivität zwischen 1130 und 1045 Ma ein. Auf diese Periode folgte in dem amphibolithfaziellen Gebiet eine Regionalmetamorphose um 1060 Ma. Die Einzelalter sind wie folgt: in dem amphibolithfaziellen Komplex ergab ein Metarhyolith 1039 ± 38 Ma, während die Granitoide zwischen 1045 ± 9 Ma und 1107 ± 16 Ma variieren. In dem Granulitkomplex wurden die Charnockite auf 1073 ± 8 Ma bis 1135 ± 8 Ma datiert, während metamorphe Zirkone aus einem Granatamphibolith sowie aus einem posttektonischen Pegmatit identische Alter von 1060 ± 8 Ma ergaben. Ältere Komponenten wurden lediglich in einer Metasediment-Probe gefunden, die diskordante Zirkone mit207Pb/206Pb Altern zwischen ca. 1250 und 1450 Ma enthielt, sowie in einem granulitfaziellen Metaquarzit, in dem konkordante Zirkone die folgenden Alter ergaben: 1104 ± 5 Ma, 1215 ± 15 Ma, 1400 Ma, 1700 Ma, 2000 Ma. Das jüngste Zirkonalter aus dem Metaquarzit interpretieren wir als Zeitpunkt der Granulitmetamorphose, während die höheren Alter detritische Komponenten repräsentieren.Eine Sm-Nd Mineralisochrone für einen Granatamphibolith hat ein Alter von 960 ± 120 Ma, das innerhalb der experimentellen Fehler mit einem U-Pb-Alter von 1060 ± 8 Ma für metamorphe Zirkone übereinstimmt. Initiale Nd-Werte (T = l.1 Ga) für 15 Proben variieren zwischen +4 und -4. Die höchsten Werte wurden für einen Metabasalt und zwei Granitoide von Milorgfjella im nördlichen Arbeitsgebiet bestimmt. Die niedrigsten Werte stammen aus dem granulitfaziellen Metaquarzit und von einem Charnockit, beide aus Vardeklettane, einem Nunatak im Süden. Die leicht positiven Werte lassen eine juvenile Bildung der Wirtsgesteine aus einem MORB-ähnlichen Mantel (Nd + 6 bis + 7 um 1.1 Ga) nicht zu und deuten ein Ausgangsmaterial mit Komponenten älterer kontinentaler Kruste an.

Résumé Les régions de Heimefrontfjella et Mannefallknausane situées dans le Dronning Maud Land en Antartique sont formées par deux zones principales à degrés métamorphiques différents: une à faciès amphibolitique et une autre à faciès granulitiques, séparées par une zone mylonitique. Des roches métavolcaniques à composition variant de basique à felsique ainsi que des roches d'origine sédimentaire composent la zone amphibolitique. Elles sont recoupées par des plutons granitiques. La zone granulitique est formée également par des roches d'origine volcanique et sedimentaire qui sont, elles, recoupées par des charnockites.Les mesures d'U-Pb sur zircons (utilisant la méthode conventionnelle et la microsonde ionique) montrent que l'activité magmatique s'est confinée à une période relativement courte entre 1130 Ma et 1045 Ma. Elle a été suivie par un métamorphisme, il y a 1060 Ma, dans la zone amphibolitique. De façon plus détaillée, les âges sont les suivants: dans la zone amphibolitique, rhyolite datée à 1093 ± 38 Ma, granitoïdes datés à 1045 ± 9 Ma et 1107 ± 16 Ma; dans la zone granulitique, charnockites datées entre 1073 ± 8 Ma et 1135 ± 8 Ma, zircons métamorphiques provenant d'une amphibolite à grenat datés à 1060 ± 8 Ma et pegmatite postmétamorphique datée à 1060 ± 8 Ma. Deux roches ont fourni des zircons donnant des âges plus anciens: un sédiment métamorphisé et un metaquartzite. Les âges207Pb/206Pb obtenus pour les fractions discordantes des zircons du metasediment varient entre 1250 et 1450 Ma alors que le metaquartzite contient des zircons concordants avec les âges suivants: 1104±5 Ma, 1215±15Ma, 1400 Ma, 1700 Ma et 2000 Ma. L'âge le plus jeune obtenu pour le métaquartzite est interprété comme représentant l'âge du métamorphisme granulitique alors que les âges plus anciens représentent les âges de zircons détritiques.Une isochrone Sm-Nd sur minéraux a été obtenue sur une amphibolite à grenat. Elle définit un âge de 960 ± 120 Ma qui correspond, aux erreurs près, à l'âge U-Pb des zircons métamorphiques (1060 ± 8 Ma). Les Ndinitiaux (T = 1,l Ga) obtenus pour 15 échantillons varient entre +4 et –4. Les valeurs les plus élevées ont été obtenues pour un basalte et deux granitoïdes de Milorgfjella situés dans la partie nord; les valeur Nd les plus faibles proviennent du métasédiment dans la zone granulitique et d'une charnockite. Ces deux échantillons se situent dans le nunatak Vardeklettane dans le Sud. Les Nd étant positifs mais toutefois plus faibles que la valeur du manteau appauvri à cette période (entre +6 et +7 à 1,1 Ma), une extraction directe du manteau ne peut être retenue et nous suggérons que la région source contenait du matériau crustal plus ancien.

Heimfreontfjella Mannefallknausane Dronning Maud, , , . , . , ., , 1130 1045 Ma. 1060 . : — 1093±38 Ma, 1045±9 Ma 1107±16 Ma. 1073±8 Ma 1135±8 Ma, - 1060±8 Ma. , , 1250 1450 Ma. : 1104±5 Ma, 1215±15 Ma, 1400 Ma, 1700 Ma 2000 Ma. , , , . Sm-Nd, -, 960±120 Ma, , - 1060±8 Ma. Nd (T=1,1 ) 15 + 4 — 4. Milogrfjella . , Vardeklettane . , MORB (Nd + 6 + 7, 1,1 ); .
  相似文献   

10.
Summary Metamorphosed carbonatites and related skarn deposits, located in Fuerteventura Basal Complex, contain unusual Sr-rich minerals. Maximum SrO concentration in the following minerals are: calcite, 7.23wt%; apatite, 5.22wt%; epidote, 11.64wt%; clinozoisite, 1.25wt%; allanite, 5.63wt%; britholite, 4.11wt% and a Sr–Na aluminosilicate (probably stronalsite), 16.44wt% SrO. Calcite and apatite are chemically similar to those found in carbonatites and are therefore considered to be of igneous origin. Textural evidence indicates that the first skarn stage garnet+diopside+Sr–Na aluminosilicate formed as the result of chemical interaction between carbonatites and adjacent silicate rocks. The formation of Sr-bearing epidote/clinozoisite, allanite and britholite appears to be related to the release of Sr into the fluid phase from the breakdown of high temperature assemblages during the retrograde skarn stage. During the final evolution stages, further alteration of britholite by bastnäsite and törnebohmite took place. The occurrence of REE minerals shows that the fluids responsible for this metasomatism must also have transported significant quantities of REE.  相似文献   

11.
Zusammenfassung Mit räumlich und zeitlich differenzierten Unterbrechungen ist Afghanistan vom Paläozoikum bis in das Jungtertiär Sedimentationsgebiet. Sedimentationsunterbrechungen zeigen orogene oder epirogene Phasen an. Im Mesozoikum sind die Hindukusch-Schwelle und das Zentrum konsolidiert. Dieses variszische Kernland wird im Norden und im Süden von jungen Geosynklinalen flankiert, deren Sedimentationsgeschichte und Magmatismus geschildert werden.Im Laufe der Erdgeschichte wird Afghanistan wiederholt Schauplatz epirogener und orogener Bewegungen. Die variszischen Phasen sind die Vorläufer der alpidischen Bewegungen und erst in dieser Ära wird das Orogen konsolidiert. Die mit der Tektonik parallel gehende Metamorphose hat lokalen, meist selektiven Charakter.Basischer und saurer Magmatismus ist mit den tektonischen Hauptzügen genetisch verknüpft.
Afghanistan is a region where sedimentation predominated besides only some interruptions which were restricted regionally and in time, from Paleozoic to Upper Tertiary.Gaps in the sedimentary record indicate orogenetic or epeirogenetic activities. During Mesozoic time the Hindukush-geanticline and the central region were consolidated. This hercynian center is bordered to the Nord and South by young geosynclines. The history of their sedimentary and magmatic evolution is delineated.Afghanistan has been the field of epeirogenetic and orogenetic movements for several times during its geological history. Hercynian movements preced the alpidic and not until this late period consolidation takes place. Metamorphosis, linked to the structural events is bound to local, generally however selected characters. Basaltic and granitic magmatism is connected with the main structural events.

Résumé L'Afghanistan a été un domaine de sédimentation depuis le Paléozoïque jusqu'au Néogène, avec toutefois des interruptions distinctes dans l'espace et le temps. Les interruptions dans la sédimentation indiquent des phases orogéniques ou épirogéniques. Au Mésozoïque il s'est produit la consolidation du «Bombement de l'Hindou Kouch» et du «Centre». Ce noyau varisque est ensuite flanqué au Nord et au Sud par des géosynclinaux plus récents dont l'auteur décrit la sédimentation et le magmatisme.Au cours de son évolution géologique, l'Afghanistan a été maintes fois le siège de mouvements orogéniques et épirogéniques. Les phases varisques sont les «épisodes précurseurs» des mouvements alpins, et ce n'est qu'à l'occasion de ceux-ci que l'orogène est consolidé. Le métamorphisme lié aux mouvements tectoniques a un caractère local et le plus souvent sélectif. Un magmatisme basique et acide est génétiquement lié aux structures tectoniques principales.

, . . . . .


Herrn Prof. Dr. Dr. h. c.Erich Bederke zum 70. Geburtstage gewidmet.  相似文献   

12.
Materials and energy are the interdependent feedstocks of economic systems, and thermodynamics is their moderator. It costs energy to transform the dispersed minerals of Earth's crust into ordered materials and structures. And it costs materials to collect and focus the energy to perform work — be it from solar, fossil fuel, nuclear, or other sources. The greater the dispersal of minerals sought, the more energy is required to collect them into ordered states.But available energy can be used once only. And the ordered materials of industrial economies become disordered with time. They may be partially reordered and recycled, but only at further costs in energy. Available energy everywhere degrades to bound states and order to disorder — for though entropy may be juggled it always increases. Yet industry is utterly dependent on low entropy states of matter and energy, while decreasing grades of ore require ever higher inputs of energy to convert them to metals, with ever increasing growth both of entropy and environmental hazard.Except as we may prize a thing for its intrinsic qualities — beauty, leisure, love, or gold — low-entropy is the only thing of real value. It is worth whatever the market will bear, and it becomes more valuable as entropy increases. It would be foolish of suppliers to sell it more cheaply or in larger amounts than their own enjoyment of life requires, whatever form it may take. For this reason, and because of physical constraints on the availability of all low-entropy states, the recent energy crises is only the first of a sequence of crises to be expected in energy and materials as long as current trends continue.The apportioning of low-entropy states in a modern industrial society is achieved more or less according to the theory of competitive markets. But the rational powers of this theory suffer as the world grows increasingly polarized into rich, over-industrialized nations with diminishing resource bases and poor, supplier nations with little industry. The theory also discounts posterity, the more so as population density and percapita rates of consumption continue to grow. A new social, economic, and ecologic norm that leads to population control, conservation, and an apportionment of low-entropy states across the generations is needed to assure to posterity the options that properly belong to it as an important but voiceless constituency of the collectivity we call mankind.
Zusammenfassung Rohstoffe und Energie sind die Grundlagen unseres ökonomischen Systems, das von den Gesetzen der Thermodynamik bestimmt wird. Es kostet Energie, um die auf der Erde verteilten Rohstoffe diesem System zuzuführen. Andererseits braucht man Rohstoffe, um die Energie nutzbar zu machen.Die verfügbare Energie kann nur einmal genutzt werden und das Material verbraucht sich. Verbrauchtes Material kann teilweise zur weiteren Nutzung zurückgeführt werden, das kostet wiederum Energie. Die verfügbare Energie nimmt überall ab, und einmal geschaffene Ordnung gerät wieder in Unordnung — das heißt, die Entropie des Systems nimmt ständig zu. Die Industrie ist jedoch abhängig von einem niedrigen Entropiezustand sowohl der Materie als auch der Energie.Je ärmer die Erze sind, um so höher wird die Energie sein, um sie in Metalle umzuwandeln, wobei die Entropie und die Belastung der Umwelt ständig zunimmt.Außer den Dingen, die wir wegen höherer ideeller Werte schätzen, ist eine niedrige Entropie der einzige realistische Wertmaßstab, und der wirkliche Wertzuwachs ist nur an einer höheren Entropie zu messen. Es ist unverantwortlich, Dinge, die eine höhere Entropie bedingen, billiger zu verkaufen oder in größerer Menge zu erzeugen, als unbedingt notwendig ist. Da wir dies heute in unserem Handeln nicht berücksichtigen, ist die derzeitige Energiekrise nur der Anfang einer Folge von Krisen, die Energie und Rohstoffe betreffen, solange wir nicht umdenken.Die Verteilung von niedriger Entropie in einer modernen Industriegesellschaft wird mehr oder weniger nach dem Prinzip der konkurrierenden Märkte erreicht. Das selbstregulierende System gerät jedoch mit zunehmender Polarisierung in reiche Industrienationen mit abnehmenden Ressourcen und armen Nationen mit geringer Industrialisierung in Unordnung. Dieses Prinzip berücksichtigt auch nicht die Nachwelt, vor allem wenn die Bevölkerungsdichte stetig zunimmt und die Konsumbedürfnisse anwachsen. Es sind neue soziale, ökonomische und ökologische Normen notwendig, die zur Populationskontrolle, zur Erhaltung der Umwelt und zu einem Zustand niedriger Entropie für zukünftige Generationen führen. Die nach uns kommenden Menschen haben ein Anrecht darauf.

Résumé Matériaux et énergie sont les sources des systèmes économiques et sont régis par les lois de la thermodynamique. Il faut de l'énergie pour transformer les ressources minérales dispersées dans la croûte terrestre en matériaux et structures ordonnancées. Et il faut des matériaux pour receuillir et concentrer l'énergie, qu'elle soit solaire ou atomique, ou provienne de combustibles fossiles ou d'autres sources. Plus les minéraux recherchés sont dispersés et plus est côuteuse l'énergie pour leur donner une ordonnance.Or l'énergie disponsible ne peut être utilisée qu'une seule fois. Et les matériaux ordonnancés des économies industrielles se dégradent avec le temps. Ils peuvent être remis partiellement en état et recyclés, mais pour cela il faut de nouveau de l'énergie. Partout l'énergie disponible se dégrade et l'ordre devient désordre; -malgré toutes les jongleries possibles l'entropie augmente toujours.L'industrie dépend clairement d'états de basse entropie tant en ce qui concerne les matériaux que l'énergie, tandis que plus pauvres sont les minerais, plus; élevée est l'énergie à mettre en jeu pour en extraire les métaux, avec toujours augmentation à la fois de l'entropie et de la degradation des milieux.A l'exception de ce que nous apprécions pour leur valeur intrinsèque — la beauté, le loisir, l'amour ou l'or — la basse entropie est la seule chose de réelle valeur. Son prix est réglé par le marché, et sa valeur augmente au fur et à mesure que l'entropie s'accroît. Ceux qui en disposent seraient insensés de la vendre à bas prix ou en quantité supérieure à ce qu'exige leur propre niveau de vie. Pour cette raison, et à cause des contraintes physiques liées à la disponibilité en états de basse entropie, la récente crise d'énergie n'est, en ce qui concerne les matières premières et l'énergie, que la première d'une série de crises auxquelles il faut s'attendre aussi longtemps que se poursoit la marche actuelle des étènements.Dans les sociétés industrielles modernes, les approvisionnement en basse entropie s'effectuent plus ou moins conformément à la théorie de la concurrence des marchés. Cependant la rationalité de cette théorie se ressent de l'accentuation croissante de la polarisation, à l'échelle du monde, en nations riches, surindustrialisées, à ressources de base décroissantes, et en nations pauvres, sous-industrialisées, mais fournisseurs de resources-naturelles. De plus cette théorie ne tient pas compte de notre postérité, et ce, en face d'une densité de population et d'un taux de la consommation par tête d'habitant en augmentation continue.Nous avons donc besoin de nouvelles normes sociales, économiques et écologiques qui conduisent au contrôle de la population, à la conservation et à la répartition des états de basse entropie à travers les générations pour assurer à notre postérité les options qui leur riviennent de droit comme une constituante importante, mais encore muette, de la collectivité que nous appelons l'Humanité.

, . . . . , . , .. . , , . , , , . , - , , , : , , . .. , , , , , . . , : , — , . , . , , , . .


Dedicated with appreciation to Nicholas Georgescu-Roegen, distinguished economist, realist among cornucopians  相似文献   

13.
A study of the trace elements in the Singhbhum granite from its northern borders (Saraikela) and the central mass (Chaibasa) reveals that there are differences not only in the limit of concentration but also in their behaviour. It is found that while correlating with the petrographic and also the major elements behaviour, the trace elements always do not mark an increase or decrease during the various stages of the evolution of the Singhbhum granite. The behaviour of the trace-elements as revealed from the previous studies relating to both igneous and metamorphic rocks, is significant in working out the physico-chemical factors involved in the genesis of rocks. In the magmatic rocks, the trace elements obviously follow a trend and go in accordance withGoldschmidt's principles of camouflage, capture and admission. In the present study such uniformities are not found. The present study reveals firstly, the different nature of chemical gradients formed by these elements during different geological environments; secondly, the mutual relationships and the ratio of certain traceelements in the different associations, indicating the original heterogeneity of these rocks and their formation under different geological as well as physico-chemical conditions. It has been concluded (Roonwal, 1968) that the rocks studied here as representing parts of Singhbhum granite do not form one granite series as referred to byRead. In fact they represent rocks formed from material having originally different lithological composition.The trace elements determined for the present study are Va, Cr, Ga, Y, In, Sc, Co, Ni, Cu, Ba, Sr, Sn, Pb and Zr. Among these Ga, Y, In and Sc do not show the normal behaviour viz., Ga should be more in granites but is found to be more in the basic representatives. Y is also more in the basic parts than in the granites. The present granites are very poor in In. Similarly whilst the granites should not normally be rich in Sc, in the present case the distribution of Sc in basic representatives as well as the true granitic parts is more or less uniform. The behaviour of Cu limits the application ofGoldschmidt's rule to magmatic rocks. The behaviour of other elements is normal. Pb shows an antipathic relationship with K+ and Ca+2 and indicates that it has not changed the position due to granitization. An inverse relationship between Zr+4 and Si+4 is observed which indicates the formation of zircon and has been in conformity with mineralogy of the rocks.
Zusammenfassung Eine Untersuchung der Spurenelemente in Gesteinen aus den nördlichen Randgebieten (Saraikela) und der zentralen Masse (Chaibasa) des Singhbhum-Granites zeigte, daß Unterschiede nicht nur hinsichtlich der Konzentrationsgrenzen, sondern auch im Verhalten der Spurenelemente bestehen. Bei einer Korrelation des petrographischen Verhaltens mit dem der Hauptelemente wurde festgestellt, daß die Spurenelemente im allgemeinen keine Zu- oder Abnahme während der verschiedenen Evolutionsstadien aufweisen. Das Verhalten der Spurenelemente, ersichtlich aus früheren Untersuchungen von Intrusiv- und metamorphen Gesteinen, ist bedeutsam für die Feststellung der physiko-chemischen Faktoren, welche bei der Genese der Gesteine mitwirkten. In magmatischen Gesteinen folgen die Spurenelemente offensichtlich dem Trend vonGoldschmidts Regel der Camouflage, capture and admission. Bei der vorliegenden Untersuchung wurde eine solche Übereinstimmung nicht festgestellt. Die Untersuchung enthüllt erstens eine durch diese Elemente während verschiedener geologischer Umweltverhältnisse hervorgerufene verschiedene Natur der chemischen Gradienten und ließ zweitens ein gegenseitiges Verhältnis und das Verhältnis gewisser Spurenelemente in verschiedenen Gesteinsgesellschaften erkennen, was auf die ursprüngliche Heterogenität dieser Gesteine und deren Bildung unter verschiedenen geologischen sowie physiko-chemischen Bedingungen hinweist. Es wurde daraus geschlossen (Roonwal, 1968), daß die untersuchten Gesteine, welche den typischen Singhbhum-Granit repräsentieren sollen, nicht nachRead eine einzige Granitserie bilden, sondern daß sie Gesteine darstellen, welche ursprünglich aus Material verschiedener lithologischer Zusammensetzung stammen.Für diese Untersuchung wurden die folgenden Spurenelemente bestimmt: Va, Cr, Ga, Y, In, Sc, Co, Ni, Cu, Ba, Sr, Sn, Pb, Zr. Von diesen zeigen Ga, In und Sc nicht das normale Verhalten, da Ga eigentlich in größeren Mengen in Graniten auftreten sollte, was jedoch im vorliegenden Falle für die basischen Gesteinsvertreter zutrifft. Ebenfalls ist Y zahlreicher in den letzteren Vertretern vorhanden. Die vorliegenden Granite sind sehr arm an In, während sie andererseits normalerweise auch nicht reich an Sc sein sollten. Hier ist die Verteilung von Sc in den basischen Vertretern sowie auch in den wirklichen Granitanteilen mehr oder weniger gleichmäßig. Das Verhalten von Cu schränkt die Anwendung vonGoldchmidts Regel in bezug auf magmatische Gesteine ein. Das Verhalten anderer Elemente ist normal; Pb zeigt eine antipathische Beziehung zu K+1 und Ca+2, was darauf hinweist, daß es als Folge der Granitisation seine Position nicht geändert hat. Es wurde ein umgekehrtes Verhältnis zwischen Zr+4 und Sr+4 beobachtet, was auch die Bildung von Zirkon beweist und was durchaus der Mineralogie dieser Gesteine entspricht.

Résumé L'étude des éléments mineurs (traces) des roches de la région septentrionale aux environs de Saraikela et des massifs centraux de Chaibasa révèle une différence, non seulement dans le mode de concentration des éléments, mais également dans leurs caractères. Il apparaît, d'après la corrélation des études pétrographiques et les éléments principaux (major), que les éléments mineurs n'ont subit aucune augmentation ou diminution pendant les différentes phases de l'évolution.Le comportement des éléments mineurs, selon des études antérieurs de roches éruptives et de roches métamorphiques, est significatif dans la détermination des facteurs physico-chimiques qui contribuèrent à la génèse de ces gisements. Quant aux roches d'origine magmatique, les éléments mineurs suivent apparemment la tendance au principe deGoldschmidt « camouflage, envahissement et admission ». Mais l'étude actuelle n'a pas permis d'établir une telle conformité.L'étude de ces éléments révèle: premièrement, les différents caractères d'ordre chimique pendant les époques géologiques; deuxièmement les relations mutuelles et les rapports de certains éléments mineurs dans différentes associations; ceci indique l'hétérogénéité primordiale de ces roches et leur formation sous diverses conditions d'ordre géologique et physico-chimique.En conclusion (Roonwal, 1968), les roches étudiées figurant le granite-type de Singhbhum, ne forment pas la moindre série de granite — comme le ditRead — mais constituent des roches engendrées par les matériaux de différentes compositions lithologiques.De par ces études, il a été déterminé les éléments suivants: Va, Cr, Ga, Y, In, Sc, Co, Ni, Cu, Ba, Sr, Sn, Pb et Zr. Parmi ces éléments, Ga, In et Sc ne se rencontrent pas de façon normale puisque Ga devrait en réalité être plus répandu dans les roches granitiques ce qui pourtant s'avère dans le cas du substitut basique. De même, y se trouve en plus grande quantité dans les derniers substituts. Les granites de la région sont pauvres en In et riches en Sc — bien que le contraire soit attendu en ce qui concerne le Sc. Ici, la distribution de Sc, aussi bien dans les substituts basiques que dans les roches granitiques est plus ou moins régulière. Le comportement du Cu suit l'application de la loi deGoldschmidt sur les roches magnétiques; celui des autres éléments est normal; le plomb montre de l'antipathie pour les ions K+ et Ca+2, ceci indique qu'il n'a pas changé sa position par suite de la granitisation du magma. On observe une relation inverse entre Zr+4 et Sr+4, relation indiquant la formation de zircon en concordance avec la minéralogie de ces roches.

Sakaikela Chaibasa Singhbum , , . , , , . , , - , . : Camoflage, capture and admission. . , , -, , , , - , , , - . (Roonwal, 1968), , Singhbum, Read'a , , , . : V, Cr, Ga, Y, In, Sc, Co, Ni, Cu, Ba, Sr, Pb, Zr. Ga, In Sc. , Ga , . . In, , . , , . . — . Pb K Ca, , Pb . Zr4+ Sr4+, , .


For a preliminary account, seeRoonwal (1968). The details of petrology and the major elements are being published elsewhere.  相似文献   

14.
Focal mechanisms of the Atlas earthquakes,and tectonic implications   总被引:1,自引:0,他引:1  
The determination of the focal mechanisms of the strongest shocks in the Atlas chain and the Canary Islands area reveals that the present-day tectonics along this range is a compression reflected either by reverse or dextral strike-slip faulting along the ENE-WSW trends. All the solutions are consistent with: 1. the other focal mechanism solutions determined further north in the Azores-Gibraltar, Alboran, Rif and Tell areas; 2. the NNW to NW trending compression inferred from other methods such as neotectonics,in situ stress field measurements and plate motions.
Zusammenfassung Die Bestimmung des Erdbebenherdmechanismus der stärksten Beben im Atlasgebirge und des Gebietes der Kanarischen Inseln gibt zu erkennen, daß die aktuellen tektonischen Bewegungen entlang dieses Bereiches kompressiv wirksam sind. Dies zeigt sich entweder anhand von Überschiebungen oder an dextralen Blattverschiebungen. Alle Ergebnisse sind übereinstimmend mit: 1. den anderen Erdbebenherdmechanismen weiter im Norden liegender Regionen (Azoren - Gibraltar, Alboran, Rif und Tell); 2. die nach NNW bis NW wirkende Kompression, welche von anderen Methoden abgeleitet wurde (Neotektonik,in-situ Spannungsmessungen und Plattenkinematik).

Résumé La détermination des mécanismes au foyer des séismes les plus importants de la chaîne atlasique et des îles Canaries révèle que la situation tectonique actuelle le long de cette chaîne est une compression reflétée par le jeu de failles soit inverses, soit décrochantes dextres le long des accidents ENE-WSW. Toutes les solutions sont compatibles avec: (1) les autres mécanismes déterminés plus au nord, dans les régions d'Açores-Gibraltar, Alboran, Rif et Tell; (2) la compression orientée NNW-SSE à NW-SE déterminée à l'aide d'autres méthodes comme la néotectonique, les mesures de contraintesin situ et la cinématique des plaques.

, , , , : -. : / , , , , .
  相似文献   

15.
The alkaline rocks around Sivamalai are represented by syenites, nepheline syenites and basic alkaline rocks. The syenites are comprised of olivine-pyroxene, pyroxene, hornblende and biotite syenites and syenodiorites, pegmatite phases and quartz syenite. Nepheline syenites include pyroxene, hornblende and biotite bearing varieties. Syenites with pockets of garnet, magnetite or corundum occur in some places between the nepheline syenites and the country rocks represented dominantly by granitic gneisses. The basic alkaline rocks are represented by barkevikite melteigite and they occur as xenoliths amidst the nepheline syenites. The field mineralogical and petrochemical characteristics indicate the igneous nature of these rocks. The syenites and nepheline syenites are inferred to be evolved from pyroxene syenodiorite and barkevikite melteigite respectively. The irregular distribution of garnet and corundum is attributed to the metasomatism of the country rocks by the alkaline magma.
Zusammenfassung Die alkalischen Gesteine um Sivamalai umfassen Syenite, Nephelinsyenite und basische alkalische Gesteine. Die Syenite sind aus Olivin-Pyroxen, Pyroxen, Hornblende und der Biotitsyenit, Syenodiorit, Pegmatitphasen und Quarzsyenit zusammengesetzt. Die Nephelinsyenite schließen Varietäten mit Pyroxen, Hornblende und die Biotite ein. Syenite mit Granatlinsen, Magnetit oder Korund schalten sich an einigen, Stellen zwischen Nephelinsyenite und die weiter verbreiteten granitischen Gneise. Die basischen Alkaligesteine werden durch barkeviktischen Melteigit vertreten und finden sich als Xenolithe im Nephelinsyenit. Der mineralogische und petrochemische Feldbefund läßt auf eruptiven Charakter dieser Gesteine schließen. Es wird angenommen, daß die Syenite und Nephelinsyenite sich aus Pyroxensyenodiorit und Barkevikitmelteigit entwickelt haben. Die ungleichförmige Verteilung von Granat und Korund wird auf die Metasomatose der umgebenden Gesteine durch alkalisches Magma zurückgeführt.

Résumé Les roches alcalins autor de Sivamalai sont représentées par des syénites, des syénites éléolitiques et de roches alcalines basiques. Les syénites comprennent des syénites à péridot, pyroxene, hornblende et biotite, et des syénodiorites, des phases pegmatitiques et des syénites quartziféres. Les syénites éléolitiques comprennent des variétés à pyroxene, hornblende et biotite. Des syénites avec poches à grenat, magnétite ou corindon se rencontrent en quelques endroits entre les syénites éléolitiques et les roches encaissantes représentées principalement par gneiss granititiques. Les roches alcalines basiques sont représentées par des melteigites barkévictiques et se rencontrent en enclaves dans les syénites à néphéline. Les caractéristiques sur le terrain, minérologiques et pétrochimiques, indiquent le caractère igné de ces roches. Les syénites et les syénites éléolitiques sont considérées comme dérivant respectivement de syénodiorites pyroxéniques et de melteigites barkévictiques. La répartition irregulière du grenat et du corindon est attribuée à la métasomatose des roches encaissantes sous l'influence du magma alcalin.

Sivamulai , - . -, , - , -, -. - , . - - , . -. . , - - . .
  相似文献   

16.
The Bled el Mass, Azzel Matti, Ahnet and Mouydir areas are located in the northwest of the Touareg Shield (Central Sahara, Algeria). Within the Devonian sedimentary formations, nine oolitic ironstone occurrences of EXID type (Extensive Ironstone Deposition) are interbedded.Their mineralogical composition is characterized by four different paragenetic associations: P1 (Chamosite — magnetite — maghemite — goethite); P2 (chamosite — hematite — goethite — calcite); P3 (chamosite — hematitegoethite — quartz); and P4 (chamosite — hematite — goethite). Using textural analysis, four main ironstone facies are distinguished: FOD (ooliths scattered in a detrital groundmass); FOND (ooliths scattered in a non detrital groundmass); FOC (cemented ooliths) and FMC (microconglomeratic facies).Primarily developed in calm conditions by intrasedimentary processes within an iron-rich silicated mud, in lagoons or embayments, ooliths subsequently acquired a detrital character.The ironstone deposition seems to be induced by several pulses of sedimentation through the Devonian and is considered as indicator of sedimentary subcycles. Therefore, the oolitic ferriferous sediments indicate a cratonic sedimentation on the borders of a large epicontinental sea. The source of the iron could be a remote southern continent, probably the Pan-African mobile belt of Nigeria and the Congo Shield.The ironstones of the Central Sahara can be considered as an important branch of the North-African Oolitic Ironstone Belt, extending from Rio de Oro to Libya.
Zusammenfassung Die Gebiete des Bled el Mass, des Azzel Matti, des Ahnet und des Mouydir, liegen im Nordwesten des Touaregschildes (Zentral Sahara, Algerian). Neun eisenoolithische Horizonte sind hier in die devonischen Sedimente eingeschaltet. Ihr Mineralinhalt kann durch vier verschiedene Paragenesen charakterisiert werden:P1=Chamosit + Magnetit + Maghemit + Goethit; P2= Chamosit + Hämatit + Goethit + Kalzit; P3=Chamosit + Hämatit + Goethit + Quartz; P4=Chamosit + Hämatit + Goethit.Vier vererzte Fazies Typen treten auf: FOD: (die Ooide sind in einer detritischen Marix eingelagert); FOND: (die Ooide sind in einer nichtdetritischen Matrix eingelagert); FOC: (die Ooide sind verfestigt); FMC: microkonglomeratische Fazies.Die Ooide entwickeln sich in ruhigen Bedingungen, in Lagunen oder Meerbusen, durch die Bildung von Konkretionen im Sediment aus einem silikatischen und eisenreichen Schlamm; sie werden dann wie detritische Komponenten aufgenommen und transportiert.Die eisenoolitischen Ablagerungen scheinen durch mehrere Sedimentationsphasen während des Devons entstanden zu sein; so können sie als Zeichen von Sedimentmikrozyklen betrachtet werden. Diese oolitischen Sedimente sind charakteristisch für eine Kratonsedimentation am Rand eines breiten, epikontinentalen Meeres.Der Usprung des Eisens ist in einem südlichen Kontinent zu suchen, wahrscheinlich in dem mobilen panafrikanischen Gebirge von Nigeria, oder auf dem kongolesischen Schild.Diese Erze der Zentralsahara können als ein wichtiger Zweig des Eisengürtels betrachtet werden, der sich in Nordafrika von Rio de Oro bis Libyen erstreckt.

Résumé Les régions du Bled el Mass, de l'Azzel Matti, de l'Ahnet et du Mouydir sont situées au Nord-Ouest du Bouclier Touareg (Sahara Central, Algérie). Neuf niveaux de minerai de fer oolithique sont interstratifiés dans les formations sédimentaires du Dévonien.Quatre différentes paragenèses caractérisent la composition minéralogique de ces minerais. P1 (chamosite — magnétite — maghémite — goethite); P2 (chamosite — hématite — goethite — calcite); P3 (chamosite — hématite — goethite — quartz) et P4 (chamosite — hématite — goethite). Quatre facies minéralisés ont été en évidence: FOD (oolithes dispersées dans une matrice détrìtique); FOND (oolithes dispersées dans une matrice non détritique); FOC (oolithes cimentées) et FMC (faciès microconglomératique).Développées dans des conditions calmes par concrétionnement intrasédimentaire dans une boue silicatée riche en fer, dans des lagons ou des baies, les oolithes vont acquérir par la suite un comportement détritique.Les dépôts de minerai oolithique semblent avoir été induits par plusieurs pulsations sédimentaires durant le Dévonien et peuvent être ainsi considérés comme des marqueurs de microcycles sédimentaires.Ces sédiments oolithiques sont caractéristiques d'une sédimentation cratonique, sur les bords d'une mer épicontinentale étendue. La source du fer est à rechercher dans un continent situé au Sud, probablement dans la chaîne mobile Pan-Africaine du Nigeria et le Bouclier du Congo.Ces minerais de fer oolithiques du Sahara Central peuvent être considérés comme une branche importante de la ceinture ferrifère Nord africaine, qui s'étend du Rio de Oro à la Libye.

- ( , ) Bled el Mass, Azzel Mati, Ahnet Mouydir. 9 , . :1= — — — ë; 2 = — — ë — ; 3= — ë — ; 4= — — ë. 4 : DFOD — ; FOND — , ; FOC — ; FMC — . , , , ; . , . , . ., , , , , — , Rio de Oro .
  相似文献   

17.
Zusammenfassung Bei der sporenstratigraphischen Gliederung des mittleren Mesozoikums im Mittleren Orient konnten vom Nor bis zur Unteren Kreide 6 Sporenzonen unterschieden werden: Unterkreide:Ischyosporites variegatus — Rouseisporites laciniatus — Cicatricosisporites-Zone Malm:Ischyosporites variegatus — Rouseisporites laciniatus-Zone Dogger:Ischyosporites variegatus — Duplexisporites problematicus-Zone Lias:Concavisporites — Duplexisporites problematicus-Zone Rät:Concavisporites — Duplexisporites problematicus — Lophotriletes sangburensis — Ricciisporites tuberculatus-Zone Nor:Concavisporites — Duplexisporites problematicus — Lophotriletes sangburensis — Cyclotriletes oligogranifer-ZoneVergleichende Untersuchungen ergaben, daß diese Sporenzonen auch auf Süddeutschland übertragbar sind und den faunistischen Grenzen entsprechen. Nur die sporenstratigraphische Festlegung der Nor/Rätsowie der Dogger/Malm- und der Malm/Unterkreide-Grenze bedürfen noch der Verifizierung.
In the middle Mesozoic of the Middle East 6 spore-assoziations could be distinguished from the Norian to the Lower Cretaceous: Lower Cretaceous:Ischyosporites variegatus — Rouseisporites laciniatus — Cicatricosisporites zone Upper Jurassic:Ischyosporites variegatus — Rouseisporites laciniatus zone Middle Jurassic:Ischyosporites variegatus — Duplexisporites problematicus zone Lower Jurassic:Concavisporites — Duplexisporites problematicus zone Rhaetian:Concavisporites — Duplexisporites problematicus — Lophotriletes sangburensis — Ricciisporites tuberculatus zone Norian:Concavisporites — Duplexisporites problematicus — Lophotriletes sangburensis — Cyclotriletes oligogranifer zone.The interregional validity and the correspondance of these spore zones with the faunistic boundaries could be substantiated in equivalent sequences in Southern Germany. However, the palynological definition of the Norian/Rhaetian, Middle/Upper Jurassic and Jurassic/Cretaceous boundaries have still to be confirmed in other regions since suitable sections have not been available in Southern Germany.

Résumé Dans le Mésozoïque moyen du Moyen Orient, six zones de spores peuvent être distinguées du Norien au Crétacé inférieur: Crétacé inférieur: Zone àIschyosporites variegatus — Rouseisporites laciniatus — Cicatricosisporites Jurassique supérieur: Zone àIschyosporites variegatus — Rouseisporites laciniatus Jurassique moyen: Zone àIschyosporites variegatus — Duplexisporites problematicus Jurassique inférieur: Zone àConcavisporites — Duplexisporites problematicus Réthien: Zone àConcavisporites — Duplexisporites problematicus — Lophotriletes sangburensis — Ricciisporites tuberculatus Norien: Zone àConcavisporites — Duplexisporites problematicus — Lophotriletes sangburensis — Cyclotriletes oligogranifer Une étude comparative montre que les mêmes zones de spores existent en Allemagne du sud et qu'elles correspondent aux limites faunistiques. Toutefois, les limites Norien/ Rhétien, Dogger/Malm et Malm/Crétacé inférieur demandent à être vérifiées.

- : : Ischyosporites variegatus —Rouseisporites laciniatus — Cicatricosisporites : Ischyosporites variegatus — Rouseisporites laciniatus : Ischyosporites variegatus — Duplexisporites problematicus : Concavisporites — Duplexisporites problematicus : Concavisporites — Duplexisporites problematicus — Lophotriletes sangburensis — Ricciisporites tuberculatus : Concavisporites — Duplexisporites problematicus — Lophotriletes sangburensis — Cyclotriletes oligogranifer. , , . , /, / / .
  相似文献   

18.
Summary Titanite varieties doped with rare earth elements (REE) have been prepared by ceramic synthesis and quenching in air. Their crystal structure was determined by Rietveld analysis of the powder X-ray diffraction patterns. Two different substitution schemes, Ca1–xNax/2Smx/2TiSiO5 and Ca1–xDyxTi1–x SiO5, are studied at x=0.2. Both synthetic varieties of titanite adopt space group A2/a. This implies that both single-site and complex multivalent substitutional schemes destroy the coherence of the off-centering of octahedral chains in the titanite structure resulting in a P21/aA2/a phase transition. Unit cell dimensions obtained for the REE-bearing titanite varieties are as follows: a=7.0541(1)Å; b=8.7247(1)Å; c=6.5664(1)Å; =113.732(1)° for Ca0.8Na0.1Sm0.1TiSiO5; and a=7.0021(1)Å; b=8.7256(1)Å; c=6.5427(1)Å; =113.294(1)° for . Both REE-doped titanite samples and a control sample of the pure titanite end member have similar unit cell parameters and consist of polyhedra distorted to a similar extent with the exception of more-distorted SiO4 tetrahedron in CaSiTiO5. The structural data suggest that the Ca1–xNax/2Smx/2TiSiO5 and Ca1–xDyxTi1–xFexSiO5 solid solutions adopting the titanite structure might extend to x sufficiently greater than 0.2 and involve both heavier and lighter trivalent rare earth elements.Permanent address: Geological Institute KSC RAS, 14 Fersmana St., Apatity, 184200 Russia  相似文献   

19.
The northern Cyrenaic headland situated north of 32 degrees latitude between Benghází and Tubruq was subject of a geological mapping. This paper draws attention to the results of this geological survey concerning Upper Cretaceous and Tertiary facies development, paleogeography, tectonic and geomorphologic evolution.The essential part of the investigated area corresponds to Jabal al Akhdar (Green Mountains), a gently uparched plateau built of Upper Cretaceous and Tertiary sediments (mostly limestones, subordinate dolomites and marls). These sediments were deposited at the southern margin of the Tethys sea and were moderately folded, mainly during the intra-Senonian (pre-Campanian) and early Ypresian intervals.From Middle Eocene till Middle Miocene, the area was subject to a slight warping followed by oscillating transgressions of a shallow sea.The youngest tectonic movements resulted in a gentle doming of the area associated with downfaulting of certain zones. Some prominent faults revealed rejuvenated activity, partly with movement inversion. Deep faulting probably controlled the paleogeographic and tectonic development of certain zones.The present gross geomorphology of Jabal al Akhdar roughly corresponds to its final uparching dated after the Middle Miocene. Topographic evolution of the northern slope of the mountains has been importantly influenced by marine erosion. Two broad littoral terraces bordered by cliffs were formed successively.
Zusammenfassung Die nördliche Cyrenaica nördlich des 32. Breitengrades, zwischen Benghazi und Tobruk, wurde geologisch kartiert. Ergebnisse dieser Aufnahmen sind unten wiedergegeben und umfassen die fazielle Entwicklung der Oberkreide und des Tertiär sowie die paläogeographische, tektonische und geomorphologische Entwicklung.Der wesentliche Teil des untersuchten Gebietes liegt im Djebel el Akhdar. Er repräsentiert ein herausgehobenes Plateau, das sich aus Oberkreide und Tertiärsedimenten (meistens Kalke, untergeordnet Dolomite und Mergel) zusammensetzt. Diese Sedimente wurden am Südrand der Tethys abgelagert und sind vorwiegend während des Senon (Prä-Campan) und frühen Ypresien schwach verfaltet worden.Vom mittleren Eozän bis ins mittlere Miozän wurde das Gebiet teilweise gehoben und von oszillierenden Transgressionen einer Flachsee erfaßt.Die jüngsten tektonischen Bewegungen führten zu einer domartigen Aufwölbung und zu Bruchtektonik entlang bestimmter Zonen. Dabei wurden markante Störungen mehrfach regeneriert, wobei auch inverse Bewegungen nachgewiesen werden konnten. Tiefgreifende Lineamente kontrollierten wahrscheinlich die paläogeographische Situation wie auch die tektonische Entwicklung entlang bestimmter Zonen.Die augenblickliche geomorphologische Ausgestaltung des Djebel el Akhdar korrespondiert mit der zuletzt stattgefundenen Aufwölbung nach dem mittleren Miozän. Die topographische Entwicklung seines nördlichen Randes ist weitgehend beeinflußt durch marine Erosionen. Zwei breite Küstenterrassen — durch Steilküsten begrenzt — haben sich dabei sukzessive herausgebildet.

Résumé La Cyrénaique septentrionale au Nord du 32ème parallèle, entre Benghazi et Tobrouk, a été l'objet d'un lever géologique. Les résultats donnés ici concernent le développement des facies au Crétacé supérieur et au Tertiaire, ainsi que l'évolution paléogéographique, tectonique et géomorphologique.La plus grande partie du territoire se trouve dans le Djebel el Akhdar, plateau soulevé composé de sédiments du Crétacé supérieur et du Tertiaire (la plupart des calcaires, plus rarement des dolomites et des marnes). Ces sédiments se sont déposés dans la bordure meridionale de la Téthys et furent faiblement plissés principalement au cours du Sénonien (Précampanien) et au début de l'Yprésien.De l'Eocène moyen au Miocène moyen, cette région fut en partie soulevée et soumise à des transgressions oscillatives de mer peu profonde.Les mouvements tectoniques les plus récents ont eu pour conséquence un faible bombement de la région accompagné d'affaissements de certaines zones le long de failles. Certaines failles importantes ont rejoué plusieurs fois, partiellement avec inversion de mouvement. Des failles profondes ont influencé l'évolution paléogéographique et tectonique de certaines zones.La géomorphologie générale actuelle du Djebel el Akhdar correspond grosso-modo a son bombement final d'après le Miocène moyen. L'évolution topographique du versant septentrional de la chaîne a été influencée d'une façon importante par des érosions marines. Il s'est formé successivement deux terraces littorales bordées de falaises.

32° . , . Djebel el Akhdar. , — ; . . . . , , , . . , . , .
  相似文献   

20.
The Dalma volcanic belt of the Singhbhum Precambrian terrain in eastern India is developed along the median zone of a linear basin flanked by Archaean cratonic basement to the south. The lavas, in a low grade metamorphic environment, preserve a strong compositional bimodality, with highly magnesian picritic volcanics developed at the base and low-K basalt flows above, constituting the bulk of the lava pile. The ultrabasic lavas have low concentrations of immobile incompatible elements, ratios of which are probably controlled by the source character. Dalma mafic flows are closely comparable in geochemical character to modern day mid-oceanic ridge basalts (MORB) with a dominance of light-REE-depleted basalts and ferrobasalts. However, in terms of certain element ratios (Th/Ta), deviation from MORB characteristics toward island arc tholeiites is apparent. In this respect the Dalma basalts appear to have a modified MORB composition and the closest chemical analogy may be basalts from back-arc basins, i. e. a supra-subduction zone environment. The bimodality of ultrabasic and mafic lavas is reminiscent of Archaean komatiitic provinces. The geochemical signature of the Dalma lavas, and the geological framework of the terrain, strongly point to a marginal basin domain developed in this crustal segment during the Proterozoic.
Zusammenfassung Der Vulkangürtel von Dalma liegt in der präkambrischen Region Singhbhum in Ostindien. Aufgeschlossen ist der Dalma-Gürtel im mittleren Bereich eines geradlinigen Bekkens, das im Süden durch Basement des Archaikums begrenzt wird. Die Laven befinden sich in einer geringmetamorphen Umgebung und weisen eine bimodale Zusammensetzung auf. An der Basis sind Magnesium-reiche und darüber Kalium-arme Basalte entwickelt, die repräsentativ für den Durchschnitt der Laven sind. Die ultrabasischen Laven enthalten niedrige Konzentrationen an immobilen nicht kompatiblen Elementen, deren Verhältnis wahrscheinlich von den Eigenschaften der Lavaquelle gesteuert wird. Der geochemische Charakter der mafischen Dalma-Vulkanite entspricht weitgehend den heutigen Basalten der ozeanischen Rücken (MORB). Dabei dominieren leicht abgereicherte REE-Basalte sowie eisenreiche Basalte. Vergleicht man allerdings Elementverhältnisse wie das von Th/Ta, wird eine Abweichung von dem typischen MORB-Charakter hin zu Inselbögen-Tholeiten deutlich. Berücksichtigt man diese Beobachtungen, scheinen die Dalma-Basalte eine modifizierte MORB-Zusammensetzung zu haben, die in ihrem Chemismus am ehesten den Basalten von Back-Arc-Becken, z. B. in einem Gebiet einer Supra-Subduktionszone, zu entsprechen. Die Bimodalität der ultrabasischen und mafischen Laven erinnert an archaische komatiitische Regionen. Die geochemische Zusammensetzung der Dalma-Laven sowie der geologische Rahmen des Gebietes deuten auf ein randliches Becken hin, das sich während des Proterozoikums entwickelt haben könnte.

Résumé La ceinture volcanique de Dalma, dans le Précambrien de Singhbhum (Inde Orientale) est située dans la partie médiane d'un bassin linéaire bordé au Sud par un socle cratonique archéen. Les laves se trouvent dans un environnement de faible degré de métamorphisme et présentent une composition nettement bimodale: volcanites picritiques très magnésiennes à la base, surmontées de coulées basaltiques pauvres en K, qui constituent l'essentiel de l'ensemble. Les laves ultrabasiques montrent de faibles concentrations en éléments immobiles incompatibles dont les rapports sont probablement déterminés par le caractère de la source. Les coulées basiques de Dalma sont très comparables, dans leurs propriétés géochimiques, aux basaltes récents des rides océaniques (MORB), avec une dominante de basaltes pauvres en terres rares légères et de ferro-basaltes. Toutefois, les rapport de certains éléments (Th/Ta) font apparaître, par rapport au MORB, une déviation vers les tholéiites d'arcs insulaires. A ce point de vue, les basaltes de Dalma montrent une composition de MORB modifée et une analogie avec les basaltes de bassins d'arrière-arc, c'est-à-dire en situation de supra-subduction. La bimodalité laves ultrabasiques/laves basiques est une réminiscence des provinces komatiitiques archéennes. Le signalement géochimiques des laves de Dalma et leur situation géologique plaident en faveur d'un domaine de bassin marginal développé dans ce segment central au cours du Protérozoïque.

, . , , . , , . , , . , . : MORB. , . , , .: /, MORB . , , , MORB, , .: . . , , .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号