首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   6篇
测绘学   3篇
大气科学   2篇
地球物理   44篇
地质学   35篇
海洋学   25篇
天文学   8篇
自然地理   4篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2016年   5篇
  2015年   5篇
  2014年   8篇
  2013年   5篇
  2012年   7篇
  2011年   6篇
  2010年   6篇
  2009年   5篇
  2008年   8篇
  2007年   5篇
  2006年   6篇
  2005年   7篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1974年   1篇
排序方式: 共有121条查询结果,搜索用时 62 毫秒
1.
In many finite element platforms, a classical global damping matrix based on the elastic stiffness of the system (including isolators) is usually developed as part of the solution to the equations of motion of base-isolated buildings. The conducted analytical and numerical investigations illustrate that this approach can lead to the introduction of unintended damping to the first and higher vibration modes and the spurious suppression of the respective structural responses. A similar shortcoming might be observed even when a nonclassical damping model (ie, an assembly of the superstructure and isolation system damping sub-matrices) is used. For example, the use of Rayleigh damping approach to develop the superstructure damping sub-matrix can lead to the undesired addition of damping to the isolated mode arising from the mass-proportional component of the superstructure damping. On the other hand, the improper use of nonclassical stiffness-proportional damping (eg, determining the proportional damping coefficient, βk , based on the first mode) can result in assigning significant damping to the higher-modes and the unintended mitigation of the higher-mode responses. Results show that a nonclassical stiffness-proportional model in which βk is determined based on the second modal period of a base-isolated building can reasonably specify the intended damping to the higher modes without imparting undesirable damping to the first mode. The nonclassical stiffness-proportional damping can be introduced to the numerical model through explicit viscous damper elements attached between adjacent floors. In structural analysis software such as SAP2000®, the desired nonclassical damping can be also modeled through specifying damping solely to the superstructure material.  相似文献   
2.
Terrorist networks operate in hybrid space where activities in social and geographic spaces are necessary for logistics and security. The Islamist terrorist network is analyzed as a sociospatial system using social network analysis, Geographic Information Science (GISc), and novel techniques designed for hybrid space analyses. This research focuses on identifying distance and sociospatial dependencies within the terrorist network. A methodology for analyzing sociospatial systems is developed and results lead to a greater understanding of terrorist network structures and activities. Distance and sociospatial dependencies are shown to exist for the Islamist terrorist network structure. These findings are discordant with recent literature that focuses on terrorist network tendencies toward decentralization in the information age. In this research, the Islamist terrorist network is theorized to use multiple structures of hierarchical and decentralized organization for effectiveness, efficiency, and resilience. Implications for counterterrorism policy and strategies are given.  相似文献   
3.
This study uses instrumented buildings and models of code‐based designed buildings to validate the results of previous studies that highlighted the need to revise the ASCE 7 Fp equation for designing nonstructural components (NSCs) through utilizing oversimplified linear and nonlinear models. The evaluation of floor response spectra of a large number of instrumented buildings illustrates that, unlike the ASCE 7 approach, the in‐structure and the component amplification factors are a function of the ratio of NSC period to the supporting building modal periods, the ground motion intensity, and the NSC location. It is also shown that the recorded ground motions at the base of instrumented buildings in most cases are significantly lower than design earthquake (DE) ground motions. Because ASCE 7 is meant to provide demands at a DE level, for a more reliable evaluation of the Fp equation, 2 representative archetype buildings are designed based on the ASCE 7‐16 seismic provisions and exposed to various ground motion intensity levels (including those consistent with the ones experienced by instrumented buildings and the DE). Simulation results of the archetype buildings, consistent with previous numerical studies, illustrate the tendency of the ASCE 7 in‐structure amplification factor, [1 + 2(z/h)] , to significantly overestimate demands at all floor levels and the ASCE 7 limit of to in many cases underestimate the calculated NSC amplification factors. Furthermore, the product of these 2 amplification factors (that represents the normalized peak NSC acceleration) in some cases exceeds the ASCE 7 equation by a factor up to 1.50.  相似文献   
4.
Victoria Beach (Cadiz, Spain) comprises a rocky flat outcrop in its northern zone and a sand-rich southern zone. These natural features allowed for a 5-year monitoring period and subsequent analysis of two different profiles (one in each zone) based on differences in bottom contours. Topo-bathymetric data were analysed using empirical orthogonal functions (EOFs) to determine changes over the short-, medium- and long-term. Several morphologic phenomena were identified (generalised erosion, seasonal or summer–winter tilting of the profile around different hinge points, berm development and its posterior destruction, etc.) in terms of their importance in explaining the variability of the collected data for both profiles. It is worth mentioning that both profiles undergo parallel regression in the medium-term. Thus, the 1st eigenfunction enabled us to identify the true regression of the beach shoreline, independent of seasonal or summer–winter slope changes. Reconstruction of profiles using EOF components demonstrated that though accretion periods in the medium-term were similar for both types of profiles, the accretion speed was much faster in the sand-rich profile than in the reef-protected profile (1.01 m3/day versus 0.33 m3/day). Moreover, the seasonal erosion rate and the subsequent shoreline retreat for the sand-rich profile were much larger than for the reef-protected profile (121 m3/year versus 29 m3/year). Analysis in the short-term (changes induced by a single day's storm) showed an instantaneous tilting of the profile, with the mobilised sand volume being much greater for the sand-rich than for the reef-protected profile (68 m3/m versus 12 m3/m).  相似文献   
5.
The goal of this paper is to provide a model for binary-binary interactions in star clusters, which is based on simultaneous binary collision of a special case of the one-dimensional 4-body problem where four masses move symmetrically about the center of mass. From the theoretical point of view, the singularity due to binary collisions between point masses can be handled by means of regularization theory. Our main tool is a change of coordinates due to McGehee by which we blow-up the singular set associated to total collision and replace it with an invariant manifold which includes binary and simultaneous binary collisions, and then gain a complete picture of the local behavior of the solutions near to total collision via the homothetic orbit.  相似文献   
6.
Wave–current laboratory experiments have shown that the logarithmic current profile observed in pure current flows is modified due to the presence of waves. When waves propagate opposite the current, an increase in the current intensity is achieved near the mean water level, while a reduction is obtained for following waves and currents. With the aim of analyzing these nonlinear effects along the whole water column, an Eulerian wave–current model is presented. In contrast to previously presented wave–current models, the present is able to include the variation of the free surface elevation due to the wave motion and the effect of a non hydrostatic pressure field. Therefore it does not restrict its application to waves in shallow waters. Moreover, the model is able to simulate all the possible angles between waves and currents.  相似文献   
7.
A methodology to define discrete waves from free sea surface elevation time series is presented. The method allows an objective discrimination of false waves among small waves, avoiding the use of arbitrary criteria associated with zero-up-crossing, zero-down-crossing, or other definitions. The method uses the Hilbert Transform and the representation of the time series in the complex plane. A discrete wave corresponds to a 2π phase-advance in the complex plane. The waves between zero crossings which do not show 2π phase advance are considered false waves. Wave rider buoy records, measured off the west coast of Portugal, were employed in assessing some of the statistical implications of this methodology.  相似文献   
8.
The hyper-arid conditions prevailing in Agua Verde aquifer in northern Chile make this system the most important water source for nearby towns and mining industries. Due to the growing demand for water in this region, recharge is investigated along with the impact of intense pumping activity in this aquifer. A conceptual model of the hydrogeological system is developed and implemented into a two-dimensional groundwater-flow numerical model. To assess the impact of climate change and groundwater extraction, several scenarios are simulated considering variations in both aquifer recharge and withdrawals. The estimated average groundwater lateral recharge from Precordillera (pre-mountain range) is about 4,482 m3/day. The scenarios that consider an increase of water withdrawal show a non-sustainable groundwater consumption leading to an over-exploitation of the resource, because the outflows surpasses inflows, causing storage depletion. The greater the depletion, the larger the impact of recharge reduction caused by the considered future climate change. This result indicates that the combined effects of such factors may have a severe impact on groundwater availability as found in other groundwater-dependent regions located in arid environments. Furthermore, the scenarios that consider a reduction of the extraction flow rate show that it may be possible to partially alleviate the damage already caused to the aquifer by the continuous extractions since 1974, and it can partially counteract climate change impacts on future groundwater availability caused by a decrease in precipitation (and so in recharge), if the desalination plant in Taltal increases its capacity.  相似文献   
9.
Coastal zones and beach management practices, regulatory decisions, and land use planning activities along coastal zones have historically been made with insufficient information concerning the dynamic coastal environment. In this study we address and integrate an interdisciplinary scientific approach to Coastal Management in a scenario where lack of this information has resulted in the alteration of the natural dune system of the beach of Cala Millor (Mallorca, Balearic Islands, Spain), and also in the perception of the beach retreat and in a parallel way, a risk for the tourism resources. In this work the detailed studies on beach morphodynamics have been developed as a basis for integrating proper beach management, beach natural dynamics and local users and economic agent interests. From this point of view a set of solutions are considered as the basis for a management policy that links beach science and beach use as a tourism resort resource.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号