首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Mellish Park Syncline is located in the northern part of the Mt Isa terrane. It has an axial trace that transects the remnants of the unconformity‐bounded Palaeoproterozoic Leichhardt and Isa Superbasins. The syncline is separated into a lower and upper component based upon variation in fold geometry across the basin‐bounding unconformity. The lower syncline, in the Leichhardt Superbasin, is tight and has an inclined west‐dipping axial plane. The upper syncline, in the Isa Superbasin, is open and upright. The geometry of the lower syncline is a consequence of a period of shortening and basin inversion which post‐dated the Leichhardt Rift Event (ca 1780–1740 Ma) and pre‐dated the Mt Isa Rift Event (ca 1710–1655 Ma), forming an open and upright north‐oriented syncline. Subsequent southeast tilting and half‐graben development during the Mt Isa Rift Event resulted in the lower syncline being tilted into its inclined geometry. Sequences of the Isa Superbasin were then deposited onto the eroded syncline. The geometry of the upper syncline reflects regional east‐west shortening during the Isan Orogeny (ca 1590–1500 Ma). The position of the upper syncline was largely controlled by the pre‐existing lower syncline. At this time the lower syncline was reactivated and tightened by flexural slip folding.  相似文献   

2.
Plutons of the Naraku Batholith were emplaced into Proterozoic metasediments of the northern portion of the Eastern Fold Belt of the Mt Isa Inlier during two intrusive episodes approximately 200 million years apart. Structural relationships and geochronological data suggest that the older plutons (ca 1750 Ma) are contemporaneous with granites of the Wonga Batholith to the west. The Dipvale Granodiorite and the Levian Granite represent these older intrusive phases of the Naraku Batholith, and both contain an intense tectonic foliation, S1, which is interpreted to have formed during the north‐south shortening associated with D1 of the Isan Orogeny. The geometry of S1 form surfaces at the southern end of the Dipvale Granodiorite, and of the previously unrecognised sheeted contact, defines a macroscopic, steeply south‐southwest‐plunging antiform, which was produced by the regional D2 of the Isan Orogeny. S1 form surfaces in the Levian Granite define open F2 folds with wavelengths of several hundred metres. The structural age of emplacement of the Dipvale Granodiorite and the Levian Granite is interpreted to be pre‐ or syn‐ the regional D1. An intense foliation present in some of the younger (ca 1505 Ma) granites that comprise the bulk of the Naraku Batholith is interpreted to represent S3 of the Isan Orogeny. Foliations commonly have similar styles and orientations in both the pre‐D1 and younger plutons. This emphasises the simplicity with which regional fabrics can be, and probably have been, miscorrelated in the Eastern Fold Belt, and that the classification of granites in general on the basis of structural and geometric criteria alone is fraught with danger.  相似文献   

3.
In this paper we assess two competing tectonic models for the development of the Isa Superbasin (ca 1725–1590 Ma) in the Western Fold Belt of the Mt Isa terrane. In the ‘episodic rift‐sag’ tectonic model the basin architecture is envisaged as similar to that of a Basin and Range province characterised by widespread half‐graben development. According to this model, the Isa Superbasin evolved during three stages of the Mt Isa Rift Event. Stage I involved intracontinental extension, half‐graben development, the emergence of fault scarps and tilt‐blocks, and bimodal volcanism. Stage II involved episodic rifting and sag during intervening periods of tectonic quiescence. Stage III was dominated by thermal relaxation of the lithosphere with transient episodes of extension. Sedimentation was controlled by the development of arrays of half‐grabens bounded by intrabasinal transverse or transfer faults. The competing ‘strike‐slip’ model was developed for the Gun Supersequence stratigraphic interval of the Isa Superbasin (during stage II and the beginning of stage III). According to this model, sinistral movements along north‐northeast‐orientated strike‐slip faults took place, with oblique movements along northwest‐orientated faults. This resulted in the deposition of southeast‐thickening ramp sequences with local sub‐basin depocentres forming to the west and north of north‐northeast‐ and northwest‐trending faults, respectively. It is proposed that dilation zones focused magmatism (e.g. Sybella Granite) and transfer of strike‐slip movement resulted in transient uplift along the western margin of the Mt Gordon Arch. Our analysis supports the ‘episodic rift‐sag’ model. We find that the inferred architecture for the strike‐slip model correlates poorly with the observed structural elements. Interpretation is made difficult because there has been significant modification and reorientation of fault geometry during the Isan Orogeny and these effects need to be removed before any assertion as to the basin structure is made. Strike‐slip faulting does not explain the regional‐scale pattern of basin subsidence. The ‘episodic rift‐sag’ model explains the macroscopic geometry of the Isa Superbasin and is consistent with the detailed sedimentological analysis of basin facies architecture, and the structural history and geometry.  相似文献   

4.
The moderately metamorphosed and deformed rocks exposed in the Hampden Synform, Eastern Fold Belt, in the Mt Isa terrane, underwent complex multiple deformations during the early Mesoproterozoic Isan Orogeny (ca 1590–1500 Ma). The earliest deformation elements preserved in the Hampden Synform are first‐generation tight to isoclinal folds and an associated axial‐planar slaty cleavage. Preservation of recumbent first‐generation folds in the hinge zones of second‐generation folds, and the approximately northeast‐southwest orientation of restored L1 0 intersection lineation suggest recumbent folding occurred during east‐west to northwest‐southeast shortening. First‐generation folds are refolded by north‐south‐oriented upright non‐cylindrical tight to isoclinal second‐generation folds. A differentiated axial‐planar cleavage to the second‐generation fold is the dominant fabric in the study area. This fabric crenulates an earlier fabric in the hinge zones of second‐generation folds, but forms a composite cleavage on the fold limbs. Two weakly developed steeply dipping crenulation cleavages overprint the dominant composite cleavage at a relatively high angle (>45°). These deformations appear to have had little regional effect. The composite cleavage is also overprinted by a subhorizontal crenulation cleavage inferred to have developed during vertical shortening associated with late‐orogenic pluton emplacement. We interpret the sequence of deformation events in the Hampden Synform to reflect the progression from thin‐skinned crustal shortening during the development of first‐generation structures to thick‐skinned crustal shortening during subsequent events. The Hampden Synform is interpreted to occur within a progressively deformed thrust slice located in the hangingwall of the Overhang Shear.  相似文献   

5.
Structural studies of Lower Permian sequences exposed on wave‐cut platforms within the Nambucca Block, indicate that one to two ductile and two to three brittle — ductile/brittle events are recorded in the lower grade (sub‐greenschist facies) rocks; evidence for four, possibly five, ductile and at least three brittle — ductile/brittle events occurs in the higher grade (greenschist facies) rocks. Veins formed prior to the second ductile event are present in some outcrops. Further, the studies reveal a change in fold style from west‐southwest‐trending, open, south‐southeast‐verging, inclined folds (F1 0) at Grassy Head in the south, to east‐northeast‐trending, recumbent, isoclinal folds (F1 0; F2 0) at Nambucca Heads to the north, suggesting that strain increases towards the Coffs Harbour Block. A solution cleavage formed during D1 in the lower grade rocks and cleavages defined by neocrystalline white mica developed during D1 and D2 in the higher grade rocks. South‐ to south‐southwest‐directed tectonic transport and north‐south shortening operated during these earlier events. Subsequently, north‐northeast‐trending, open, upright F3 2 folds and inclined, northwest‐verging, northeast‐trending F4 2 folds developed with poorly to moderately developed axial planar, crenulation cleavage (S3 and S4) formed by solution transfer processes. These folds formed heterogeneously in S2 throughout the higher grade areas. Later northeast‐southwest shortening resulted in the formation of en échelon vein arrays and kink bands in both the lower and higher grade rocks. Shortening changed to east‐northeast‐west‐southwest during later north‐northeast to northeast, dextral, strike‐slip faulting and then to approximately northwest‐southeast during the formation of east‐southeast to southeast‐trending, strike‐slip faults. Cessation of faulting occurred prior to the emplacement of Triassic (229 Ma) granitoids. On a regional scale, S1 trends east‐west and dips moderately to the north in areas unaffected by later events. S2 has a similar trend to S1 in less‐deformed areas, but is refolded about east‐west axes during D3. S3 is folded about east‐west axes in the highest grade, multiply deformed central part of the Nambucca Block. The deformation and regional metamorphism in the Nambucca Block is believed to be the result of indenter tectonics, whereby south‐directed movement of the Coffs Harbour Block during oroclinal bending, sequentially produced the east‐west‐trending structures. The effects of the Coffs Harbour Block were greatest during D1 and D2.  相似文献   

6.

Several Late Palaeozoic granites which intrude strata of the Silurian‐Devonian Hodgkinson Province, north Queensland, display pronounced west‐northwest‐east‐southeast orientations, as do a suite of brittle structures that have affected both the plutons and country rocks. These features define a 20 km‐wide, west‐northwest‐trending zone, here named the Desailly Structure, which traverses the Hodgkinson Province and extends west across the Palmerville Fault into the Proterozoic Yambo Inlier. Deformation within the Desailly Structure was heterogeneously partitioned into zones of west‐northwest‐east‐southeast faulting separated by tracts of competent country rock. The latter contain a pervasive north‐south‐trending structural grain which locally controlled pluton emplacement and resulted in a meridional orientation of many granitoid bodies. Initiation of the Desailly Structure is attributed to have occurred syn‐ to post‐D2 of the regional deformation history. It was reactivated in the Hunter‐Bowen Orogeny (D4), with the zone expressing an overall sinistral sense of displacement.  相似文献   

7.
Sequence‐stratigraphic correlations provide a better understanding of sediment architecture in the Mt Isa and lower McNamara Groups of northern Australia. Sediments record deposition in a marine environment on a broad southeast‐facing ramp that extended from the Murphy Inlier in the northwest to the Gorge Creek, Saint Paul and Rufous Fault Zones in the southeast. Depositional systems prograded in a southeasterly direction. Shoreline siliciclastic facies belts initially formed on the western and northern parts of the ramp, deeper water basinal facies occurred to the east and south. The general absence of shoreline facies throughout the Mt Isa Group suggests that depositional systems originally extended further to the east and probably crossed the Kalkadoon‐Leichhardt Block. Fourteen, regionally correlatable fourth‐order sequences, each with a duration of approximately one million years, are identified in the 1670–1655 Ma Gun Supersequence. Stratal correlations of fourth‐order sequences and attendant facies belts resolve a stratigraphic architecture dominated by times of paired subsidence and uplift. This architecture is most consistent with sinistral strike‐slip tectonism along north‐northeast‐oriented structures with dilational jogs along northwest structures as the primary driver for accommodation. Although reactivated during deformation, the ancestral northwest‐trending May Downs, Twenty Nine Mile, Painted Rocks, Transmitter, Redie Creek and Termite Range Fault Zones are interpreted as the principal synsedimentary growth structures. Sinistral strike‐slip resulted in a zone of long‐lived dilation to the north of the May Downs/Twenty Nine Mile and Gorge Creek Fault Zones and a major basin depocentre in the broad southeast‐facing ramp. Subordinate depocentres also developed on the northern side of the ancestral Redie Creek and Termite Range fault zones. Transfer of strike‐slip movement to the east produced restraining or compressive regions, localising areas of uplift and the generation of local unconformities. Northwest‐ and north‐northeast‐oriented magnetic anomalies to the south and west of Mt Isa, identify basement heterogeneities. Basement to the south and west of these anomalies is interpreted to mark intrabasin siliciclastic provenance areas in the Gun depositional system. Pb–Zn–Ag deposits of the Mt Isa valley are interpreted as occurring in a major basin depocentre in response to a renewed phase of paired uplift and subsidence in late Gun time (approximately 1656 Ma). This event is interpreted to have synchronously created accommodation for sediments that host the Mt Isa deposit, while focusing topographically and thermobarically driven basinal fluids into the zone of dilation.  相似文献   

8.
Mount Isa is a major Australian and world Pb‐Zn‐Ag mineral province. The wide varieties of mineralization in the province are believed to be closely related to the geodynamic processes of Isan Orogeny, which occurred between ca 1500 and 1620 Ma. In order to understand the geodynamic processes associated with the Isan Orogeny and the giant mineralization systems in the Mount Isa district, a series of numerical models has been constructed to simulate coupled mechanical–hydrological processes, using Fast Lagrangian Analysis of Continua (FLAC), a finite difference computer code. The numerical modeling results have demonstrated that the most probable far‐field stress orientation during the Isan Orogeny is the asymmetrical E–W shortening, which led to greater easternward tectonic movement at the west boundary of the district in comparison with westward movement at the east boundary. During the initial and early stage of the Isan Orogeny, the mechanical and hydrological conditions in the Leichardt Fault Trough of the West Fold Belt are much more favorable for fluid accumulation and mineralization than in the East Fold Belt. The Mount Isan fault zone developed as a high dilation shear zone where the fluids were focused. As the asymmetrical shortening progressed, shortening deformation and shear strain localization became intensified in the eastern part of the orogenic district. The eastern region therefore became a more favorable locality for hydrothermal mineralization. This structural development feature seems to explain why mineralization in the East Fold Belt is generally later than in the West Fold Belt. Fluid production from the Williams–Naraku granites could result in fluid over‐pressuring, and this probably contributed to the extensive brecciation and related mineralization in the East Fold Belt.  相似文献   

9.
The Buchan Rift, in northeastern Victoria, is a north–south-trending basin, which formed in response to east–west crustal extension in the Early Devonian. The rift is filled mostly with Lower Devonian volcanic and volcaniclastic rock of the Snowy River Volcanics. Although the structure and geometry of the Buchan Rift and its major bounding faults are well mapped at the surface, a discrepancy exists between the surface distribution of the thickest rift fill and its expected potential field response. To investigate this variation, two new detailed land-based gravity surveys, which span the rift and surrounding basement rocks in an east–west orientation, have been acquired and integrated with pre-existing government data. Qualitative interpretation of the observed magnetic data suggests the highly magnetic rocks of the Snowy River Volcanics have a wider extent at depth than can be mapped at the surface. Forward modelling of both land-based gravity data and aeromagnetic data supports this interpretation. With the Snowy River Volcanics largely confined within the Buchan Rift, resolved geometries also allow for the interpretation of rift boundaries that are wider at depth. These geometries are unusual. Unlike typical basin inversions that involve reactivation of rift-dipping faults, the bounding faults of the Buchan Rift dip away from the rift axis and thus appear unrelated to the preceding rifting episode. Limited inversion of previous extensional rift faults to deform the rift-fill sequences (e.g. Buchan Synclinorium) appears to have been followed by the initiation of new reverse faults in outboard positions, possibly because the relatively strong igneous rift fill began to act as a rigid basement ramp during continued E–W crustal shortening in the Middle Devonian Tabberabberan Orogeny. Overthrusting of the rift margins by older sediments and granite intrusions of the adjacent Tabberabbera and Kuark zones narrowed the exposed rift width at surface. This scenario may help explain the steep-sided geometries and geophysical expressions of other rift basins in the Tasmanides and elsewhere, particularly where relatively mechanically strong basin fill is known or suspected.  相似文献   

10.
The Midcontinent Rift (MCR) of North America comprises a series of basaltic sheets, flows and intrusive rocks emplaced in the Lake Superior region during the Mesoproterozoic. The mafic rocks preserved on the northern flank of Lake Superior represent the older portions of the rift sequence and offer insights into the early development of the rift. New geochronological, geochemical and paleomagnetic data are presented for the dikes and sills located in and south of Thunder Bay, Ontario. Three sill suites are recognized within the study area; an earlier, spatially restricted ultramafic unit termed the Riverdale sill, the predominant Logan sills and Nipigon sills in the north of the study area. In addition three dike sets are recognized, the north-east trending Pigeon River swarm, the north-west trending Cloud River dikes and the Mt. Mollie dike. The geochemical data demonstrate that the majority of sills south of Thunder Bay are of Logan affinity and distinct from those of broadly similar age in the Nipigon Embayment to the north. The Pigeon River dikes that intrude the sills are geochemically coherent but distinct from the Logan sills and could not be feeders to the sills. The new age of 1109.2 ± 4.2 Ma for the Cloud River dike and its R polarity are consistent with published magnetostratigraphy. The Mt. Mollie dike age (1109.3 ± 6.3 Ma) indicates that it is not coeval with the spatially associated Crystal Lake gabbro as previously thought. The complexity of the dike and sill suites on the northern flank of suggests that the early phases of rifting occurred in distinct and changing stress fields prior to the main extensional rifting preserved in younger rocks to the south. The geochemistry and geochronology of the intrusions suggest a long-lived and complex magmatic history for the Midcontinent Rift.  相似文献   

11.
The Arthur Lineament of northwestern Tasmania is a Cambrian (510 ± 10 Ma) high‐strain metamorphic belt. In the south it is composed of metasedimentary and mafic meta‐igneous lithologies of the ‘eastern’ Ahrberg Group, Bowry Formation and a high‐strain part of the Oonah Formation. Regionally, the lineament separates the Rocky Cape Group correlates and ‘western’ Ahrberg Group to its west from the relatively low‐strain parts of the Oonah Formation, and the correlated Burnie Formation, to its east. Early folding and thrusting caused emplacement of the allochthonous Bowry Formation, which is interpreted to occur as a fault‐bound slice, towards the eastern margin of the parautochthonous ‘eastern’ Ahrberg Group metasediments. The early stages of formation of the Arthur Lineament involved two folding events. The first deformation (CaD1) produced a schistose axial‐planar fabric and isoclinal folds synchronous with thrusting. The second deformation (CaD2) produced a coarser schistosity and tight to isoclinal folds. South‐plunging, north‐south stretching lineations, top to the south shear sense indicators, and south‐verging, downward‐facing folds in the Arthur Lineament suggest south‐directed transport. CaF1 and CaF2 were rotated to a north‐south trend in zones of high strain during the CaD2 event. CaD3, later in the Cambrian, folded the earlier foliations in the Arthur Lineament and produced west‐dipping steep thrusts, creating the linear expression of the structure.  相似文献   

12.
Gold mineralization associated with quartz reefs is related to the structural history of the Early Devonian, Walhalla Group. These reefs are situated in the Walhalla Synclinorium, developed during the Middle to Late Devonian Tabberabberan Orogeny. A pervasive north‐south‐trending axial planar cleavage and two styles of folding were produced during regional east‐west compression. The first are upright, open to close folds with sub‐horizontal fold axes. The second are plunging inclined, close to tight folds with fold axes that plunge steeply to the north and south. An extensional event is associated with the emplacement of the Woods Point Dyke swarm and a set of normal faults that offset all earlier structures. High‐angle reverse faults, which post‐date the folding and the emplacement of the dykes, were utilized as conduits for hydrothermal fluids and preferentially localize mineralization to laminated quartz veins. En echelon vein arrays formed during initial stages of reverse faulting became deformed during prolonged shearing to produce ptygmatic veins. Laminated quartz veins within high‐angle reverse faults contain arsenopyrite and pyrite in vein margins and gold in fractures that cross‐cut continuous quartz crystals. Gold, galena, chalcopyrite and sphalerite may also be deposited adjacent to and within fractured arsenopyrite and pyrite. Late‐stage, cross faults developed in a regime of north‐south compression and post‐date the laminated quartz veins and mineralization.  相似文献   

13.
张峤  纪飞 《地质力学学报》2021,27(5):809-820
特拉裂谷是西南极裂谷系统在新生代发生张裂作用的最后地区,因此成为研究西南极裂谷系统构造活动的关键。文章利用中国南极科考采集的以及SDLS国际共享的地震数据,结合多个钻探计划的钻井等基础资料,统一了西罗斯海地区地震反射界面和地震层序。将研究区的断层组合样式分为同沉积断层、层间断层和负花状断层三类,并进一步划分了区内新生代断层活动的期次,圈定了特拉裂谷的影响范围。研究发现,每期断层活动具有明显的继承性,活动时间由北部阿黛尔盆地向南部特拉裂谷越来越新,呈递变性,这是裂谷作用从北向南逐渐传递的结果。为了更加全面地揭示研究区的综合地球物理特征,利用基于弹性板模型下的Fan小波相关技术获得了研究区有效弹性厚度的空间变化特征。结果显示,横贯南极山脉前缘的异常低值条带与晚新生代的裂谷活动和伴生的岩浆作用有关,并指示了西罗斯海的拉张区域。   相似文献   

14.
The Term, Lawn, Wide and Doom Supersequences represent tectonically driven, second‐order sedimentary accommodation sequences in the Isa Superbasin. The four supersequences are stacked to form two major depositional wedges or packages extending south from the Murphy Inlier onto the central Lawn Hill Platform. A major intrabasin structure, the Elizabeth Creek Fault Zone separates the two depositional wedges. The Term and Lawn Supersequences each form a thick, crudely fining‐upward sedimentary succession. The basal part of each supersequence comprises sand‐dominated facies, deposited under lowstand conditions. The overlying transgressive deposits comprise thick successions of carbonaceous, shale‐prone sediment that represents times of increased accommodation. Synsedimentary fault activity along the northwest‐trending Termite Range Fault and major northeast‐trending faults including the Elizabeth Creek Fault Zone resulted in overthickened sections of parts of the Term and Lawn Supersequences in regional depocentres. A regional extensional event occurred during Wide Supersequence time, and resulted in strike‐slip deformation, uplift and tilting of fault blocks and erosion of underlying Lawn sequences. This tectonic event created small, fault‐bounded depocentres, where basal silty turbidites of the Wide Supersequence are locally thickened. Denudation of fault blocks in the hinterland provided increasing coarse clastic sediment‐supply forming thick, sand‐dominated, lowstand deposits of the upper Wide Supersequence. Overall, the Wide Supersequence exhibits a coarsening‐upwards facies trend. Tectonic quiescence resulted in the accumulation of siltstone‐dominated transgressive and highstand turbidite deposits in mid‐Wide time. The base of the Doom Supersequence comprises thick, feldspathic, debris‐flow sandstones signalling a new provenance. Decreasing accommodation is reflected by coarsening‐ and shallowing‐upwards facies trends in late Doom time. Declining accommodation and the end of sedimentation in the Isa Superbasin were most likely initiated by deformation at the start of the Isan Orogeny.  相似文献   

15.
The Mt Isa Rift Event is a Palaeoproterozoic intracontinental extension event that defines the beginning of sedimentation into the Isa Superbasin in the Western Fold Belt, Mt Isa terrane. In the mildly deformed Fiery Creek Dome region, on the northwest flanks of the Mt Isa Rift, elements of the Mt Isa Rift Event rift architecture are preserved without being intensely overprinted by later deformation. In this region two discrete generations of northwest‐dipping normal faults have been identified. Early generation normal faults were active during the deposition of fluvial and immature conglomerate and sandstone of the Bigie Formation. Renewed rifting and the development of late‐generation normal faults occurred during deposition of shallow‐marine sandstone and siltstone of the lower Gunpowder Creek Formation. Differential uplift between tilt blocks formed an array of spatially and temporally discontinuous synrift unconformities on the crests of uplifted tilt blocks. Applying the domino model yields ~28% crustal extension for the entire Mt Isa Rift Event. Northwest‐striking transverse faults facilitated differential displacement along normal faults and formed boundaries to normal fault segments, creating smaller depositional compartments along half‐graben axes. Three large domes were formed during laccolith emplacement. These domes produced palaeogeographical highs that divided the region into sub‐basins and were a source for the coarse fluvial synrift sequences deposited during the early Mt Isa Rift Event. The basin architecture in the Fiery Creek Dome region is consistent with northwest‐southeast‐directed extension.  相似文献   

16.
中国中始新世—早更新世构造事件与应力场   总被引:5,自引:0,他引:5  
中始新世—渐新世(52—23.3Ma)的华北构造期是以太平洋板块朝NWW方向位移为主要特征,使我国大陆受到近东西向的挤压,造成一系列近南北向的褶皱、逆掩断层和许多走向近东西的正断层、单断箕状盆地。此构造事件的发生可能与始新世末期北美、加勒比海和东太平洋的大量微玻璃陨石的坠落、冲击有关。中新世--早更新世(23.30.7Ma)的喜马拉雅构造期是以印度—澳大利亚板块与菲律宾海板块向北推移为主要特征,造成喜马拉雅山和日本列岛南部的俯冲带,使我国西部发育走向近东西的褶皱、逆掩断层系,而在东部地区则形成许多走向近南北的深切地幔的正断层系.并使南海与日本海再次张开。出现洋壳。喜马拉雅构造事件可能与印度洋、南亚、澳大利亚附近地区的微玻璃陨石群的冲击有关。  相似文献   

17.
The Camden Syncline and the Lapstone Structual Complex are two major geological features of the central Sydney Basin. We have interpreted over 500 km (45 lines) of an unpublished recenty reprocessed seismic dataset as a means to elucidating the evolution of both features. Major horizons observed in the seismic data have been described and correlated with significant tectonic events that shaped the formation of the greater Sydney–Gunnedah–Bowen Basin; namely Early Permian extension, mid-Permian passive thermal subsidence and Late Permian to mid-Triassic foreland loading. Horizon mapping shows that the Camden Syncline is a broad north-northeast plunging structure whose western limb is truncated by the north–south trending faults and folds of the Lapstone Structural Complex. Furthermore, isochron maps reveal that the Late Permian to mid-Triassic sedimentary succession thickens towards the axis of the Camden Syncline, thus confirming it's role as a depocentre during this period of basin evolution. No abrupt thickening is observed in the Late Permian to mid-Triassic sedimentary succession in the vicinity of the Lapstone Structural Complex indicating that the Lapstone Structural Complex was formed subsequent to the deposition of the Permian–Triassic Sydney Basin sedimentary succession. Furthermore, our interpretation of the reprocessed seismic data confirms that the major structural style of the Lapstone Structural Complex is that of west dipping reverse faults and east facing monoclines.  相似文献   

18.

From the early Late Permian onwards, the northeastern part of the Sydney Basin, New South Wales, (encompassing the Hunter Coalfield) developed as a foreland basin to the rising New England Orogen lying to the east and northeast. Structurally, Permian rocks in the Hunter Coalfield lie in the frontal part of a foreland fold‐thrust belt that propagated westwards from the adjacent New England Orogen. Thrust faults and folds are common in the inner part of the Sydney Basin. Small‐scale thrusts are restricted to individual stratigraphic units (with a major ‘upper decollement horizon’ occurring in the mechanically weak Mulbring Siltstone), but major thrusts are inferred to sole into a floor thrust at a poorly constrained depth of approximately 3 km. Folds appear to have formed mainly as hangingwall anticlines above these splaying thrust faults. Other folds formed as flat‐topped anticlines developed above ramps in that floor thrust, as intervening synclines ahead of such ramp anticlines, or as decollement folds. These contractional structures were overprinted by extensional faults developed during compressional deformation or afterwards during post‐thrusting relaxation and/or subsequent extension. The southern part of the Hunter Coalfield (and the Newcastle Coalfield to the east) occupies a structural recess in the western margin of the New England Orogen and its offshore continuation, the Currarong Orogen. Rocks in this recess underwent a two‐stage deformation history. West‐northwest‐trending stage one structures such as the southern part of the Hunter Thrust and the Hunter River Transverse Zone (a reactivated syndepositional transfer fault) developed in response to maximum regional compression from the east‐northeast. These were followed by stage two folds and thrusts oriented north‐south and developed from maximum compression oriented east‐west. The Hunter Thrust itself was folded by these later folds, and the Hunter River Transverse Zone underwent strike‐slip reactivation.  相似文献   

19.
论中国东北大陆裂谷系的形成与演化   总被引:19,自引:0,他引:19       下载免费PDF全文
刘嘉麒 《地质科学》1989,7(3):209-216
自中生代末期以来,东北地区形成了以松辽地堑为主体,联合下辽河裂谷、伊通-依兰裂谷、抚顺-密山裂谷以及邻近断陷盆地的大陆裂谷系,并向南北两端延伸,在亚洲东部构成一条大的裂谷带。这个大陆裂谷系的形成和发展是由中央向两侧展开的,与板块俯冲、弧后扩张密切相关。  相似文献   

20.
通过收集整理前人成果资料,结合湖南、湖北地区地震地质特征、历史近代地震数据等,全面梳理分析该区主要活动断裂及历史地震,总结该区主要活动断裂系(带)及控震特征、地震活动性及时空分布特征。研究结果表明,该区主要活动断裂以北东、北北东、北西向为主,主要活动断裂系有6个,自北向南分别为秦昆北西向断裂系、鄂东北东向断裂系、江汉-洞庭盆地断裂系、鄂西-湘西北东向断裂系、湘中南北东向断裂系、湘东北东向断裂系,其中第四纪活动较为显著且影响程度大的是江汉-洞庭盆地断裂系及秦昆北西向断裂系西段。“两湖”地区地震活动水平相对较低,正处于第三活动期的相对平静期。结合近代中强震资料及中国地震烈度区划特征分析认为,江汉-洞庭盆地南部的东、西边界、鄂州-黄冈-武汉一带以及鄂西北断块隆起区地壳较不稳定,具有发震潜力,应在城市群规划建设、护江大堤设防和重大工程建设中予以特别关注。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号