首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A collection of galena from the Nezhdaninsky gold deposit (62 samples), as well as galena from the Menkeche silver-base-metal deposit and the Sentyabr occurrence and K-feldspar from intrusive rocks of the Tyry-Dyby ore cluster have been studied using the high-precision (±0.02%) MC-ICP-MS method. Particular ore zones are characterized by relatively narrow variations of isotope ratios (no wider than σ6/4 = 0.26%). Vertical zoning of Pb isotopic composition is not detected. Variation in Pb isotope ratios mainly depends on the type of mineral assemblage. Galena of the gold-sulfide assemblage dominating at the Nezhdaninsky deposit is characterized by the following average isotope ratios: 206Pb/204Pb = 18.472, 207Pb/204Pb = 15.586, and 208Pb/204Pb = 38.605. Galena from the regenerated silver-base-metal assemblage is distinguished by less radiogenic lead isotope ratios: 18.420, 15.575, and 38.518, respectively. In lead from the Nezhdaninsky deposit, the component, whose source is identified as Permian host terrigenous rocks, is predominant. The data points of isotopic composition of lode lead make up a linear trend within the range of μ2 = 9.5-9.6. K-feldspar of granitic rocks has less radiogenic and widely varying lead isotopic composition compared to that of galena. The isotopic data on Pb and Sr constrain the contribution of Late Cretaceous granitic rocks as a source of gold mineralization at the Nezhdaninsky deposit. The matter from the Early Cretaceous fluid-generating magma chamber participated in the ore-forming system of the Nezhdaninsky deposit. The existence of such a chamber is confirmed by the occurrence of Early Cretaceous granitoid intrusions on the flanks of the Nezhdaninsky ore field. The greatest contribution of magmatic lead (~30%) is noted in galena from the silver-base-metal mineral assemblage. This component has isotopic marks characteristic of lower crustal lead: the elevated 208Pb/206Pb ratio relative to the mean crustal value and the lower 207Pb/204Pb ratio. Taken together, they determine a high Th/U ~ 4.0 in the source and μ2 = 9.37–9.50. This conclusion is consistent with the contemporary tectonic model describing evolution of the South Verkhoyansk sector of the Verkhoyansk Foldbelt and the Okhotsk Terrane.  相似文献   

2.
Economic reform in China since 1978 has accelerated economic development nationwide hugely, but has also brought about some environmental pollution. In order to identify the primary Pb source to the atmosphere in the central Guizhou region, Pb isotopic ratios in the acid soluble fraction of sediment from Hongfeng Lake were investigated. Lead isotopes in the lake sediments record the history of regional atmospheric Pb pollution. Before the economic reform in 1978, the 208Pb/206Pb and 206Pb/207Pb ratios in the leachates of lake sediments were constant, with a range of 2.0060 to 2.0117 and of 1.2314 to 1.2355, respectively. In the early period of economic reform (1978 to 1988), with the rapid industrial growth in Guizhou province, the acid soluble Pb isotope ratios in the lake sediments changed sharply: the 208Pb/206Pb ratios increased from 2.0212 to about 2.05, while the 206Pb/207Pb ratios decreased from 1.2251 to 1.2060. Emissions from Pb-ore-related industries are suggested to be the major pollution source of Pb in this period. Due to output from a local power plant since 1988, the isotope ratios of the acid soluble Pb in sediments in 1990s are characterized by a little higher radiogenic Pb (208Pb/206Pb = 2.0340–2.0400; 206Pb/207Pb = 1.2122–1.2158) than for the 1980s.  相似文献   

3.
To discriminate possible anthropogenic and lithogenic sources of Pb in Lower Silesia (SW Poland), the Pb isotope composition was investigated in a spectrum of rocks and anthropogenic materials as well as within 10 soil profiles. Silicate rocks in Lower Silesia have 206Pb/207Pb ratios that vary from 1.17 for serpentinites to 1.38 for gneisses, and this variability is reflected in the isotope composition of the mineral soil horizons. The Pb isotope composition of coals, ores and anthropogenic materials (slags and fly ashes) is rather uniform, with 206Pb/207Pb ratios ranging from 1.17 to 1.18. Similar ratios were observed in ore and coal samples from Upper Silesia. The O soil horizons also have uniform 206Pb/207Pb ratios of 1.17–1.18 and the heterogeneity of the 206Pb/207Pb ratios increases with depth in the soil profiles. Five soils, with varying Pb concentrations, analysed far from contamination centres, show consistent, approximately 2-fold enrichment in Pb concentration from the C to A horizons, which is consistent with natural re-distribution of Pb within the profiles. The increase in the Pb concentration is accompanied by a decrease in 206Pb/207Pb ratios, also attributed to natural Pb isotope fractionation. Four soil profiles from industrial areas show variable enrichments in Pb concentrations and these are attributed to anthropogenic input from air-borne pollutants or even slag particles at smelting sites. The implication is that a lithogenic Pb source can deviate from the basement rock composition, and detailed isotope characteristics of the geological background and natural enrichments in soils are often needed to determine the lithogenic/anthropogenic proportions of Pb in soils.  相似文献   

4.
The Neoproterozoic Vazante Group at the western border of the São Francisco Craton, Brazil, hosts the largest Zn–Pb district in South America. Several authors have classified this mineral district as Mississippi Valley-type (MVT), based on the intimate association with carbonates and the epigenetic character of most ore bodies. In this paper, we present 47 new lead isotope data from four deposits located along the 300 km N–S Vazante–Paracatu–Unai linear trend. Pb isotope ratios indicate sources with relatively high U/Pb and Th/Pb ratios. Considering the 206Pb/204Pb and 208Pb/204Pb ratios as indicative parameters for the source, we suggest an upper crustal source for the metals. The small variation on the Pb isotope ratios compared to those observed in the classical MVT deposits, and other geological, fluid inclusion and sulphur isotopic data indicates a metallogenic event of long duration. It was characterized by focused circulation of hydrothermal fluids carrying metals from the basement rocks and from the sedimentary pile. The data obtained are more compatible with an evolution model similar to that of IRISH-type deposits. The existence of three Pb isotopic populations could be the result of regional differences in composition of the source rocks and in the fluid–rock interaction since the mineralization is a long-term process.  相似文献   

5.
《Applied Geochemistry》2000,15(9):1291-1305
Lead concentrations and isotopic compositions were determined on both bulk sediments deposited in the Thau lake in southern France during the last 200 years, and leachates derived from a series of sequential leachings of the sediments, making it possible to identify the sources, natural (i.e. indigenous lithologic) or anthropogenic, and to quantify the different inputs of Pb.Two distinct inputs of Pb could be distinguished. One of these corresponds to the terrigenous material entering the basin, representative of the local natural Pb ‘background’. Its supply remained steady most of the time with 206Pb/207Pb ratios of 1.200±0.003, except at the time of heavy storms producing voluminous and sudden depositions, such as that of September 1875. This Pb supply is mainly hosted by the detrital silicate fraction of the sediments. The second Pb input is a direct consequence of anthropogenic activities of various industrial and domestic emissions in the region, particularly due to the city of Sète and, to a lesser extent, to the villages in the watershed. The 206Pb/207Pb ratios of this input are of 1.142–1.162. The Pb added to gasoline could also be identified in the uppermost sediments, because of its specific 206Pb/207Pb ratios of 1.069–1.094. The leaching experiments also showed that the anthropogenic Pb is mainly hosted by the oxi-hydroxides of the sediments and to a lesser extent by the carbonates. It may also be adsorbed on particle surfaces, while only limited amounts are bound to organic matter.  相似文献   

6.
The sparkling waters from the area of Kyselka near Karlovy Vary at the western slope of the Doupovske hory, Bohemia (Czech Republic), and CO2-poor waters from two underground boreholes at Jachymov, Krusne hory, Bohemia, have been studied with the aim of characterizing the distribution of rare earth elements, yttrium, and H, O, C, Sr, Nd, Pb isotopes during the low-temperature alteration processes of the host rocks. Additionally, leaching experiments were performed at pH 3 on the granitic and basaltic host rocks from Kyselka and the granite of Jachymov. All REE patterns of the granite- and the basalt-derived waters from the Kyselka area are different from those of their source rocks and the leachates of the latter. This elucidates the inhomogeneous distribution of REE and Y among the solid phases in the altered magmatic rocks. The Eu and Ce anomalies in granite-derived waters are inherited, the Y anomaly is achieved by fluid migration. Yttrium is always preferentially leached by mineral waters, whereas Y/Ho ratios of rocks and their leachates are very similar. The REE abundances in waters from the wells in Jachymov are derived from rocks intensely leached and depleted in easily soluble REE-bearing minerals, whereas the granites and basalts from Kyselka still contain soluble, REE-bearing minerals. A comparison of REE/Ca patterns of the experimental leachates with those of the mineral waters elucidate the high retention of REE in rocks during water–rock interaction. In strongly altered rocks Sr isotope ratios of mineral waters and rocks differ widely, whereas the corresponding Nd isotope ratios are very similar. 207Pb/208Pb, 206Pb/208Pb and 206Pb/207Pb ratios in mineral waters are independent from U/Th ratios in the rocks. 206Pb/208Pb and 206Pb/207Pb are lower in mineral waters than in their source rocks and their leachates, which indicates that Pb is primarily derived from solid phases that do not contain significant contents of leachable U and Th. Thus, mineral waters, although CO2 rich, only interact with surface films on minerals and not with the bulk of the minerals as in the leaching experiments.Calculation of mixing ratios of waters from the granitic and basaltic sources of the waters from the Kyselka area yield about 40% of water from the underlying granite in water recovered from the basalt, whereas the granite-derived water is mixed with only about 5% of the water from the basalt.  相似文献   

7.
Abstract

U-Pb. systematics of detrital zircons carry a mineral-specific information summarizing important geologic events during the preelastic slate of the minerals. Comparisons with U/Pb isotope rati of zircons from potential provenances reveal relationships between source areas of the zircons and their final location of deposition in a sedimentary basin. The Palaeozoic zircon detritus accumulated in sedimentary basins on the Rhenohercynian crustal segment is taken as an example to elucidate the plate-tectonical induced changes of the source areas by significant changes of the 206Pb/238 vs. 207Pb/235ratios in the zircons.

The U-Pb systematic of detrital zircon- from the Cambrian sediments deposited in the Brabant Massif and in the Ardennes indicale two source areas. Part of the detritus derived from an area. where strong Cadomian-Panafrican events influenced the U-Pb systems of the zircons. The oilier part reflects a source, in which the U-Pb systems were able to preserve their Arehaean to Early Proterozoic age information. Zircons of the latter source record the most ancient ages so far observed in detrital zircons of the later Rhenohercynian crustal seg ment. The similarities with the U/Pb isotope ratios of zircons from the Armorican Massif, the Bohemian Massif. and certain regions of the Mps indicate a geotectonic position of the sedimentar) basin during Cambrian times in the periphery of the Condwana mega-continent.

The detrital zircons accumulated in the Variscan Rhenish basin during the Lower Devonian show a completely different summarizing age information. The majority of the zircons reflect a Laurussian-type origin. which suggests a palaeogeographic position of the Variscan Rhenohercynian basin close to Laurussia. Euhedral zircons crystallized during Caledonian times document the erosion of Caledonian granitoids from structural highs in the Mid European Caledonides.

Zircons of the Lower Carboniferous flysch sediments of todays Eastern Rhenish Massif originate from two source areas characterised by very different geologic histories. Euhedral zircons represent a rather young component of about 410 Ma in the detritus, whereas. in contrast. the well rounded crystals show a summarizing age-information identical to that of the zircons found in the Cambrian sandstones. The low ages resemble intrusion ages as recorded from the Mid-German-Crystalline-Rise, the high age reflect a Gondwana-type input into the Rhenohercynian sedimentary basin during Lower Carboniferous times. The detritus thus documents the Variscan collision and a renewed coherence of the Rhenohercynian crustal segment to Cnndwana.

The zircon population from Upper Carboniferous molasse deposits is comprised of Condwana-tуpc material and of mate rial with similar U/Pb ratios as recorded in the Lower Devonian zircons. In parts the Variscan molasse must have been derived from sediments once deposited in a southern part of the Rhenohercynian basin and in the Saxothurìngian basin. U/Pb ratios of euhedral and round diamond-like lustrous zircons indicate a major geologic event at the Namurian/Westphalian boundary (310-315 Ma). These zircons thus reflect an influx of detritus into the molasse from other source rocks, probably synsedimentary volcanics.  相似文献   

8.
Geochronological data, major and trace element abundances, Nd and Sr isotope ratios, δ18O whole rock values and Pb isotope ratios from leached feldspars are presented for garnet-bearing granites (locality at Oetmoed and outcrop 10 km north of Omaruru) from the Damara Belt (Namibia). For the granites from outcrop 10 km N′ Omaruru, reversely discordant U–Pb monazite data give 207Pb/235U ages of 511±2 Ma and 517±2 Ma, similar to previously published estimates for the time of regional high grade metamorphism in the Central Zone. Based on textural and compositional variations, garnets from these granites are inferred to be refractory residues from partial melting in the deep crust. Because PT estimates from these xenocrystic garnets are significantly higher (800°C/9–10 kbar) than regional estimates (700°C/5 kbar), the monazite ages are interpreted to date the peak of regional metamorphism in the source of the granites. Sm–Nd garnet–whole rock ages are between 500 and 490 Ma indicating the age of extraction of the granites from their deep crustal sources. For the granites from Oetmoed, both Sm–Nd and Pb–Pb ages obtained on igneous garnets range from 500 to 490 Ma. These ages are interpreted as emplacement ages and are significantly younger than the previously proposed age of 520 Ma for these granites based on Rb/Sr whole rock age determinations. Major and trace element compositions indicate that the granites are moderately to strongly peraluminous S-type granites. High initial 87Sr/86Sr ratios (>0.716), high δ18O values of >13.8‰, negative initial Nd values between −4 and −7 and evolved Pb isotope ratios indicate formation of the granites by anatexis of mid-crustal rocks similar to the exposed metapelites into which they intruded. The large range of Pb isotope ratios and the lack of correlation between Pb isotope ratios and Nd and Sr isotope ratios indicate heterogeneity of the involved crustal rocks. Evidence for the involvement of isotopically highly evolved lower crust is scarce and the influence of a depleted mantle component is unlikely. The crustal heating events that produced these granites might have been caused by crustal thickening and thrusting of crustal sheets enriched in heat-producing elements. Very limited fluxing of volatiles from underthrust low- to medium-grade metasedimentary rocks may have also been a factor in promoting partial melting. Furthermore, delamination of the lithospheric mantle and uprise of hot mantle could have caused localized high-T regions. The presence of coeval A-type granites at Oetmoed that have been derived at least in part from a mantle source supports this model.  相似文献   

9.
Lead isotope ratios of galena from the carbonate-hosted massive sulphide deposits of Kabwe (Pb-Zn) and Tsumeb (Pb-Zn-Cu) in Zambia and Namibia, respectively, have been measured and found to be homogeneous and characteristic of upper crustal source rocks. Kabwe galena has average isotope ratios of 206/204Pb = 17.997 ± 0.007, 207/204Pb = 15.713 ± 0.010 and 208/204Pb = 38.410 ± 0.033. Tsumeb galena has slightly higher 206/204Pb (18.112 ± 0.035) and slightly lower 207/204Pb (15.674 ± 0.016) and 208/204Pb (38.276 ± 0.073) ratios than Kabwe galena. The isotopic differences are attributed to local differences in the age and composition of the respective source rocks for Kabwe and Tsumeb. The homogeneity of the ore lead in the two epigenetic deposits suggests lead sources of uniform isotopic composition or, alternatively, thorough mixing of lead derived from sources with relatively similar isotopic compositions. Both deposits have relatively high 238U/204Pb ratios of 10.31 and 10.09 for Kabwe and Tsumeb galenas, respectively. These isotope ratios are considered to be typical of the upper continental crust in the Damaran-Lufilian orogenic belt, as also indicated by basement rocks and Cu-Co sulphides in stratiform Katangan metasediments which have a mean μ-value of 10.25 ± 0.12 in the Copperbelt region of Zambia and the Democratic Republic of Congo (formerly Zaire). The 232Th/204Pb isotope ratios of 43.08 and 40.42 for Kabwe and Tsumeb suggest Th-enriched source regions with 232Th/235U (κ-values) of 4.18 and 4.01, respectively. Model isotopic ages determined for the Kabwe (680 Ma) and Tsumeb (530 Ma) deposits indicate that the timing of the mineralisation was probably related to phases of orogenic activity associated with the Pan-African Lufilian and Damaran orogenies, respectively. Galena from the carbonate-hosted Kipushi Cu-Pb-Zn massive sulphide deposit in the Congo also has homogeneous lead isotope ratios, but its isotopic composition is comparable to that of the average global lead evolution curve for conformable massive sulphide deposits. The μ (9.84) and κ (3.69) values indicate a significant mantle component, and the isotopic age of the Kipushi deposit (456 Ma) suggests that the emplacement of the mineralisation was related to a post-tectonic phase of igneous activity in the Lufilian belt. The isotope ratios (206/204Pb, 207/204Pb, 208/204Pb) of the three deposits are markedly different from the heterogeneous lead ratios of the Katangan Cu-Co stratiform mineralisation of the Copperbelt as well as those of the volcanogenic Nampundwe massive pyrite deposit in the Zambezi belt which typically define radiogenic linear trends on lead-lead plots. The host-rock dolomite of the Kabwe deposit also has homogeneous lead isotope ratios identical to the ore galena. This observation indicates contamination of the Kabwe Dolomite Formation with ore lead during mineralisation. Received: 8 September 1997 / Accepted: 21 August 1998  相似文献   

10.
High-K mafic alkalic lavas (5.4 to 3.2 wt% K2O) from Deep Springs Valley, California define good correlations of increasing incompatible element (e.g., Sr, Zr, Ba, LREE) and compatible element contents (e.g., Ni, Cr) with increasing MgO. Strontium and Nd isotope compositions are also correlated with MgO; 87Sr/86Sr ratios decrease and ɛNd values increase with decreasing MgO. The Sr and Nd isotope compositions of these lavas are extreme compared to most other continental and oceanic rocks; 87Sr/86Sr ratios range from 0.7121 to 0.7105 and ɛNd values range from −16.9 to −15.4. Lead isotope ratios are relatively constant, 206Pb/204Pb ∼17.2, 207Pb/204Pb ∼15.5, and 208Pb/204Pb ∼38.6. Depleted mantle model ages calculated using Sr and Nd isotopes imply that the reservoir these lavas were derived from has been distinct from the depleted mantle reservoir since the early Proterozoic. The Sr-Nd-Pb isotope variations of the Deep Springs Valley lavas are unique because they do not plot along either the EM I or EM II arrays. For example, most basalts that have low ɛNd values and unradiogenic 206Pb/204Pb ratios have relatively low 87Sr/86Sr ratios (the EM I array), whereas basalts with low ɛNd values and high 87Sr/86Sr ratios have radiogenic 206Pb/204Pb ratios (the EM II array). High-K lavas from Deep Springs Valley have EM II-like Sr and Nd isotope compositions, but EM I-like Pb isotope compositions. A simple method for producing the range of isotopic and major- and trace-element variations in the Deep Springs Valley lavas is by two-component mixing between this unusual K-rich mantle source and a more typical depleted mantle basalt. We favor passage of MORB-like magmas that partially fused and were contaminated by potassic magmas derived from melting high-K mantle veins that were stored in the lithospheric mantle. The origin of the anomalously high 87Sr/86Sr and 208Pb/204Pb ratios and low ɛNd values and 206Pb/204Pb ratios requires addition of an old component with high Rb/Sr and Th/Pb ratios but low Sm/Nd and U/Pb ratios into the mantle source region from which these basalts were derived. This old component may be sediments that were introduced into the mantle, either during Proterozoic subduction, or by foundering of Proterozoic age crust into the mantle at some time prior to eruption of the lavas. Received: 28 February 1997 / Accepted: 9 July 1998  相似文献   

11.
Lead isotopic ratios of bulk sulphides from eleven stratigraphically equivalent deposits from the Köli Nappe sequence in the Trondheim district, and eleven from the Köli sequence at Sulitjelma Norway, have been determined. When plotted on 207Pb/204Pb-206Pb/204Pb diagrams, the data define a linear trend extending from the mantle to the upper crustal model growth curves of Doe and Zartman (1979). Moreover, the data from both districts lie on the same trend. This isotopic trend is interpreted as resulting from the mixing of lead from a mantle source (probably the host basalts) with that of an upper-crustal end member (either sialic basement or the terrigenous sediments surrounding the host basalts). It is also concluded that the deposits in both camps formed more or less contemporaneously. The isotopic mixing line is comparable with that obtained from Besshi ore pyrites in Japan, for which an aulacogenic depositional environment, similar to that found today in the Gulf of California, has been proposed (Fox 1984). It is concluded that a similar depositional environment was responsible for the Trondheim and Sulitjelma ores, although an ensialic back-arc basin, or other possible environments, cannot be entirely ruled out.  相似文献   

12.
Central Fujian Rift is another new and important volcanogenic massive sulfide Pb-Zn polymetallic metallogenetic belt. In order to find out the material genesis and mineralization period of Meixian-type Pb-Zn-Ag deposits, S and Pb isotope analysis and isotope geochronology of ores and wall rocks for five major deposits are discussed. It is concluded that the composition of sulfur isotope from sulfide ore vary slightly in different deposits and the mean value is close to zero with the 834S ranging from -3.5‰ to +5.6‰ averaging at +2.0‰, which indicates that the sulfur might originate from magma or possibly erupted directly from volcano or was leached from ore-hosted volcanic rock. The lead from ores in most deposits displays radioactive genesis character (206pb/204pb〉18.140, 207Pb/204pb〉15.584, 208pb/204pb〉38.569) and lead isotope values of ores are higher than those of wall rocks, which indicates that the lead was likely leached from the ore-hosted volcanic rocks. Based on isotope data, two significant Pb-Zn metallogenesis are delineated, which are Mid- and Late-Proterozoic sedimentary exhalative metailogenesis (The single zircon U-Pb, Sm-Nd isochronal and Ar-Ar dating ages of ore- hosted wall rocks are calculated to be among 933-1788 Ma.) and Yanshanian magmatic hydrothermal superimposed and alternated metallogenesis (intrusive SHRIMP zircon U-Pb and Rb-Sr isochronal ages between 127-154 Ma).  相似文献   

13.
Lead (and U-Pb) isotope data for sulphides and whole rocks, U-3Pb data for zircons, and Rb-Sr data for whole rocks have been determined in an attempt to elucidate the processes by which the volcanic Pb-Zn-Cu deposit at Woodlawn, southeastern N.S.W., was formed, and to relate this information to current theories of crustal effects in the genesis of volcanic Pb-Zn deposits.The lead isotope compositions of pyrite, galena, sphalerite, and chalcopyrite from the ore horizon are the same, and identical to the initial lead isotope compositions of pyrite in the host volcanics.Linear relations are obtained for plots of 207Pb/ 204Pb vs 206Pb/204Pb, 208Pb/204Pb vs 204Pb/204Pb, and 238U/204Pb vs 206Pb/204Pb for least altered whole rock volcanics, indicating no loss or gain of U to these rocks since their formation. The similar initial 206Pb/204Pb ratios in the sulphides and host volcanics suggest a common source for the lead. However, acid leach experiments, carried out to remove the ore lead influence, suggest the lead to be a complex mixture of ore and rock lead. The differences observed for high and low lead samples in the acid leaching experiments suggest that these tests may provide an additional tool in prospecting for base-metal sulphides of this type.U-Pb data for zircons from the whole rocks give a spectrum of apparent ages ranging from 428 to 477 m.y. reflecting varying amounts of older zircons or resetting of the U-Pb systems in the volcanics. The older zircons are present either as discrete rounded crystals or cores surrounded by new euhedral growth. The populations and U-Pb data suggest the rocks were pre-existing volcanics with a possible detrital component, whose ages have not been fully reset during remelting.In contrast to the zircon data, U-Pb and Rb-Sr whole rock data define lines proportional to ages of 413±6 m.y. and 409±4 m.y. (1.39×10–11/yr) respectively and the strontium has a relatively high initial ratio of 0.710.The complex zircon population, high initial Sr ratio, Th/U ratios and rare earth data suggest the Woodlawn volcanics were formed by multistage remelting of material of similar chemical composition. Consequently, conformable deposits of this type should not be discussed in terms of the Growth Curve and single stage models of lead development.Mineralization is thought to have occurred at 420 m.y., either from solutions associated with the volcanism and/or concentrated from the volcanics and sediments by circulating sea water, in a shallow convective cell and soon after, or during, the formation of the pile. Alternatively, the multistage processes operating during formation of the Woodlawn volcanics acted as an effective homogeniser of lead isotopes.  相似文献   

14.
Lead isotope ratios and associated trace element concentrations (U, Th and Pb) extracted by partial-leaching with 2% nitric acid from Proterozoic sandstones and basement rocks reveal much about the fluid evolution of sedimentary basins hosting unconformity-type uranium deposits. In addition, these techniques have great potential as a guide for exploration of uranium and other types of deposits in basins of any age. Isotope ratios of Pb in Proterozoic sandstones from basins known to contain high-grade uranium deposits are radiogenic at key geological localities and settings distal to known mineralization and particularly in altered zones proximal to mineralization. Sandstones completely cemented by quartz overgrowths typically have non-radiogenic Pb isotope ratios, indicating early closure of porosity and isolation of these rocks from later fluid events. Alternatively, the unconformity served as both a source of uranium and radiogenic Pb as well as an avenue for late-stage (<250–900 Ma) fluid flow. The mafic volcanic units, which are relatively reducing lithologies and therefore have removed uranium from basinal brines, have uranium-supported radiogenic Pb isotope ratios. Comparison of 238U/206Pb and 206Pb/204Pb ratios is useful in determining the timing and nature of U and Pb migration before, during and after mineralization in these basins. This comparison can be used to delineate the presence of radiogenic Pb isotope ratios that are not internally supported by uranium and thorium in rocks, eventually providing the explorationist with geochemical vectors that point toward sites of high potential for economic uranium mineralization.  相似文献   

15.
The paper considers the results of high-precision Pb–Pb isotopic analysis of 120 galena samples from 27 Au and Ag deposits of the South Verkhoyansk Synclinorium (SVS) including large Nezhdaninsky deposit (628.8 t Au). The Pb isotopic composition is analyzed on a MC-ICP-MS NEPTUNE mass-spectrometer from solutions with an error of no more than ±0.02% (2σ). Four types of deposits are studied: (i) stratified vein gold–quartz deposits (type 1) hosted in metamorphosed Upper Carboniferous–Lower Permian terrigenous rocks and formed during accretion of the Okhotsk Block to the North Asian Craton synchronously with dislocation metamorphism and related granitic magmatism; (ii) vein gold–quartz (Nezhdaninsky type) deposits also hosted in Lower Permian metasedimentary rocks; (iii) Au–Bi deposits localized at the contact zones of the Late Cretaceous granitic plutons; and (iv) Sn–Ag polymetallic deposits related to granitic and subvolcanic rocks of the Okhotsk Zone of the SVS. The deposits of types 2, 3, and 4 are postaccretionary. The general range of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios is 18.1516–18.5903 (2.4%), 15.5175–15.6155 (0.63%), and 38.3010–39.0481 (2.0%), respectively. In 206Pb/204Pb–207Pb/204Pb and 206Pb/204Pb–208Pb/204Pb diagrams, the data points of Pb isotopic compositions of all deposits occupy restricted, partly overlapping areas along a general elongated trend. The various SVS Au–Ag deposits can be classified according to the Pb isotopic composition in accordance with all three Pb ratios. Deposits of the same type show distinct Pb isotopic compositions that strongly exceed the scale of analytical error (±0.02%). The differences in Pb isotopic composition within specific deposits are low and subordinate and have little effect on variations in the Pb isotopic composition of the SVS deposits. The μ2 values (Stacey–Kramers model), which characterize the 238U/204Pb ratios of ore lead sources of the SVS deposits, widely vary from 9.7 to 9.38. The ω2 values (232Th/204Pb) are 39.82–36.61, whereas the Th/U ratios are 4.04–3.86. The content of all three radiogenic Pb isotopes and μ2 values of feldspars from SVS intrusive rocks are strongly distinct from those of galena of stratified gold–quartz and vein gold–quartz deposits and are identical to Pb of galena from Au–Bi and Sn–Ag polymetallic deposits, indicating a mostly magmatic origin for the Pb of these deposits. Detailed isotopic study of the Nezhdaninsky deposit shows different Pb isotopic composition of two consecutive mineral assemblages (gold–sulfide and Ag polymetallic): ~0.30, ~0.07, and ~0.22% for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios, respectively. These differences are interpreted as a result of involvement of at least two metal sources during the evolution of an ore-forming system: (i) host Lower Permian terrigenous rocks and (ii) a magmatic source similar in Pb isotopic composition to that of Sn–Ag polymetallic deposits. The Pb isotopic composition and μ2 and Th/U values show that lead of stratified gold–quartz deposits combines isotopic tracers of lower and upper crustal sources (Upper Carboniferous–Lower Permian terrigenous rocks), lead of which was mobilized by ore-bearing fluids. The high 208Pb/206Pb ratios and Th/U evolutionary parameter are common to all Pb isotopic composition of all studied Au–Ag deposits and SVS Cretaceous intrusive rocks and indicate that Pb sources were depleted in U relative to Th. Taking into account the structure of the region and conceptions on its evolution, we can suggest that the magma source was related to lower crustal subducted rocks of the Archean (~2.6 Ga) North Asian Craton and the Okhotsk terrane.  相似文献   

16.
The Pb-Zn-Ba(-Ag-Au) mineralization in the Triades and Galana mine areas is hosted in 2.5–1.4 Ma pyroclastic rocks, and structurally controlled mostly by NE-SW or N-S trending brittle faults. Proximal pervasive silica and distal pervasive sericite-illite alteration are the two main alteration types present at the surface. The distribution of mineralization-alteration in the district suggests at least two hydrothermal events or that hydrothermal activity lasted longer at Galana. The Sr isotope signature of sphalerite and barite (87Sr/86Sr = 0.709162 to 0.710214) and calculated oxygen isotope composition of a fluid in equilibrium with barite and associated quartz at temperatures of around 230°C are suggestive of a seawater hydrothermal system and fluid/rock interaction. Lead isotope ratios of galena and sphalerite (206Pb/204Pb from 18.8384 to 18.8711; 207Pb/204Pb from 15.6695 to 15.6976; 208Pb/204Pb from 38.9158 to 39.0161) are similar to those of South Aegean Arc volcanic and Aegean Miocene plutonic rocks, and compatible with Pb derived from an igneous source. Galena and sphalerite from Triades-Galana have δ34SVCDT values ranging from +1 to +3.6‰, whereas barite sulfate shows δ34SVCDT values from +22.8 to +24.4‰. The sulfur isotope signatures of these minerals are explained by seawater sulfate reduction processes. The new analytical data are consistent with a seawater-dominated hydrothermal system and interaction of the hydrothermal fluid with the country rocks, which are the source of the ore metals.  相似文献   

17.
Pliocene to recent volcanic rocks from the Bulusan volcanic complex in the southern part of the Bicol arc (Philippines) exhibit a wide compositional range (medium- to high-K basaltic-andesites, andesites and a dacite/rhyolite suite), but are characterised by large ion lithophile element enrichments and HFS element depletions typical of subduction-related rocks. Field, petrographic and geochemical data indicate that the more silicic syn- and post-caldera magmas have been influenced by intracrustal processes such as magma mixing and fractional crystallisation. However, the available data indicate that the Bicol rocks as a group exhibit relatively lower and less variable 87Sr/86Sr ratios (0.7036–0.7039) compared with many of the other subduction-related volcanics from the Philippine archipelago. The Pb isotope ratios of the Bicol volcanics appear to be unlike those of other Philippine arc segments. They typically plot within and below the data field for the Philippine Sea Basin on 207Pb/204Pb versus 206Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, implying a pre-subduction mantle wedge similar to that sampled by the Palau Kyushu Ridge, east of the Philippine Trench. 143Nd/144Nd ratios are moderately variable (0.51285–0.51300). Low silica (<55 wt%) samples that have lower 143Nd/144Nd tend to have high Th/Nd, high Th/Nb, and moderately low Ce/Ce* ratios. Unlike some other arc segments in the Philippines (e.g. the Babuyan-Taiwan segment), there is little evidence for the involvement of subducted terrigenous sediment. Instead, the moderately low 143Nd/144Nd ratios in some of the Bicol volcanics may result from subduction of pelagic sediment (low Ce/Ce*, high Th/Nd, and high Th/Nb) and its incorporation into the mantle wedge via a slab-derived partial melt.  相似文献   

18.
The Pb-isotope composition of soils and sediments has been measured from both highly contaminated and non-contaminated regions of Bayou Trepagnier, a bayou in southern Louisiana that has had oil refinery effluent discharged into it over the past 66 years. Spoil banks created by the dredging of the bayou bottom approximately 50 years ago are the main source of contamination within the ecosystem. The 206Pb/207Pb isotope composition of the contaminant is relatively constant averaging 1.275 ±0.008. A literature search reveals that such radiogenic values are typical of ores from southeastern Missouri. When surficial soil 206Pb/208Pb and 206Pb/207Pb isotope ratios are plotted against each other, a straight line is defined (r2=0.99). The linear correlation suggests mixing between Pb from the spoil banks and Pb from a natural source. The latter source may consist of Pb in soil that has been leached of its natural radiogenic component during weathering processes. Mixing calculations indicate that transport of contaminant Pb is widespread and occurs several hundred meters from the spoil banks. Despite the low Pb concentrations of some of the soils, the isotope data demonstrate that a significant amount of the Pb is derived from the pollutant source. Received: 12 July 1999 · Accepted: 14 September 1999  相似文献   

19.
Shales of the ca. 3.0 Ga Buhwa Greenstone Belt, Zimbabwe, were derived from a compositionally diverse provenance whose ages, determined by ion probe analyses of detrital zircons in interbedded sandstones, range from 3.8 to 3.1 Ga. Geochemical data for the shales were previously interpreted to indicate that sediments had been derived from an intensely weathered source. REE concentrations in the shales were interpreted to suggest that the provenance was compositionally mixed, with components of felsic (tonalite and alkalic granitoid) and mafic rocks. Sm/Nd and Nd isotopic compositions of these rocks can be used to model initial Nd isotopic ratios at the time of sedimentation (εNdsed), as well as model crustal formation ages (TDM). The former, at the age of sedimentation, range from +0.6 to −10.8, consistent with a range of provenance ages. The latter range from 4.46 Ga to 2.99 Ga. The oldest crustal formation ages, up to 0.7 Ga older than known detrital components, are interpreted here to indicate that the Sm-Nd system of the sediments experienced open system behavior. The implied alteration would have included an increase in Sm/Nd by about 20-25 percent, probably in the form of preferential loss of Nd with respect to Sm. The Pb isotopic compositions of whole rock samples are quite radiogenic, with a range of 206Pb/204Pb from 25.5 to 154. An array of ten samples lies scattered about a line with a 207Pb/204Pb -206Pb/204Pb slope age of about 2.73 Ga. Five individual samples were sequentially leached to further test the timing and characteristics of this U-Th-Pb alteration event. These arrays of a whole rock, three leach steps, and a residue also form linear Pb-Pb arrays (one is more scattered) with ages ranging from 2260 ± 360 Ma to 2824 ± 170 Ma, suggesting that all samples experienced a latest Archean to earliest Proterozoic enrichment in U/Pb. This age range also may be the approximate age of Sm/Nd enrichment for the shales. All samples, both whole rocks and leached samples, lie grouped on a 208Pb/204Pb - 206Pb/204Pb diagram around a line with 232Th/238U = 3.5 (2.9 to 3.9). Because of the lack of large differences in the Th/U of the samples through large ranges of U/Pb, we interpret this consistency in Th/U to mean that the shales of the Buhwa belt experienced Pb loss, rather than U and Th gain. Circumstances that may be responsible for Pb loss in a sedimentary basin include loss of saline fluids during basin dewatering. Such an event would likely have been related to folding associated with the thrusting and magmatic intrusion of the adjacent Limpopo Belt, suggesting that uplift, dewatering, and geochemical and isotopic alteration can be genetically related.  相似文献   

20.
《Applied Geochemistry》2002,17(5):621-632
Sediments (568) and suspended particulate matter (SPM, 302 samples) of the southern German Bight and the adjacent tidal flat areas were analysed for selected major elements (Al, Fe, K), trace metals (Mn, Pb), and 206Pb/207Pb ratios using XRF, ICP–OES, ICP–MS. For selected samples a leaching procedure with 1 M HCl was used to estimate the Pb fraction associated with labile phases (e.g. Mn/Fe-oxihydroxide coatings) in contrast to the resistant mineral matrix. Enrichment factors versus average shale (EFS) reveal elevated Pb contents for all investigated sediments and SPM in the following order: Holocene tidal flat sediments (HTF, human-unaffected) <recent tidal flat sediments (RTF) <Helgoland Island mud hole sediments (MH) <nearshore SPM (SPM concentration>5 mg l−1) < offhore SPM (<5 mg l−1). Besides pollution, RTF contain elevated amounts of natural Pb-rich materials (K-feldspars and heavy minerals) due to a man-made high-energy environment (dike building) in comparison to HTF. 206Pb/207Pb ratios of RTF (1.192±0.019) are similar to the local geogenic background, determined from HTF (1.207±0.008). In contrast, Pb isotope ratios of nearshore SPM (1.172±0.007) and offshore SPM (1.166±0.012) show a distinct shift towards the anthropogenic/atmospheric signal of 1.11–1.14. This difference between RTF and SPM supports the assumption of low deposition rates of fine material in the intertidal systems. As the 206Pb/207Pb ratios of SPM do not reach the pure anthropogenic signal, the adsorbed Pb fraction was examined (leaching). However, the leachates also contained large amounts of geogenic Pb (SPM ≈40%, recent sediments ≈60%). The authors assume that the uptake of natural Pb occurs in nearshore waters, presumably in the turbid intertidal systems. Possible sources for dissolved Pb are mobilisation during weathering (geogenic signal) and dissolution of oxihydroxide coatings with subsequent release from porewaters, and unspecific riverine input. Comparatively small parts of SPM leave the coastal water mass and reach the open North Sea. This process therefore leads to a decontamination of the tidal flat sediments. Due to more pronounced atmospheric input, the offshore SPM becomes enriched in anthropogenic Pb as indicated by decreasing 206Pb/207Pb ratios with increasing distance from the coast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号