首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Regional Exploration Targeting Model for Gangdese Porphyry Copper Deposits   总被引:1,自引:0,他引:1  
An exploration targeting model for Gangdese porphyry copper deposit in Tibet, China, is constructed based on (i) the age of porphyry intrusions within Gangdese magmatic arc; (ii) the regional‐scale normal E–W, N–S and N–E striking faults; and (iii) comprehensive anomalously high concentrations of Cu‐Mo‐Au‐Ag‐Pb‐Zn. These targeting elements are derived from geological map and geochemical dataset, and are integrated by weights of evidence with the aid of geographic information system (GIS). The resulting prospectivity for porphyry copper deposits delineated by posterior probability demonstrates that the target areas extend along the Yaluzangbujiang River and contain the two large deposits, Qulong and Chongjiang, located in the eastern and central part of the Gangdese belt, respectively. These results indicate that the proposed exploration targeting model is a potential tool to map regional‐scale mineral prospectivity. The target areas with high values of favorability, especially where high concentrations of Cu‐Mo‐Au‐Ag‐Pb‐Zn are present, are the potential areas for finding undiscovered porphyry copper deposits.  相似文献   

2.
Geographic Information Systems (GIS) provide an efficient vehicle for the generation of mineral prospectivity maps, which are products of the integration of large geological, geophysical and geochemical datasets that typify modern global‐scale mineral exploration. Conventionally, two contrasting approaches have been adopted, an empirical approach where there are numerous deposits of the type being sought in the analysed mature terrain, or a conceptual approach where there are insufficient known deposits for a statistically valid analysis. There are also a variety of potential methodologies for treatment of the data and their integration into a final prospectivity map. The Lennard Shelf represents the major Mississippi Valley‐type (MVT) province in Australia; however, there are only 13 deposits or major prospects known, making an empirical approach to prospectivity mapping impractical. Instead, a conceptual approach was adopted, where critical features that control the location of MVT deposits on the Lennard Shelf, as defined by widely accepted genetic models, were translated into features related to fluid pathways, depositional traps and fluid outflow zones, which can be mapped in a GIS and categorised as either regional or restricted diagnostic, or permissive criteria. All criteria were derived either directly from geological and structural data, or indirectly from geophysical and geochemical datasets. A fuzzy‐logic approach was adopted for the prospectivity analysis, where each interpreted critical feature of the conceptual model was assigned a weighting between 0 and 1 based on its inferred relative importance and reliability. The fuzzy‐logic method is able to cope with incomplete data, a common problem in regional‐scale exploration datasets. The data were best combined using the gamma operator to produce a fuzzy‐logic map for the prospectivity of MVT deposits on the southeastern Lennard Shelf. Five categories of prospectivity were defined. Importantly, from an exploration viewpoint, the two lowest prospectivity categories occupy ~90% and the highest two categories only 1.6% of the analysed area, yet eight of the 13 known MVT deposits lie in the latter and none in the former: i.e. all lie within ~10% of the area, despite the fact that deposit locations were not used directly in the analysis. The propectivity map also defines potentially mineralised areas in the central southeastern Lennard Shelf and the southern part of the Oscar Ranges, where there are currently no known deposits. Overall, the analysis demonstrates the power of fuzzy‐logic prospectivity mapping on a semi‐regional to regional scale, and emphasises the value of geological data, particularly accurate geological maps, in exploration for hydrothermal mineral deposits that formed late in the evolution of the terrain under exploration.  相似文献   

3.
Mineral exploration programs commonly use a combination of geological, geophysical and remotely sensed data to detect sets of optimal conditions for potential ore deposits. Prospectivity mapping techniques can integrate and analyse these digital geological data sets to produce maps that identify where optimal conditions converge. Three prospectivity mapping techniques – weights of evidence, fuzzy logic and a combination of these two methods – were applied to a 32,000 km2 study area within the southeastern Arizona porphyry Cu district and then assessed based on their ability to identify new and existing areas of high mineral prospectivity. Validity testing revealed that the fuzzy logic method using membership values based on an exploration model identified known Cu deposits considerably better than those that relied solely on weights of evidence, and slightly better than those that used a combination of weights of evidence and fuzzy logic. This led to the selection of the prospectivity map created using the fuzzy logic method with membership values based on an exploration model. Three case study areas were identified that comprise many critical geological and geophysical characteristics favourable to hosting porphyry Cu mineralisation, but not associated with known mining or exploration activity. Detailed analysis of each case study has been performed to promote these areas as potential targets and to demonstrate the ability of prospectivity modelling techniques as useful tools in mineral exploration programs.  相似文献   

4.
Modern exploration is a multidisciplinary task requiring the simultaneous consideration of multiple disparate geological, geochemical and geophysical datasets. Over the past decade, several research groups have investigated the role of Geographic Information Systems as a tool to analyse these data. From this research, a number of techniques has been developed that allow the extraction of exploration‐relevant spatial factors from the datasets. The spatial factors are ultimately condensed into a single prospectivity map. Most techniques used to construct prospectivity maps tend to agree, in general, as to which areas have the lowest and highest prospectivities, but disagree for regions of intermediate prospectivity. In such areas, the prospectivity map requires detailed interpretation, and the end‐user must normally resort to analysis of the original datasets to determine which conjunction of factors results in each intermediate prospectivity value. To reduce this burden, a new technique, based on fuzzy logic principles, has been developed for the integration of spatial data. Called vectorial fuzzy logic, it differs from existing methods in that it displays prospectivity as a continuous surface and allows a measure of confidence to be incorporated. With this technique, two maps are produced: one displays the calculated prospectivity and the other shows the similarity of input values (or confidence). The two datasets can be viewed simultaneously as a three‐dimensional perspective image in which colour represents prospectivity and topography represents confidence. With the vectorial fuzzy logic method, factors such as null data and incomplete knowledge can also be incorporated into the prospectivity analysis.  相似文献   

5.
This paper proposes that the spatial pattern of known prospects of the deposit‐type sought is the key to link predictive mapping of mineral prospectivity (PMMP) and quantitative mineral resource assessment (QMRA). This proposition is demonstrated by PMMP for hydrothermal Au‐Cu deposits (HACD) and by estimating the number of undiscovered prospects for HACD in Catanduanes Island (Philippines). The results of analyses of the spatial pattern of known prospects of HACD and their spatial associations with geological features are consistent with existing knowledge of geological controls on hydrothermal Au‐Cu mineralization in the island and elsewhere, and are used to define spatial recognition criteria of regional‐scale prospectivity for HACD. Integration of layers of evidence representing the spatial recognition criteria of prospectivity via application of data‐driven evidential belief functions results in a map of prospective areas occupying 20% of the island with fitting‐ and prediction‐rates of 76% and 70%, respectively. The predictive map of prospective areas and a proxy measure for degrees of exploration based on the spatial pattern of known prospects of HACD were used in one‐level prediction of undiscovered mineral endowment, which yielded estimates of 79 to 112 undiscovered prospects of HACD. Application of radial‐density fractal analysis of the spatial pattern of known prospects of HACD results in an estimate of 113 undiscovered prospects of HACD. Thus, the results of the study support the proposition that PMMP can be a part of QMRA if the spatial pattern of discovered prospects of the deposit‐type sought is considered in both PMMP and QMRA.  相似文献   

6.
This paper describes a quantitative methodology for deriving optimal exploration target zones based on a probabilistic mineral prospectivity map. The methodology is demonstrated in the Rodalquilar mineral district in Spain. A subset of known occurrences of mineral deposits of the type sought was considered discovered and then used as training data, and a map of distances to faults/fractures and three band ratio images of hyperspectral data were used as layers of spatial evidence in weights-of-evidence (WofE) modeling of mineral prospectivity in the study area. A derived posterior probability map of mineral deposit occurrence showing non-violation of the conditional independence assumption and having the highest prediction rate was then put into an objective function in simulated annealing in order to derive a set of optimal exploration focal points. Each optimal exploration focal point represents a pixel or location within a circular neighborhood of pixels with high posterior probability of mineral deposit occurrence. Buffering of each optimal exploration focal point, based on proximity analysis, resulted in optimal exploration target zones. Many of these target zones coincided spatially with at least one occurrence of mineral deposit of the type sought in the subset of cross-validation (i.e., presumed undiscovered) mineral deposits of the type sought. The results of the study showed the usefulness of the proposed methodology for objective delineation of optimal exploration target zones based on a probabilistic mineral prospectivity map.  相似文献   

7.
Machine Learning technologies have the potential to deliver new nonlinear mineral prospectivity mapping (MPM) models. In this study, Back Propagation (BP) neural network Support Vector Machine (SVM) methods were applied to MPM in the Hatu region of Xinjiang, northwestern China. First, a conceptual model of mineral prospectivity for Au deposits was constructed by analysis of geological background. Evidential layers were selected and transformed into a binary data format. Then, the processes of selecting samples and parameters were described. For the BP model, the parameters of the network were 9–10???1; for the SVM model, a radial basis function was selected as the kernel function with best C?=?1 and γ = 0.25. MPM models using these parameters were constructed, and threshold values of prediction results were determined by the concentration-area (C-A) method. Finally, prediction results from the BP neural network and SVM model were compared with that of a conventional method that is the weight- of- evidence (W- of- E). The prospectivity efficacy was evaluated by traditional statistical analysis, prediction-area (P-A) plots, and the receiver operating characteristic (ROC) technique. Given the higher intersection position (74% of the known deposits were within 26% of the total area) and the larger AUC values (0.825), the result shows that the model built by the BP neural network algorithm has a relatively better prediction capability for MPM. The BP neural network algorithm applied in MPM can elucidate the next investigative steps in the study area.  相似文献   

8.
We present a mineral systems approach to predictive mapping of orogenic gold prospectivity in the Giyani greenstone belt (GGB) by using layers of spatial evidence representing district-scale processes that are critical to orogenic gold mineralization, namely (a) source of metals/fluids, (b) active pathways, (c) drivers of fluid flow and (d) metal deposition. To demonstrate that the quality of a predictive map of mineral prospectivity is a function of the quality of the maps used as sources of spatial evidence, we created two sets of prospectivity maps — one using an old lithologic map and another using an updated lithological map as two separate sources of spatial evidence for source of metals/fluids, drivers of fluid flow and metal deposition. We also demonstrate the importance of using spatially-coherent (or geologically-consistent) deposit occurrences in data-driven predictive mapping of mineral prospectivity. The best predictive orogenic gold prospectivity map obtained in this study is the one that made use of spatial evidence from the updated lithological map and spatially-coherent orogenic gold occurrences. This map predicts 20% of the GGB to be prospective for orogenic gold, with 89% goodness-of-fit between spatially-coherent inactive orogenic gold mines and individual layers of spatial evidence and 89% prediction-rate against spatially-coherent orogenic gold prospects. In comparison, the predictive gold prospectivity map obtained by using spatial evidence from the old lithological map and all gold occurrences has 80% goodness-of-fit but only 63% prediction-rate. These results mean that the prospectivity map based on spatially-coherent gold occurrences and spatial evidence from the updated lithological map predicts exploration targets better (i.e., 28% smaller prospective areas with 9% stronger fit to training gold mines and 26% higher prediction-rate with respect to validation gold prospects) than the prospectivity map based on all known gold occurrences and spatial evidence from the old lithological map.  相似文献   

9.
This paper describes the usage of clustering methods including self-organizing map (SOM) and fuzzy c-means (FCM) which are applied to prepare mineral prospectivity map. Different evidential layers, including geological, geophysical, and geochemical, to evaluate Now Chun copper deposit located in the Kerman province of Iran are used. Clustering approaches are used to reduce the dimension of 13 feature vectors derived from different layers. At first, Geospatial Information Systems (GIS) is employed to analyze and integrate different layers, and the area under study is prioritized to five classes. Then, the SOM as an unsupervised classification method is carried out to classify this area into five clusters. Produced clusters are compared with GIS prospect map, while the SOM results are matched with the GIS output. The main reason to use the FCM is that a vector belongs simultaneously to more than one cluster so that membership values of each cluster can be mapped. As a consequence, clusters generated by the SOM and FCM are considerably matched with five-class-map of the GIS approach. The chosen cluster as a high potential location to additional drilling is matched to the main alteration and faults zone. To validate generated clusters for mineral potential mapping, geological matching of study area and selected proper cluster can be a satisfactory way. Finally, clustering methods can be a very fast approach to interpret the area under study.  相似文献   

10.
The Random Forests (RF) algorithm has recently become a fledgling method for data-driven predictive mapping of mineral prospectivity, and so it is instructive to further study its efficacy in this particular field. This study, carried out using Baguio gold district (Philippines), examines (a) the sensitivity of the RF algorithm to different sets of deposit and non-deposit locations as training data and (b) the performance of RF modeling compared to established methods for data-driven predictive mapping of mineral prospectivity. We found that RF modeling with different training sets of deposit/non-deposit locations is stable and reproducible, and it accurately captures the spatial relationships between the predictor variables and the training deposit/non-deposit locations. For data-driven predictive mapping of epithermal Au prospectivity in the Baguio district, we found that (a) the success-rates of RF modeling are superior to those of weights-of-evidence, evidential belief and logistic regression modeling and (b) the prediction-rate of RF modeling is superior to that of weights-of-evidence modeling but approximately equal to those of evidential belief and logistic regression modeling. Therefore, the RF algorithm is potentially much more useful than existing methods that are currently used for data-driven predictive mapping of mineral prospectivity. However, further testing of the method in other areas is needed to fully explore its usefulness in data-driven predictive mapping of mineral prospectivity.  相似文献   

11.
Weights of evidence and logistic regression are two of the most popular methods for mapping mineral prospectivity. The logistic regression model always produces unbiased estimates, whether or not the evidence variables are conditionally independent with respect to the target variable, while the weights of evidence model features an easy to explain and implement modeling process. It has been shown that there exists a model combining weights of evidence and logistic regression that has both of these advantages. In this study, three models consisting of modified fuzzy weights of evidence, fuzzy weights of evidence, and logistic regression are compared with each other for mapping mineral prospectivity. The modified fuzzy weights of the evidence model retains the advantages of both the fuzzy weights of the evidence model and the logistic regression model; the advantages being (1) the predicted number of deposits estimated by the modified fuzzy weights of evidence model is nearly equal to that of the logistic regression model, and (2) it can deal with missing data. This method is shown to be an effective tool for mapping iron prospectivity in Fujian Province, China.  相似文献   

12.
Mineral prospectivity mapping is a classification process because in a given study area, a specific region is classified as either a prospective or non-prospective area. The cost of false negative errors differs from the cost of false positive errors because false positive errors lead to wasting much more financial and material resources, whereas false negative errors result in the loss of mineral deposits. Traditional machine learning algorithms using for mapping mineral prospectivity are aimed to minimize classification errors and ignore the cost-sensitive effects. In this study, the effects of misclassification costs on mapping mineral prospectivity are explored. The cost-sensitive neural network (CSNN) for minimizing misclassification costs is applied to map Fe polymetallic prospectivity in China’s southwestern Fujian metalorganic belt (SFMB). A CSNN with a different cost ratio ranging from 1:10 to 10:1 was used to represent various misclassification costs. The cross-validation results indicated a lower misclassification cost compared to traditional neural networks through a threshold-moving based CSNN. The CSNN’s predictive results were compared to those of a traditional neural network, and the results demonstrate that the CSNN method is useful for mapping mineral prospectivity. The targets can be used to further explore undiscovered deposits in the study area.  相似文献   

13.
This study shows the construction of a hazard map for presumptive ground subsidence around abandoned underground coal mines (AUCMs) at Samcheok City in Korea using an artificial neural network, with a geographic information system (GIS). To evaluate the factors governing ground subsidence, an image database was constructed from a topographical map, geological map, mining tunnel map, global positioning system (GPS) data, land use map, digital elevation model (DEM) data, and borehole data. An attribute database was also constructed by employing field investigations and reinforcement working reports for the existing ground subsidence areas at the study site. Seven major factors controlling ground subsidence were determined from the probability analysis of the existing ground subsidence area. Depth of drift from the mining tunnel map, DEM and slope gradient obtained from the topographical map, groundwater level and permeability from borehole data, geology and land use. These factors were employed by with artificial neural networks to analyze ground subsidence hazard. Each factor’s weight was determined by the back-propagation training method. Then the ground subsidence hazard indices were calculated using the trained back-propagation weights, and the ground subsidence hazard map was created by GIS. Ground subsidence locations were used to verify results of the ground subsidence hazard map and the verification results showed 96.06% accuracy. The verification results exhibited sufficient agreement between the presumptive hazard map and the existing data on ground subsidence area. An erratum to this article can be found at  相似文献   

14.
The main purpose of this study is to introduce a geographic information system (GIS)-based, multi-criteria decision analysis method for selection of favourable environments for Besshi-type volcanic-hosted massive sulphide (VHMS) deposits. The approach integrates two multi-criteria decision methods (analytical hierarchy process and ordered weighted averaging) and theory of fuzzy sets, within a GIS environment, to solve the problem of big suggested areas and missing known ore deposits in favourable environment maps for time and cost reduction. We doubled the fuzzy linguistic variables’ significance as a method to apply the arrange weights that the analytical hierarchy process (AHP)-ordered weighted averaging (OWA) hybrid procedure depends on. Another aim of this work is to assist mineral deposit exploration by modelling existing uncertainty in decision-making. Both AHP and fuzzy logic methods are knowledge-based, and they are affected by decision maker judgments. We used data-driven OWA approach in a hybrid method for solving this problem. We applied a new knowledge-guided OWA approach on data with changing linguistic variables according to the mineral system for VHMS deposits. Additionally, we used a vector-based method combination, which increased the precision of results. Results of knowledge-guided OWA showed that all of the mines and discovered deposits have been predicted with 100% accuracy in half of the size of the suggested area. To summarize, results improved the selection of possible target sites and increased the accuracy of results as well as reducing the time and cost, which will be used for field exploration. Finally, the hybrid methods with a knowledge-guided OWA approach have delivered more reliable results compared to exclusively knowledge-driven or data-driven methods. The study proved that expert knowledge and processed data (information) are critical important keys to exploration, and both of them should be applied in hybrid methods for reaching reliable results in mineral prospectivity mapping.  相似文献   

15.
In this study, both the fuzzy weights of evidence (FWofE) and random forest (RF) methods were applied to map the mineral prospectivity for Cu polymetallic mineralization in southwestern Fujian Province, which is an important Cu polymetallic belt in China. Recent studies have revealed that the Zijinshan porphyry–epithermal Cu deposit is associated with Jurassic to Cretaceous (Yanshanian) intermediate to felsic intrusions and faulting tectonics. Evidence layers, which are key indicators of the formation of Zijinshan porphyry–epithermal Cu mineralization, include: (1) Jurassic to Cretaceous intermediate–felsic intrusions; (2) mineralization-related geochemical anomalies; (3) faults; and (4) Jurassic to Cretaceous volcanic rocks. These layers were determined using spatial analyses in support by GeoDAS and ArcGIS based on geological, geochemical, and geophysical data. The results demonstrated that most of the known Cu occurrences are in areas linked to high probability values. The target areas delineated by the FWofE occupy 10% of the study region and contain 60% of the total number of known Cu occurrences. In comparison with FWofE, the resulting RF areas occupy 15% of the study area, but contain 90% of the total number of known Cu occurrences. The normalized density value of 1.66 for RF is higher than the 1.15 value for FWofE, indicating that RF performs better than FWofE. Receiver operating characteristics (ROC) were used to validate the prospectivity model and check the effects of overfitting. The area under the ROC curve (AUC) was greater than 0.5, indicating that both prospectivity maps are useful in Cu polymetallic prospectivity mapping in southwestern Fujian Province.  相似文献   

16.
A major challenge for mineral exploration geologists is the development of a transparent and reproducible approach to targeting exploration efforts, particularly at the regional to camp scales, in terranes under difficult cover where exploration and opportunity costs are high. In this study, a three-pronged approach is used for identifying the most prospective ground for orogenic gold deposits in the Paleoproterozoic Granite-Tanami Orogen (GTO) in Western Australia.A key input to the analyses is the recent development of a 4D model of the GTO architectural evolution that provides new insights on the spatio-temporal controls over orogenic gold occurrences in the area; in particular, on the role of pre-mineralization (pre-1795 Ma) DGTOE–DGTO1–DGTO2 architecture in localization of gold deposits and the spatial distribution of rock types in 3D. This information is used to build up a model of orogenic gold minerals system in the area, which is then integrated into the three mutually independent but complementary mineral prospectivity maps namely, a concept-driven “manual” and “fuzzy” analysis; and a data-driven “automated” analysis.The manual analysis involved: (1) generation of a process-based gold mineral systems template to aid target selection; (2) manual delineation of targets; (3) manual estimation of the probability of occurrence of each critical mineralization process based on the available information; and (4) combining the above probabilities to derive the relative probability of occurrence of orogenic gold deposits in each of the targets. The knowledge-based Geological Information System (GIS) analysis attempts to replicate the expert knowledge used in the manual approach, but queried in a more systematic format to eliminate human heuristic bias. This involves representing the critical mineralization processes in the form of spatial predictor maps and systematically querying them through the use of a fuzzy logic model to integrate the predictor maps and to derive the western GTO orogenic gold prospectivity map. The data-driven ‘empirical’ GIS analysis uses no expert knowledge. Instead it employs statistical measures to evaluate the spatial associations between known deposits and predictor maps to establish weights for each predictor layer then combines these layers into a predictive map using a Weights of Evidence (WofE) approach.Application of a mineral systems approach in the manual analysis and the fuzzy analysis is critical: potential high value targets identified by these approaches in the western GTO lie largely under cover, whereas traditional manual targeting is biased to areas of outcrop or sub-crop amenable to direct detection technology such as exploration geochemistry, and therefore towards areas that are data rich.The results show the power of combining the three approaches to prioritize areas for exploration. While the manual analysis identifies and employs human intuition and can see through incomplete datasets, it is difficult to filter out human bias and to systematically apply to a large region. The fuzzy method is more systematic, and highlights areas that the manual analysis has undervalued, but lacks the intuitive power of the human mind that refines the target by seeing through incomplete datasets. The empirical WoE method highlights correlations with favorable host stratigraphy and highlights the control of an early set of structures potentially undervalued in the knowledge driven approaches, yet is biased due to the incomplete nature of exploration datasets and lack of abundant gold deposits due to the extensive cover.The results indicate that the most prospective areas for orogenic gold in western GTO are located in the central part of the study area, largely in areas blind to previous exploration efforts. According to our study, the procedure to follow should be to undertake the analyses in the following order: manual prospectivity analysis, followed by the conceptual fuzzy approach, followed by the empirical GIS-based method. Undertaking the manual analysis first is important to prevent explorationists from being biased by the automated GIS-based outputs. It is however emphasized that all of the prospectivity outputs from these three methods are possible, and they should not be treated as ‘treasure maps’, but instead, as decision-support aids. Therefore, a final manual prospectivity analysis redefined by the mutual consideration of output from all of the methods is required.The strategy employed in this study constitutes a new template for best-practice in terrane- to camp-scale exploration targeting that can be applied to different terranes and deposit types, particularly in terranes under cover, and provides a step forward in managing uncertainty in the exploration targeting process.  相似文献   

17.
模糊证据权方法在镇沅(老王寨)地区金矿资源评价中的应用   总被引:11,自引:0,他引:11  
成秋明  陈志军 《地球科学》2007,32(2):175-184
采用模糊证据权方法和GeoDASGIS技术开展了镇沅(老王寨)及其邻区的金矿资源潜力评价.分别采用GeoDASGIS软件提供的局部奇异性分析技术、S-A异常分解技术、主成分分析技术、证据权、模糊证据权等技术对相关地球化学元素进行了系统的处理和分析.应用主成分分析方法确定了可能的2种不同成矿类型,并采用主成分得分确定了组合异常点,在此基础上分别采用普通证据权和模糊证据权方法编制了成矿后验概率图,圈定了有利成矿地段.对比普通证据权方法与模糊证据权方法所得结果表明,模糊证据权方法可减小图层离散化造成的有用信息损失,提高预测结果精度.  相似文献   

18.
用光学遥感数据和地理信息系统(GIS)分析了马来西亚Selangor地区的滑坡灾害。通过遥感图像解译和野外调查,在研究区内确定出滑坡发生区。通过GIS和图像处理,建立了一个集地形、地质和遥感图像等多种信息的空间数据库。滑坡发生的因素主要为:地形坡度、地形方位、地形曲率及与排水设备距离;岩性及与线性构造距离;TM图像解译得到的植被覆盖情况;Landsat图像解译得到的植被指数;降水量。通过建立人工神经网络模型对这些因素进行分析后得到滑坡灾害图:由反向传播训练方法确定每个因素的权重值,然后用该权重值计算出滑坡灾害指数,最后用GIS工具生成滑坡灾害图。用遥感解译和野外观测确定出的滑坡位置资料验证了滑坡灾害图,准确率为82.92%。结果表明推测的滑坡灾害图与滑坡实际发生区域足够吻合。  相似文献   

19.
A Sugeno-type fuzzy inference system is implemented in the framework of an adaptive neural network to map Cu–Au prospectivity of the Urumieh–Dokhtar magmatic arc (UDMA) in central Iran. We use the hybrid “Adaptive Neuro Fuzzy Inference System” (ANFIS; Jang, 1993) algorithm to optimize the fuzzy membership values of input predictor maps and the parameters of the output consequent functions using the spatial distribution of known mineral deposits. Generic genetic models of porphyry copper–gold and iron oxide copper–gold (IOCG) deposits are used in conjunction with deposit models of the Dalli porphyry copper–gold deposit, Aftabru IOCG prospect and other less important Cu–Au deposits within the study area to identify recognition criteria for exploration targeting of Cu–Au deposits. The recognition criteria are represented in the form of GIS predictor layers (spatial proxies) by processing available exploration data sets, which include geology, stream sediment geochemistry, airborne magnetics and multi-spectral remote sensing data. An ANFIS is trained using 30% of the 61 known Cu–Au deposits, prospects and occurrences in the area. In a parallel analysis, an exclusively expert-knowledge-driven fuzzy model was implemented using the same input predictor maps. Although the neuro-fuzzy analysis maps the high potential areas slightly better than the fuzzy model, the well-known mineralized areas and several unknown potential areas are mapped by both models. In the fuzzy analysis, the moderate and high favorable areas cover about 16% of the study area, which predict 77% of the known copper–gold occurrences. By comparison, in the neuro-fuzzy approach the moderate and high favorable areas cover about 17% of the study area, which predict 82% of the copper–gold occurrences.  相似文献   

20.
Prospectivity analyses are used to reduce the exploration search space for locating areas prospective for mineral deposits.The scale of a study and the type of mineral system associated with the deposit control the evidence layers used as proxies that represent critical ore genesis processes.In particular,knowledge-driven approaches(fuzzy logic)use a conceptual mineral systems model from which data proxies represent the critical components.These typically vary based on the scale of study and the type of mineral system being predicted.Prospectivity analyses utilising interpreted data to represent proxies for a mineral system model inherit the subjectivity of the interpretations and the uncertainties of the evidence layers used in the model.In the case study presented,the prospectivity for remobilised nickel sulphide(NiS)in the west Kimberley,Western Australia,is assessed with two novel techniques that objectively grade interpretations and accommodate alternative mineralisation scenarios.Exploration targets are then identified and supplied with a robustness assessment that reflects the variability of prospectivity value for each location when all models are considered.The first technique grades the strength of structural interpretations on an individual line-segment basis.Gradings are obtained from an objective measure of feature evidence,which is the quantification of specific patterns in geophysical data that are considered to reveal underlying structure.Individual structures are weighted in the prospectivity model with grading values correlated to their feature evidence.This technique allows interpreted features to contribute prospectivity proportional to their strength in feature evidence and indicates the level of associated stochastic uncertainty.The second technique aims to embrace the systemic uncertainty of modelling complex mineral systems.In this approach,multiple prospectivity maps are each generated with different combinations of confidence values applied to evidence layers to represent the diversity of processes potentially leading to ore deposition.With a suite of prospectivity maps,the most robust exploration targets are the locations with the highest prospectivity values showing the smallest range amongst the model suite.This new technique offers an approach that reveals to the modeller a range of alternative mineralisation scenarios while employing a sensible mineral systems model,robust modelling of prospectivity and significantly reducing the exploration search space for Ni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号