首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Sáez  L. Cabrera 《Sedimentology》2002,49(5):1073-1094
ABSTRACT A small, closed, lacustrine system developed during the restraining overstep stages of the Oligocene As Pontes strike‐slip basin (Spain). The increase in basin accommodation and the headward spread of the drainage, which increased the water input, triggered a change from shallow, holomictic to deeper, meromictic conditions. The lower, shallow, lacustrine assemblage consists of mudstone–carbonate cycles recording lacustrine–palustrine ramp deposition in a saline lake. High Sr content in some early diagenetic calcites suggests that aragonite and calcite made up the primary carbonate muds. Early dolomitization took place together with widespread pedogenic activity. The upper, deep, freshwater, lacustrine assemblage includes bundles of carbonate–clay rhythmites and fine‐grained turbidite beds. Primary calcite and diagenetic siderite make up the carbonate laminae. The Mg content of the primary carbonates records variations in Mg/Ca ratios in lacustrine waters. δ18O and δ13C covariance trends in calcite reinforce closed drainage conditions. δ18O data indicate that the lake system changed rapidly from short‐lived isotopically light periods (i.e. from seasonal to pluriannual) to longer steady‐state periods of heavier δ18O (i.e. from pluriannual to millennial). The small δ13C changes in the covariant trends were caused by dilute inflow, changing the contributions of dissolved organic carbon in the system and/or internal variations in lacustrine organic productivity and recycling. In both shallow and deep carbonate facies, sulphate reduction and methanogenesis may account, respectively, for the larger negative and positive δ13C shifts recorded in the early diagenetic carbonates (calcite, dolomite and siderite). The lacustrine system was very susceptible to high‐frequency, climatically forced water balance variations. These climatic oscillations interfered with the low‐frequency tectonic and morphological changes in the basin catchment. This resulted in the superposition of high‐order depositional, mineralogical and geochemical cycles and rhythms on the lower order lacustrine infill sequence.  相似文献   

2.
The Berriasian Rupelo Formation of the W Cameros Basin consists of a 2–200 m thickness of marginal and open lacustrine carbonate and associated deposits. Open lacustrine facies contain a non-marine biota with abundant charophytes (both stems and gyrogonites), ostracods, gastropods and rare vertebrates. Carbonate production was mainly biogenic. The associated marginal lacustrine (‘palustrine’) facies show strong indications of subaerial exposure and exhibit a wide variety of pedogenic fabrics. Silicified evaporites found near to the top of the sequence reflect a short hypersaline phase in the lake history. The succession was laid down in a low gradient, shallow lake complex characterized by wide fluctuations of the shoreline. Carbon and oxygen stable isotope analyses from the carbonates show non-marine values with ranges of δ13 from ? 7 to ? 11‰and δ18 from ? 3 to ? 7.5‰. Differences in the isotopic composition of open lacustrine carbonates are consistent with sedimentary evidence of variation in organic productivity within the lake. Analyses from the entire sample suite plot on a linear trend; isotopic compositions become lighter with increasing evidence of pedogenic modification. This suggests progressive vadose zone diagenesis and influence of meteoric waters rich in soil-derived CO2. The stable isotope data thus support evidence from petrography and facies relations that ‘palustrine’limestones form through pedogenic modification of lake carbonates.  相似文献   

3.
ABSTRACT The middle Miocene sedimentary fill of the Calatayud Basin in north‐eastern Spain consists of proximal to distal alluvial fan‐floodplain and shallow lacustrine deposits. Four main facies groups characteristic of different sedimentary environments are recognized: (1) proximal and medial alluvial fan facies that comprise clast‐supported gravel and subordinate sandstone and mudstone, the latter exhibiting incipient pedogenic features; (2) distal alluvial fan facies, formed mainly of massive mudstone, carbonate‐rich palaeosols and local carbonate pond deposits; (3) lake margin facies, which show two distinct lithofacies associations depending on their distribution relative to the alluvial fan system, i.e. front (lithofacies A), comprising massive siliciclastic mudstone and tabular carbonates, or lateral (lithofacies B) showing laminated and/or massive siliciclastic mudstone alternating with tabular and/or laminated carbonate beds; and (4) mudflat–shallow lake facies showing a remarkable cyclical alternation of green‐grey and/or red siliciclastic mudstone units and white dolomitic carbonate beds. The cyclic mudflat–shallow lake succession, as exposed in the Orera composite section (OCS), is dominantly composed of small‐scale mudstone–carbonate/dolomite cycles. The mudstone intervals of the sedimentary cycles are interpreted as a result of sedimentation from suspension by distal sheet floods, the deposits evolving either under subaerial exposure or water‐saturated conditions, depending on their location on the lacustrine mudflat and on climate. The dolomite intervals accumulated during lake‐level highstands with Mg‐rich waters becoming increasingly concentrated. Lowstand to highstand lake‐level changes indicated by the mudstone/dolomite units of the small‐scale cycles reflect a climate control (from dry to wet conditions) on the sedimentation in the area. The spatial distribution of the different lithofacies implies that deposition of the small‐scale cycles took place in a low‐gradient, shallow lake basin located in an interfan zone. The development of the basin was constrained by gradual alluvial fan aggradation. Additional support for the palaeoenvironmental interpretation is derived from the isotopic compositions of carbonates from the various lithofacies that show a wide range of δ18O and δ13C values varying from ?7·9 to 3·0‰ PDB and from ?9·2 to ?1·7‰ PDB respectively. More negative δ18O and δ13C values are from carbonate‐rich palaeosols and lake‐margin carbonates, which extended in front of the alluvial fan systems, whereas more positive values correspond to dolomite beds deposited in the shallow lacustrine environment. The results show a clear trend of δ18O enrichment in the carbonates from lake margin to the centre of the shallow lake basin, thereby also demonstrating that the lake evolved under hydrologically closed conditions.  相似文献   

4.
1980年6月,本文作者之一的K. Kelts曾去美国参加由经济古生物学者和矿物学者协会组织的地质旅行。该行主要是观察和研究怀俄明州西南始新统绿河组的沉积环境。对此次旅行中带回瑞士苏黎世联邦理工学院地质研究所的样品,曾作了切片、X-射线衍射和碳氧同位素分析。  相似文献   

5.
The calcite fossils of the Derbyhaven Beds, Isle of Man, have δ13C values (+ 1·8 PDB) similar to modern, shallow-water marine skeletons, but the δ18O values (?6·1 PDB) are much lighter than modern skeletons. The light oxygen values indicate either re-equilibration with isotopically light water before cementation started, or Carboniferous sea water with δ18O of ?6‰. Aragonite dissolution was followed by precipitation of zoned calcite cement. In this cement, up to six intracrystalline zones, recognized in stained thin sections, show isotopic variation. Carbon varies from + 3-8 to + 1-2‰. and oxygen from ? 2-6 to ? 12-4‰. with decreasing age of the cement. This trend is attributed to increasing temperature and to isotopic evolution of the pore waters during burial. The zoned calcite is sequentially followed by dolomite and kaolinite cements which continue the trend towards light isotopic values. This trend is continued with younger, fault-controlled dolomite, and is terminated by vein-filling calcite and dolomite. The younger calcite, interpreted as a near-surface precipitate from meteoric waters, is unrelated to the older sequence of carbonates and has distinctly different carbon isotope ratios: δ13C ? 6-8‰.  相似文献   

6.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (?1‰ to ?2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (?7‰ to ?8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between ?1‰ and ?5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg–calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg–calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

7.
Tufa deposits are potential terrestrial archives of palaeoenvironmental and palaeoclimatic information. This study assesses the potential of stable isotopic archives from two closely juxtaposed Holocene tufa sites in SE Spain. The Ruidera site contains deep‐water lacustrine micrites and tufas, whereas the nearby Alcaraz site represents a shallow barrage tufa. Understanding site characteristics is critical to interpreting the stable isotopic variations. These Holocene lacustrine micrites have isotopic compositions consistent with modern European lake shore microbial carbonates, where the isotopic chemistry is strongly influenced by hydrological and residence time effects. All the lacustrine micrite δ13C values were influenced by microenvironmental microbial effects to some degree. Because of these effects, stable isotope data from lacustrine microbial micrites and tufas will not normally yield precise information on the isotopic composition of palaeoprecipitation, temperature or vegetation composition of an area. In contrast, Holocene tufas that formed in shallow, fast‐flowing riverine settings may contain valuable palaeoclimatic archives. The tufa deposits must be largely autochthonous, as at Alcaraz, where in situ reed stem encrustations are present. Records of relative change in air temperature and changes in the source of airmasses are potentially resolvable in the δ18O data. These interpretations can be verified by other independent climatic data where chronology is constrained. Variations in riverine tufa δ13C values probably record changes in local vegetation and/or soil respiration. Covariation between δ18O and δ13C values may be intrinsically linked to climatic factors such as aridity. Tentative palaeoclimatic interpretations for the middle Holocene at Alcaraz based on the isotope data suggest warming (or increasing influence of Mediterranean‐sourced precipitation) between approximately 5000–3000 radiocarbon years BP, accompanied by increased aridity. These interpretations are consistent with the sparse independent palaeoclimatic data and climate modelling results for the Holocene of SE Spain. This study supports the growing evidence that well‐chosen tufa sites could yield valuable palaeoclimatic information.  相似文献   

8.
以系统的岩石学及沉积相分析为基础,深入探讨了隆额尼—昂达尔错古油藏白云岩及其伴生灰岩的稀土元素地球化学特征,认为该区灰岩及白云岩∑REE仍受沉积相带及沉积过程的控制,且具∑REE较低的总体特征,白云岩中HREE比LREE更具贫化的特点,这些特征均系淡水淋漓作用的结果;灰岩及白云岩在配分模式上,均为相对平坦的页岩配分模式。其中灰岩在配分模式上,在∑REE较高的情况下表现出起伏较大的特点,而白云岩在∑REE较低的情况下,表现出较为平坦的特征,白云岩化过程中稀土元素有贫化和均一的趋势;灰岩与白云岩相比,灰岩δEu值较高,而白云岩δCe较高,反映出灰岩形成于水体较深的还原环境,而白云岩形成于古地理相对高点的氧化环境。该区白云岩为混合水交代成因。  相似文献   

9.
基于西沙永兴岛上最新钻孔(SSZK1)取得的55.92 m岩芯的 U?Th定年、矿物、薄片、主微量元素及碳氧稳定同位素等资料,开展了西沙群岛晚第四纪碳酸盐岩沉积相和淡水成岩作用的研究。根据不同的矿物组成特征,可将SSZK1钻孔岩芯分为上、中、下三段: 下 段(33.89~55.92 m,主要为低镁方解石)、中 段(18.39~33.89 m,主要为文石和低镁方解石)、上段(0~18.39 m,主要为文石、高镁方解石和低镁方解石)。由于下段碳酸盐岩几乎全为稳定的低镁方解石组成,碳氧同位素值的严重负偏和小幅度变化,可推断其经历了程度较大的淡水成岩作用。中段和上段还存在不稳定的文石和高镁方解石,碳氧同位素值相对下段正偏和高幅高频变化,推测其淡水成岩作用的程度比下段要小。中段碳氧同位素值高幅高频变化同时也说明该段的矿物纵向变化较复杂。这种矿物组成的复杂变化可能是由于晚第四纪海平面频繁变化,该段被大气水渗流带和潜流带交替占据引起的。主微量元素的变化同时受到淡水成岩作用和沉积环境的影响。在中段、下段中可识别出sq1、sq2、sq3、sq4四个完整的相旋回。Na2O,S,Sr 和碳氧同位素受到的淡水成岩作用而被消耗和负偏,且由于老一期的旋回经历了更长时间的淡水成岩作用,新、老旋回间的 Na2O,S,Sr含量值和碳氧同位素值有明显差异。利用新、老时期形成的旋回间淡水成岩作用剩余Na2O,S,Sr含量和碳氧同位素值的差别可以将新、老两个旋回区分开来。  相似文献   

10.
《International Geology Review》2012,54(11):1350-1362
ABSTRACT

Recent studies show that crustal carbonates recycled into the mantle can be traced using Mg isotopes of basalts. However, the species of recycled carbonates are poorly constrained. Carbonates have lower δ26Mg values and higher 87Sr/86Sr ratios relative to the mantle, but different carbonate species display different mixing curves with the mantle in the Mg-Sr isotopic diagram because of differences in their Sr and Mg contents. Thus a combined study of Mg-Sr isotopes can constrain the species of deeply recycled carbonates. Here, we present newly determined 87Sr/86Sr ratios of the <110 Ma basalts from Eastern China, and together with published Mg isotopic data we evaluate the species of recycled carbonates in the mantle and discuss their implication. The <110 Ma basalts display low δ26Mg values of ?0.60 to ?0.30‰ and relatively low initial 87Sr/86Sr ratios of 0.70328 to 0.70537, suggesting that their mantle source was hybridized by recycled carbonates with a light Mg isotopic composition which had more significant effects on Mg than Sr isotope ratios. Mg-Sr isotopic data indicate that the recycled carbonates consist of magnesite and aragonite, but the possibility of calcite and dolomite cannot be eliminated. Based on the carbonated peridotite solidus, the equilibrium line between dolomite and magnesite + aragonite, as well as the mantle adiabat, the initial melting depth of the carbonated mantle, the source region of the studied basalts, was constrained at ~300–360 km. Thus, the subducted depth of the west Pacific slab underlying the carbonated mantle and supplying recycled carbonates should be greater than ~300–360 km, consistent with the seismic tomography result that the west Pacific slab now stagnates in the mantle transition zone.  相似文献   

11.
Recent (<50 years old) freshwater cyanobacterial carbonates from diverse environments (streams, lakes, waterfalls) throughout Britain and Ireland were analysed for their stable carbon and oxygen isotope compositions. The mean δ18O value of ?5–9‰ PDB for river and stream data represents calcite precipitation in equilibrium with the mean oxygen isotopic composition of precipitation in central Britain (?7–5‰SMOW) assuming a mean water temperature of 9°C. The mean δ18O of lake data, ?4–5‰ PDB, is statistically different, reflecting the effects of residence time and/or variations in the oxygen isotopic composition of rainfall. Carbon isotopes have wide variations in both fluviatile and lake data sets (+ 3 to ?12‰ PDB). These variations are principally controlled in the fluviatile samples by contribution of isotopically light ‘soil zone’ carbon relative to isotopically heavier carbon from limestone aquifer rock dissolution. Lake samples have the heaviest carbon isotope values, reflecting a trend toward isotopic equilibrium between atmospheric CO2 and aqueous HCO?3. We infer that isotopic compositions of ancient cyanobacterial carbonates should also record environmental information, although the effects of stabilization and diagenesis on primary δ18O values will need careful consideration. Primary carbon isotope compositions should be well preserved, although in marine samples values will be buffered by the isotopic composition of aqueous marine bicarbonate.  相似文献   

12.
Vein-controlled retrograde infiltration of H2O-CO2 fluids into Dalradian epidote amphibolite facies rocks of the SW Scottish Highlands under greenschist facies conditions resulted in alteration of calcite-rich marble bands to dolomite and spatially associated 18O enrichment of about 10%. on a scale of metres. Fluid inclusion data indicate that the retrograde fluid was an H2O-salt mixture with a low CO2 content, and that the temperature of the fluid was about 400d? C. Detailed petrographic and textural (backscattered electron imaging) studies at one garnet-grade locality show that advection of fluid into marbles proceeded by a calcite-calcite grain edge flow mechanism, while alteration of non-carbonate wall-rock is associated with veinlets and microcracks. Stable isotopic analysis of carbonates from marble bands provides evidence for advection of isotopic fronts through carbonate wall-rocks perpendicular to dolomite veins, and fluid fluxes in the range 2.4–28.6 m3/m2 have been computed from measured advection distances. Coincidence of isotope and reaction fronts is considered to result from reaction-enhanced kinetics of isotope exchange at the reaction front. Front advection distances are related to the proportion of calcite to quartz in each marble band, with the largest advection distance occurring in nearly pure calcite matrix. This relationship indicates that fluid flow in carbonates is only possible along fluid-calcite-calcite grain edges. However, experimental constraints on dihedral angles in calcite-fluid systems require that pervasive infiltration occurred in response to calcite dissolution initiated at calcite-calcite grain junctions rather than to an open calcite pore geometry. The regional extent of the retrograde infiltration event has been documented from the high δ18O of dolomite-ankerite carbonates from veins and host-rocks over an area of least 50 × 50 km in the SW Scottish Highlands. Isotopically exotic 18O-rich retrograde fluids have moved rapidly upwards through the crust, inducing isotopic exchange and mineral reaction in wall-rocks only where lithology, pore geometry or mineral solubilities, pressure and temperature have been appropriate for pervasive infiltration to occur.  相似文献   

13.
The oxygen isotope compositions of diagenetic carbonate minerals from the Lower Jurassic Inmar Formation, southern Israel, have been used to identify porewater types during diagenesis. Changes in porewater composition can be related to major geological events within southern Israel. In particular, saline brines played an important role in late (Pliocene-Pleistocene) dolomitization of these rocks. Diagenetic carbonates included early siderite (δ18OSMOW=+24.4 to +26.5‰δ13CPDB=?1.1 to +0.8‰), late dolomite, ferroan dolomite and ankerite (δ18OSMOW=+18.4 to +25.8‰; δ13CPDB=?2.1 to +0.2‰), and calcite (δ18OSMOW=+21.3 to +32.6‰; δ13CPDB=?4.2 to + 3.2‰). The petrographic and isotopic results suggest that siderite formed early in the diagenetic history at shallow depths. The dolomitic phases formed at greater depths late in diagenesis. Crystallization of secondary calcite spans early to late diagenesis, consistent with its large range in isotopic values. A strong negative correlation exists between burial depth (temperature) and the oxygen isotopic compositions of the dolomitic cements. In addition, the δ18O values of the dolomitic phases in the northern Negev and Judea Mountains are in isotopic equilibrium with present formation waters. This behaviour suggests that formation of secondary dolomite post-dates the tectonic activity responsible for the present relief of southern Israel (Upper Miocene to Pliocene) and that the dolomite crystallized from present formation waters. Such is not the case in the Central Negev. In that locality, present formation waters have much lower salinities and δ18O values, indicating invasion of freshwater, and are out of isotopic equilibrium with secondary dolomite. Recharge of the Inmar Formation by meteoric water in the Central Negev occurred in the Pleistocene, and halted formation of dolomite.  相似文献   

14.
A carbonate buildup of Middle Triassic age, the Esino Limestone, outcrops in the Southern Calcareous Alps of Lombardy (N Italy). Along its margin and within the open subtidal facies, the Esino Limestone contains calcite cement-filled cavities of cm to m size. These features, known as evinosponges, may form pervasive networks within the host rock. The filling consists of concentric, isopachous layers of fibrous low-Mg calcite crystals characterized by strong undulose extinction and bent cleavages. The cement crusts are non-luminescent under cathodoluminescence, but both cements and host rock are cross-cut by micro-fractures filled with bright-luminescent calcite, related to late void-filling sparite. Mixing of different carbonates is reflected in stable isotope data. On the hand specimen scale, the oxygen and carbon isotope compositions of cements and host rock show little variation. When compared on a regional scale, the values cover a broad range from δ18O(PDB)=?5‰ to ?12‰ and from δ13O =0‰ to +3‰. The linear covariant trends defined by the oxygen and carbon isotope data for different sampling regions reflect the admixture of late, isotopically depleted calcite with an isotopically enriched non-luminescent calcite of early diagenetic origin. The Esino Limestone fibrous cements, which were probably precipitated in the marine or marine-meteoric phreatic environment, were affected by late diagenetic processes that caused mineral deformation and isotopic depletion through recrystallization and the admixture of a later calcite. These later calcites precipitated from penetrative fluids possibly related to Late Triassic volcanic activity and/or to the Late Cretaceous/Early Palaeogene alpine orogeny.  相似文献   

15.
The carbonate platforms of the Wetterstein Formation of the Eastern Alps (Drau Range and Northern Calcareous Alps) show a distinct facies zonation of reefs and lagoons. While some lagoonal areas were episodically emerged and formed lagoonal islands, others remained permanently flooded. The scale of near surface, meteoric or marine diagenesis was related to this lagoonal topography. At shallow burial depth, cementation was dominated by altered marine solutions, which additionally caused recrystallization of metastable constituents of the sediment and earlier marine cements (high magnesian calcite, aragonite) connected with a carbon and oxygen isotopic change to more negative values. Deeper burial cementation shows a succession with two types of saddle dolomite and three types of blocky calcite. Carbon and oxygen isotopic values of these cements show a trend towards more negative values from the first to the last generation, in the following succession: clear saddle dolomite—zoned blocky calcite—cloudy saddle dolomite—post-corrosion blocky calcite—replacive blocky calcite. Fluid inclusion studies of the carbonate cements are interpreted to indicate a deeper burial temperature development that first increases from 175 to 317°C, followed by a temperature decrease to 163–260°C, and subsequent increase up to 316°C, whereby the samples of the Drau Range always show the lowest values. Calculations of the isotopic composition of the water, from which the carbonate cements were precipitated, yielded positive δ18O values from 6.66 to 17.81%o (SMOW), which are characteristic for formation and/or metamorphic waters. Also, the isotopic compositions of the palaeofluids probably changed during deeper burial diagenesis, following the temperature development.  相似文献   

16.
南海台西南区是中国南海中天然气水合物赋存的最有利场所。研究表明,该区的碳酸盐岩主要以结壳、烟囱的形式出现,结壳的裂隙或孔洞中常常充填有淡黄-白色的文石晶体。碳酸盐岩中自生碳酸盐矿物主要为文石、高镁方解石,少量白云石、铁白云石和菱铁矿。扫描电子显微镜(SEM)分析表明,文石主要呈针状、长柱状、放射束状,高镁方解石呈颗粒状。碳酸盐岩的碳同位素δ13C值主要在-56·878‰~-32·829‰PDB之间,大多数小于-40‰PDB,显示了生物甲烷成因碳源的特征;氧同位素δ18O值在2·1875‰~5·045‰PDB之间,主要在4‰PDB以上,这种较重的氧同位素比值表明,天然气水合物分解产生的富18O水体可能是碳酸盐岩沉淀的流体源。矿物学和碳氧稳定同位素研究表明,南海台西南区的碳酸盐岩为细菌性甲烷成因碳酸盐岩,可能与天然气水合物有关,显示了该区水合物存在的可能性很大。  相似文献   

17.
The sediment-hosted huntite-magnesite deposits are located in the Egirdir-Hoyran lake basin in the Isparta Angle (southern Turkey). The deposits occur at two different localities in the region: (1) Kemersirti huntite deposit, (2) Köytepe huntite-magnesite deposit. The huntite-magnesite occurrences are found in shallow lacustrine rocks of the Miocene-Pliocene Kizilcik Formation and formed as a result of Neogene tectonic activity. Based on X-ray diffraction and scanning electron microscopic studies, the mineral assemblage of huntite deposits contains mostly huntite, less magnesite, dolomite, very little calcite, illite, simectite, brucite, and quartz in the Kemersirti area but contain huntite, magnesite, dolomite, and calcite in the Köytepe area.In the huntite and magnesite-bearing huntite samples, MgO varies from 32.70 to 37.95 wt. %, CaO from 7.83 to 15.10 w.t. %, and SiO2 from 0.99 to 10.60 w.t. %. Ba and Sr are dominant minor elements in the deposits. Ba and Sr for huntite and magnesite bearing huntite in the study area vary from 11 to 233 ppm and from 325 to 765 ppm, respectively. As, U, Zr, V and Ce contents ranged from 11.5-146 ppm, 0.5-3.7 ppm, 1.4-13.2 ppm, 7-34 ppm, and 0.9-2.7 ppm respectively. The huntite-magnesite is characterized by relatively lower Ni (0.5-2.4 ppm) and Co (0.5-1.1 ppm) contents. The huntite and magnesite-bearing huntite occurrences have higher Ba, Sr, As, Zr, V, and U contents than those of the other elements. The d13C isotope values vary between 7.8‰ to 8.8‰ PDB for huntite+magnesite, 8.2‰ PDB for huntite, 1.4‰ PDB for magnesite+dolomite, and 4.0‰ PDB for limestone from deposits in the study area. The δ18O isotope values of the huntite deposits ranged from 30.4 to 35.5‰ SMOW for huntite+magnesite, 32.4‰ SMOW for huntite, 29.8‰ SMOW for magnesite+ dolomite, and 26.9‰ SMOW for limestone.The presence of nodular huntite and the abundance of gastropod, ostracoda and Chura shells in the carbonate units indicate that the huntite occurrences are precipitated at shallow, alkaline (8.5-9.5 pH) and lower temperature (approximately 25°C) lake conditions. The Mg++, Ca++ and Si++ ions for the huntite formation were derived from the surrounding rocks such as ultrabasic rocks, dolomite, dolomitic limestone, and limestone in the Egirdir-Hoyran lake basin. Also, the C isotope ratios indicate that the CO2 source for the huntite formations results to sedimentary basin from metamorphic CO2, carbonate rocks, fresh water carbonates, and ground water. The source of oxygen for the huntite formation may come from marine limestone, fresh water carbonates and meteoric water.  相似文献   

18.
Unusual textural and chemical characteristics of disseminated dolomite in Upper Jurassic shelf sediments of the North Sea have provided the basis for a proposed new interpretation of early diagenetic dolomite authigenesis in highly bioturbated marine sandstones. The dolomite is present throughout the Franklin Sandstone Formation of the Franklin and Elgin Fields as discrete, non‐ferroan, generally unzoned, subhedral to highly anhedral ‘jigsaw piece’ crystals. These are of a similar size to the detrital silicate grains and typically account for ≈5% of the rock volume. The dolomite crystals are never seen to form polycrystalline aggregates or concretions, or ever to envelop the adjacent silicate grains. They are uniformly dispersed throughout the sandstones, irrespective of detrital grain size or clay content. Dolomite authigenesis predated all the other significant diagenetic events visible in thin section. The dolomite is overgrown by late diagenetic ankerite, and bulk samples display stable isotope compositions that lie on a mixing trend between these components. Extrapolation of this trend suggests that the dolomite has near‐marine δ18O values and low, positive δ13C values. The unusual textural and chemical characteristics of this dolomite can all be reconciled if it formed in the near‐surface zone of active bioturbation. Sea water provided a plentiful reservoir of Mg and a pore fluid of regionally consistent δ18O. Labile bioclastic debris (e.g. aragonite, Mg‐calcite) supplied isotopically positive carbon to the pore fluids during shallow‐burial dissolution. Such dissolution took place in response to the ambient ‘calcite sea’ conditions, but may have been catalysed by organic matter oxidation reactions. Bioturbation not only ensured that the dissolving carbonate was dispersed throughout the sandstones, but also prohibited coalescence of the dolomite crystals and consequent cementation of the grain framework. Continued exchange of Mg2+ and Ca2+ with the sea‐water reservoir maintained a sufficient Mg/Ca ratio for dolomite (rather than calcite) to form. Irregular crystal shapes resulted from dissolution, of both the dolomite and the enclosed fine calcitic shell debris, before ankerite precipitation during deep‐burial diagenesis.  相似文献   

19.
《Geochimica et cosmochimica acta》1999,63(13-14):1981-1989
In order to better understand environmental factors controlling oxygen isotope shifts in autochthonous lacustrine carbonate sequences, we undertook an extensive one-year study (March, 1995 to February, 1996) of water-column chemistry and daily sediment trap material from a small lake in Central Switzerland. Comparisons between calculated equilibrium isotope values, using the fractionation equation of Friedman and O’Neil, (1977) and measured oxygen isotope ratios of calcite in the sediment-traps reveal that oxygen isotopic values of autochthonous calcite (δ18O) are in isotopic equilibrium with ambient water during most of the spring and summer, when the majority of the calcite precipitates. In contrast, small amounts of calcite precipitated in early-spring and again in late-autumn are isotopically depleted in 18O relative to the calculated equilibrium values, by as much as 0.8‰. This seasonally occurring apparent isotopic nonequilibrium is associated with times of high phosphorous concentrations, elevated pH (∼8.6) and increased [CO32−] (∼50 μmol/l) in the surface waters. The resulting weighted average δ18O value for the studied period is −9.6‰, compared with a calculated equilibrium δ18O value of −9.4‰. These data convincingly demonstrate that δ18O of calcite are, for the most part, a very reliable proxy for temperature and δ18O of the water.  相似文献   

20.
Calcium isotope fractionation in calcite and aragonite   总被引:1,自引:0,他引:1  
Calcium isotope fractionation was measured on skeletal aragonite and calcite from different marine biota and on inorganic calcite. Precipitation temperatures ranged from 0 to 28°C. Calcium isotope fractionation shows a temperature dependence in accordance with previous observations: 1000 · ln(αcc) = −1.4 + 0.021 · T (°C) for calcite and 1000 · ln(αar) = −1.9 + 0.017 · T (°C) for aragonite. Within uncertainty the temperature slopes are identical for the two polymorphs. However, at all temperatures calcium isotopes are more fractionated in aragonite than in calcite. The offset in δ44/40Ca is about 0.6‰. The underlying mechanism for this offset may be related to the different coordination numbers and bond strengths of the calcium ions in calcite and aragonite crystals, or to different Ca reaction behavior at the solid-liquid interface. Recently, the observed temperature dependence of the Ca isotope fractionation was explained quantitatively by the temperature control on precipitation rates of calcium carbonates in an experimental setting (Lemarchand et al., 2004). We show that this mechanism can in principle also be applied to CaCO3 precipitation in natural environments in normal marine settings. Following this model, Ca isotope fractionation in marine Ca carbonates is primarily controlled by precipitation rates. On the other hand the larger Ca isotope fractionation of aragonite compared to calcite can not be explained by different precipitation rates. The rate control model of Ca isotope fractionation predicts a strong dependence of the Ca isotopic composition of carbonates on ambient CO32− concentration. While this model is in general accordance with our observations in marine carbonates, cultured specimens of the planktic foraminifer Orbulina universa show no dependence of Ca-isotope fractionation on the ambient CO32− concentration. The latter observation implies that the carbonate chemistry in the calcifying vesicles of the foraminifer is independent from the ambient carbonate ion concentration of the surrounding water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号