首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
P-V-T equations of state for the γ phase of Mg2SiO4 have been fitted to unit cell volumes measured under simultaneous high pressure (up 30 GPa) and high temperature (up to 700 K) conditions. The measurements were conducted in an externally heated diamond anvil cell using synchrotron x-ray diffraction. Neon was used as a pressure medium to provide a more hydrostatic pressure environment. The P-V-T data include 300 K-isothermal compression to 30 GPa, 700 K-compression to 25 GPa and some additional data in P-T space in the region 15 to 30 GPa and 300 to 700 K. The isothermal bulk modulus and its pressure derivative, determined from the isothermal compression data, are 182(3) GPa and 4.2(0.3) at T=300 K, and 171(4) GPa and 4.4(0.5) at T=700 K. Fitting all the P-V-T data to a high-temperature Murnaghan equation of state yields: K TO=182(3.0) GPa, K TO=4.0(0.3), ?K T /?T)0=?2.7(0.5)×10?2 GPa/K and (?2 K T /?P?T)0=5.5(5.2)×10?4/K at the ambient condition.  相似文献   

2.
We investigated the high-pressure behaviour of Fe3+-bearing hydrous phase-X, (K1.307Na0.015)(Mg1.504Fe 0.373 3+ Al0.053Ti 0.004 4+ )Si2O7H0.36, up to 34?GPa at room temperature by synchrotron X-ray powder diffraction. The lattice parameters behave anisotropically, with the [001] direction stiffer than [100]. In the 10?4 to 22?GPa pressure range, the axial bulk moduli are K 0a ?=?112(3) GPa and K′?=?4, and K 0c ?=?158(2) GPa and K′?=?4, and the anisotropy of the lattice parameters is β0c 0a ?=?0.71:1. The cell volumes are fitted by a second-order Birch–Murnaghan equation of state giving a bulk modulus of K 0?=?127(1) GPa and K′?=?4 in the same pressure range. After 22?GPa, a discontinuity in volume and lattice parameters can be recognized. Sample did not become amorphous up to 34?GPa. The coupled substitution K?+?Mg?=?[]?+?Fe3+ has only a limited influence on the bulk modulus and structural stability of phase-X.  相似文献   

3.
The dependence of Mg/Fe ordering on oxygen partial pressure in natural olivine crystals of volcanic origin has been studied by X-ray diffraction. Two natural crystals with 10% and 12% fayalite have been investigated and the atomic positions, anisotropic temperature factors, extinction coefficients and site occupancies have been refined, reaching R-values of 2.2%. After subjecting the crystals to oxygen partial pressures of 10?16 bar and 10?21 bar the crystals were studied again. In total six crystals were studied and the distribution coefficients K D determined. The natural untreated crystals had K D=1.09 and 1.06, e.g., a slight preference of Fe in (M1). p(O2) of 10?16 bar increased the ordering of Fe in (M1) to K D=1.2, while p(O2)=10?21 bar reversed K D to 0.8 with ordering of Fe in (M2). These experiments suggest that Mg/Fe ordering in olivines is primarily determined by the prevailing oxygen partial pressure.  相似文献   

4.
The equation of state of MgGeO3 perovskite was determined between 25 and 66 GPa using synchrotron X-ray diffraction with the laser-heated diamond anvil cell. The data were fit to a third-order Birch–Murnaghan equation of state and yielded a zero-pressure volume (V 0) of 182.2 ± 0.3 Å3 and bulk modulus (K 0) of 229 ± 3 GPa, with the pressure derivative (K= (?K 0/?P) T ) fixed at 3.7. Differential stresses were evaluated using lattice strain theory and found to be typically less than about 1.5 GPa. Theoretical calculations were also carried out using density functional theory from 0 to 205 GPa. The equation of state parameters from theory (V 0 = 180.2 Å3, K 0 = 221.3 GPa, and K0 = 3.90) are in agreement with experiment, although theoretically calculated volumes are systematically lower than experiment. The properties of the perovskite phase were compared to MgGeO3 post-perovskite phase near the observed phase transition pressure (~65 GPa). Across the transition, the density increased by 2.0(0.7)%. This is in excellent agreement with the theoretically determined density change of 1.9%; however both values are larger than those for the (Mg,Fe)SiO3 phase transition. The bulk sound velocity change across the transition is small and is likely to be negative [?0.5(1.6)% from experiment and ?1.2% from theory]. These results are similar to previous findings for the (Mg,Fe)SiO3 system. A linearized Birch–Murnaghan equation of state fit to each axis yielded zero-pressure compressibilities of 0.0022, 0.0009, and 0.0016 GPa?1 for the a, b, and c axis, respectively. Magnesium germanate appears to be a good analog system for studying the properties of the perovskite and post-perovskite phases in silicates.  相似文献   

5.
High-pressure single crystal X-ray diffraction experiments of phase anhydrous B and superhydrous B have been carried out to 7.3 and 7.7?GPa, respectively, at room temperature. Fitting a third-order Birch-Murnaghan equation of state to the P-V data yields values of V 0?=?838.86?±?0.04?Å3, KT,0?=?151.5?±?0.9?GPa and K′?=?5.5?±?0.3 for Anhy-B and V 0?=?624.71?± 0.03?Å3, KT,0?=?142.6?±?0.8?GPa and K′?=?5.8?±?0.2 for Shy-B. A similar analysis of the axial compressibilities in Anhy-B reveals that the c-axis is most compressible (Kc?=?137?±?3?GPa), the b-axis is least compressible (Kb?=?175?±?4?GPa), and the a-axis is intermediate (Ka?=?148?±?1?GPa). In Shy-B, the a-axis is most compressible (Ka?=?135?±?1?GPa), followed by the b- and c-axes which have similar compressibilities (Kb?=?146?±?3?GPa; Kc?=?148?±?3?GPa). The fact that the b-axis of Shy-B is approximately 16% more compressible than Anhy-B is primarily due to differences in the O-T layer in which the H atoms are located and the linkages with the adjacent O layers. The rigid edge-sharing chains of MgO6 and SiO6 octahedra in the O layer control compressibility along the a- and c-axes in both structures. The net result is a reduction in the overall anisotropic compression from ~22% in Anhy-B to ~9% in Shy-B.  相似文献   

6.
Synchrotron single-crystal X-ray diffraction experiments at high-pressure and high-temperature conditions were performed up to 20 GPa and 573.0(2) K on a fully ordered stoichiometric dolomite and a partially disordered stoichiometric dolomite [order parameter, s = 0.26(6)]. The ordered dolomite was found to be stable up to approximately 14 GPa at ambient temperature and up to approximately 17 GPa at T = 573.0(2) K. The PV data from the ambient temperature experiments were analysed by a second-order Birch–Murnaghan equation-of-state giving K 0 = 92.7(9) GPa for the ordered dolomite and K 0 = 92.5(8) GPa for the disordered dolomite. The high-temperature data, collected for the ordered sample, were fitted by a third-order Birch–Murnaghan equation-of-state resulting in K 0 = 95(6) GPa and K′ = 2.6(7). In order to compare the three experiments results, a third-order Birch–Murnaghan equation-of-state was also calculated for the ambient temperature experiments giving K 0 = 93(3) GPa, K′ = 3.9(6) for the ordered dolomite and K 0 = 92(3) GPa, K′ = 4.0(4) for the disordered dolomite. The derived axial moduli show that dolomite compresses very anisotropically, being the c-axis approximately three times more compressible than the a-axis. The axial compressibility increases as T increases, and the a-axis is the most temperature-influenced axis. On the contrary, axial compressibility is not influenced by disordering. Structural refinements at different pressures show that Ca and Mg octahedra are almost equally compressible in the ordered dolomite with K(CaO6) = 109(4) GPa and K(MgO6) = 103(3) GPa. On the contrary, CaO6 compressibility is reduced and MgO6 compressibility is increased in the disordered crystal structure where K(CaO6) = 139(4) GPa and K(MgO6) = 89(4) GPa. Disordering is found to increase CaO6 and to decrease MgO6 bond strengths, thus making stiffer the Ca octahedron and softer the Mg octahedron. Cation polyhedra are distorted in both ordered and disordered dolomites and they increase in regularity as P increases. Ordered dolomite approaches regularity at approximately 14 GPa. The increase in regularity of octahedra in the disordered dolomite is strongly affected by the very slow regularization of MgO6 with respect to CaO6. The phase transition to the high-pressure polymorph of dolomite (dolomite-II), which is driven by a significant increase in the regularity of both cations polyhedra and mineral crystal structure, occurs in the ordered dolomite at ambient temperature at approximately 14 GPa; whereas no clear evidences of phase transition were observed as regards the disordered crystal structure.  相似文献   

7.
Synchrotron-based in situ angle-dispersive X-ray diffraction experiments were conducted on a natural uvite-dominated tourmaline sample by using an external-heating diamond anvil cell at simultaneously high pressures and temperatures up to 18 GPa and 723 K, respectively. The angle-dispersive X-ray diffraction data reveal no indication of a structural phase transition over the P–T range of the current experiment in this study. The pressure–volume–temperature data were fitted by the high-temperature Birch–Murnaghan equation of state. Isothermal bulk modulus of K 0 = 96.6 (9) GPa, pressure derivative of the bulk modulus of \(K_{0}^{\prime } = 12.5 \;(4)\), thermal expansion coefficient of α 0 = 4.39 (27) × 10?5 K?1 and temperature derivative of the bulk modulus (?K/?T) P  = ?0.009 (6) GPa K?1 were obtained. The axial thermoelastic properties were also obtained with K a0 = 139 (2) GPa, \(K_{a0}^{\prime }\) = 11.5 (7) and α a0 = 1.00 (11) × 10?5 K?1 for the a-axis, and K c0 = 59 (1) GPa, \(K_{c0}^{\prime }\) = 11.4 (5) and α c0 = 2.41 (24) × 10?5 K?1 for the c-axis. Both of axial compression and thermal expansion exhibit large anisotropic behavior. Thermoelastic parameters of tourmaline in this study were also compared with that of the other two ring silicates of beryl and cordierite.  相似文献   

8.
In order to investigate compression mechanism and the pressure-induced amorphization of portlandite, Ca(OH)2, the crystal structure has been refined up to 9.7?GPa using Rietveld analysis. Angular-dispersive synchrotron X-ray powder diffraction experiments were performed using a diamond anvil cell and an imaging plate at BL-18C in the Photon Factory at KEK, Japan. Compression behavior is highly anisotropic and the c axis is approximately 2.5 times as compressible as the a axis (βa=0.004, βc=0.011?GPa?1). Because the refined fractional coordinate, z, of the O atom increases linearly with pressure, compression along the c axis is due to the shortening of the interlayer spacing. The compression mechanism shows no change up to the amorphization pressure and is basically the same as that of brucite, Mg(OH)2, observed below 10 GPa. The octahedral regularity of CaO6 approaches a regular configuration with pressure. The interlayer O…O distance is expected to be about 2.75 Å at the amorphization pressure and should affect hydrogen bonding.  相似文献   

9.
 A high pressure neutron powder diffraction study of portlandite [Ca(OH)2] has been performed at ISIS facility (U.K.); nine spectra have been collected increasing the pressure by steps, up to 10.9 GPa, by means of a Paris-Edinburgh cell installed on the POLARIS diffractometer. The tensorial formalism of the lagrangian finite strain theory and the Birch-Murnaghan equation of state have been used to determine, independently, two values of the bulk modulus of portlandite, obtaining K 0=38.3(±1.1) GPa [linear incompressibilities: K 0a=188.4(±9.9), K 0c=64.5(±2.5) GPa] and K 0=34.2(±1.4) GPa, respectively. The present results comply with values from previous measurements by X-ray diffraction [K 0=37.8(±1.8) GPa] and Brillouin spectroscopy [K 0=31.7(±2.5) GPa]. Reasonably, Ca(OH)2 has revealed to be bulkly softer than Mg(OH)2 [K 0=41(±2), K 0a=313, K 0c=57 GPa]. The Ca(OH)2 linear incompressibility values reflect the nature of forces acting to stabilize the (001) layer structure and, further, prove that the replacement Ca/Mg mainly affects the elastic properties in the (001) plane, rather than along the [001] direction. Data from a full refinement of the structure at room pressure are reported. Received January 12, 1996/Revised, accepted June 15, 1996  相似文献   

10.
In situ X-ray diffraction measurements of KAlSi3O8-hollandite (K-hollandite) were performed at pressures of 15–27 GPa and temperatures of 300–1,800 K using a Kawai-type apparatus. Unit-cell volumes obtained at various pressure and temperature conditions in a series of measurements were fitted to the high-temperature Birch-Murnaghan equation of state and a complete set of thermoelastic parameters was obtained with an assumed K300,0=4. The determined parameters are V 300,0=237.6(2) Å3, K 300,0=183(3) GPa, (?K T,0/?T) P =?0.033(2) GPa K?1, a 0=3.32(5)×10?5 K?1, and b 0=1.09(1)×10?8 K?2, where a 0 and b 0 are coefficients describing the zero-pressure thermal expansion: α T,0 = a 0 + b 0 T. We observed broadening and splitting of diffraction peaks of K-hollandite at pressures of 20–23 GPa and temperatures of 300–1,000 K. We attribute this to the phase transitions from hollandite to hollandite II that is an unquenchable high-pressure phase recently found. We determined the phase boundary to be P (GPa)=16.6 + 0.007 T (K). Using the equation of state parameters of K-hollandite determined in the present study, we calculated a density profile of a hypothetical continental crust (HCC), which consists only of K-hollandite, majorite garnet, and stishovite with 1:1:1 ratio in volume. Density of HCC is higher than the surrounding mantle by about 0.2 g cm?3 in the mantle transition zone while this relation is reversed below 660-km depth and HCC becomes less dense than the surrounding mantle by about 0.15 g cm?3 in the uppermost lower mantle. Thus the 660-km seismic discontinuity can be a barrier to prevent the transportation of subducted continental crust materials to the lower mantle and the subducted continental crust may reside at the bottom of the mantle transition zone.  相似文献   

11.
Pressure-induced amorphization of α-quartz type GeO2 was studied with a newly developed X-ray diffraction system which consists of a 4-circle goniometer and a curved position sensitive detector. Single-crystal diffraction was measured under pressurs up to 7.3 GPa at room temperature in order to investigate pretransitional phenomena. Diffraction intensity and line width of the diffraction profiles showed no remarkable change up to 5.9 GPa. However, no sharp diffraction line was observed at pressures over 6.5 GPa. The bulk modulus at 0.1 MPa and its pressure derivative of α-quartz type GeO2 were determined to be K T =32.8(3.3) GPa and K′ T =6.0(2.0), respectively. In situ microscopic observations of the amorphization transformation was also performed. The large volume change due to amorphization was observed and estimated to be about 10%.  相似文献   

12.
MgSiO3 akimotoite is stable relative to majorite-garnet under low-temperature geotherms within steeply or rapidly subducting slabs. Two compositions of Mg–akimotoite were synthesized under similar conditions: Z674 (containing about 550 ppm wt H2O) was synthesized at 22 GPa and 1,500 °C and SH1101 (nominally anhydrous) was synthesized at 22 GPa and 1,250 °C. Crystal structures of both samples differ significantly from previous studies to give slightly smaller Si sites and larger Mg sites. The bulk thermal expansion coefficients of Z674 are (153–839 K) of a 1 = 20(3) × 10?9 K?2 and a 0 = 17(2) × 10?6 K?1, with an average of α 0 = 27.1(6) × 10?6 K?1. Compressibility at ambient temperature of Z674 was measured up to 34.6 GPa at Sector 13 (GSECARS) at Advanced Photon Source Argonne National Laboratory. The second-order Birch–Murnaghan equation of state (BM2 EoS) fitting yields: V 0 = 263.7(2) Å3, K T0 = 217(3) GPa (K′ fixed at 4). The anisotropies of axial thermal expansivities and compressibilities are similar: α a  = 8.2(3) and α c  = 10.68(9) (10?6 K?1); β a  = 11.4(3) and β c  = 15.9(3) (10?4 GPa). Hydration increases both the bulk thermal expansivity and compressibility, but decreases the anisotropy of structural expansion and compression. Complementary Raman and Fourier transform infrared (FTIR) spectroscopy shows multiple structural hydration sites. Low-temperature and high-pressure FTIR spectroscopy (15–300 K and 0–28 GPa) confirms that the multiple sites are structurally unique, with zero-pressure intrinsic anharmonic mode parameters between ?1.02 × 10?5 and +1.7 × 10?5 K?1, indicating both weak hydrogen bonds (O–H···O) and strong OH bonding due to long O···O distances.  相似文献   

13.
Using single-crystal X-ray diffraction from a diamond anvil cell, the compressibility of a synthetic fluorapatite was determined up to about 7?GPa. The compression pattern was anisotropic, with greater change along a than c. Unit cell parameters varied linearly with β a =3.32(8)?10?3 and β c =2.40(5)?10?3 GPa?1, giving a ratio β a c =1.38:1. Data fitted with a third-order Birch-Murnaghan EOS yielded a bulk modulus of K 0=93(4)?GPa with K′=5.8(1.8). The evolution of the crystal structure of fluorapatite was analysed using data collected at room pressure, at 3.04 and 4.72?GPa. The bulk modulus of phosphate tetrahedron is about three times greater than the bulk modulus of calcium polyhedra. The values were 270(10), 100(4) and 86(3) GPa for P, Ca1 (nine-coordinated) and Ca2 (seven-coordinated) respectively. While the calcium polyhedra became more regular with pressure, the distortion of the phosphate tetrahedron remained unchanged. The size of the channel extending along the [001] direction represented the most compressible direction. The Ca2–Ca2 distance decreased from 3.982 to 3.897?Å on compression from 0.0001 to 4.72?GPa. The anisotropic compressional pattern may be understood in terms of the greater compressibility of the channel size over the polyhedral units. The reduction of the channel volume was measured by the evolution of the trigonal prism, having the Ca2–Ca2–Ca2 triangle as its base and the c lattice parameter as its height. This prism volume changed from 47.3?Å3 at room pressure to 44.78?Å3 at 4.72?GPa. Its relatively high bulk moduli, 86(3) GPa, indicated that the channel did not collapse with pressure and the apatite structure could remain stable at very high pressure.  相似文献   

14.
The thermo-elastic behaviour of Be2BO3(OH)0.96F0.04 (i.e. natural hambergite, Z = 8, a = 9.7564(1), b = 12.1980(2), c = 4.4300(1) Å, V = 527.21(1) Å3, space group Pbca) has been investigated up to 7 GPa (at 298 K) and up to 1,100 K (at 0.0001 GPa) by means of in situ single-crystal X-ray diffraction and synchrotron powder diffraction, respectively. No phase transition or anomalous elastic behaviour has been observed within the pressure range investigated. P?V data fitted to a third-order Birch–Murnaghan equation of state give: V 0 = 528.89(4) Å3, K T0 = 67.0(4) GPa and K′ = 5.4(1). The evolution of the lattice parameters with pressure is significantly anisotropic, being: K T0(a):K T0(b):K T0(c) = 1:1.13:3.67. The high-temperature experiment shows evidence of structure breakdown at T > 973 K, with a significant increase in the full-width-at-half-maximum of all the Bragg peaks and an anomalous increase in the background of the diffraction pattern. The diffraction pattern was indexable up to 1,098 K. No new crystalline phase was observed up to 1,270 K. The diffraction data collected at room-T after the high-temperature experiment showed that the crystallinity was irreversibly compromised. The evolution of axial and volume thermal expansion coefficient, α, with T was described by the polynomial function: α(T) = α 0 + α 1 T ?1/2. The refined parameters for Be2BO3(OH)0.96F0.04 are: α 0 = 7.1(1) × 10?5 K?1 and α 1 = ?8.9(2) × 10?4 K ?1/2 for the unit-cell volume, α 0(a) = 1.52(9) × 10?5 K?1 and α 1(a) = ?1.4(2) × 10?4 K ?1/2 for the a-axis, α 0(b) = 4.4(1) × 10?5 K?1 and α 1(b) = ?5.9(3) × 10?4 K ?1/2 for the b-axis, α 0(c) = 1.07(8) × 10?5 K?1 and α 1(c) = ?1.5(2) × 10?4 K ?1/2 for the c-axis. The thermo-elastic anisotropy can be described, at a first approximation, by α 0(a):α 0(b):α 0(c) = 1.42:4.11:1. The main deformation mechanisms in response to the applied temperature, based on Rietveld structure refinement, are discussed.  相似文献   

15.
The thermoelastic parameters of Ca3Cr2Si3O12 uvarovite garnet were examined in situ at high pressure up to 13 GPa and high temperature up to 1100 K by synchrotron radiation energy-dispersive X-ray diffraction within a 6-6-type multi-anvil press apparatus. A least-square fitting of room T data to a third-order Birch–Murnaghan (BM3) EoS yielded K0 = 164.2 ± 0.7 GPa, V0 = 1735.9 ± 0.3 Å3 (K’0 fixed to 4.0). PVT data were fitted simultaneously by a modified HT-BM3 EoS, which gave the isothermal bulk modulus K0 = 163.6 ± 2.6 GPa, K’0 = 4.1 ± 0.5, its temperature derivative (?K0,T/?T)P = –0.014 ± 0.002 GPa K?1, and the thermal expansion coefficients a0 = 2.32 ± 0.13 ×10?5 K?1 and b0 = 2.13 ± 2.18 ×10?9 K?2 (K’0 fixed to 4.0). Our results showed that the Cr3+ enrichment in natural systems likely increases the density of ugrandite garnets, resulting in a substantial increase of mantle garnet densities in regions where Cr-rich spinel releases chromium through a metasomatic reaction.  相似文献   

16.
A new synchrotron X-ray diffraction study of chromium oxide Cr2O3 (eskolaite) with the corundum-type structure has been carried out in a Kawai-type multi-anvil apparatus to pressure of 15 GPa and temperatures of 1873 K. Fitting the Birch–Murnaghan equation of state (EoS) with the present data up to 15 GPa yielded: bulk modulus (K 0,T0), 206 ± 4 GPa; its pressure derivative K0,T , 4.4 ± 0.8; (?K 0,T /?T) = ?0.037 ± 0.006 GPa K?1; a = 2.98 ± 0.14 × 10?5 K?1 and b = 0.47 ± 0.28 × 10?8 K?2, where α 0,T  = a + bT is the volumetric thermal expansion coefficient. The thermal expansion of Cr2O3 was additionally measured at the high-temperature powder diffraction experiment at ambient pressure and α 0,T0 was determined to be 2.95 × 10?5 K?1. The results indicate that coefficient of the thermal expansion calculated from the EoS appeared to be high-precision because it is consistent with the data obtained at 1 atm. However, our results contradict α 0 value suggested by Rigby et al. (Brit Ceram Trans J 45:137–148, 1946) widely used in many physical and geological databases. Fitting the Mie–Grüneisen–Debye EoS with the present ambient and high-pressure data yielded the following parameters: K 0,T0 = 205 ± 3 GPa, K0,T  = 4.0, Grüneisen parameter (γ 0) = 1.42 ± 0.80, q = 1.82 ± 0.56. The thermoelastic parameters indicate that Cr2O3 undergoes near isotropic compression at room and high temperatures up to 15 GPa. Cr2O3 is shown to be stable in this pressure range and adopts the corundum-type structure. Using obtained thermoelastic parameters, we calculated the reaction boundary of knorringite formation from enstatite and eskolaite. The Clapeyron slope (with \({\text{d}}P/{\text{d}}T = - 0.014\) GPa/K) was found to be consistent with experimental data.  相似文献   

17.
Synthetic (Mg0.51, Mn0.49)2SiO4 olivine samples are heat-treated at three different pressures; 0, 8 and 12 GPa, all at the same temperature (~500° C). X-ray structure analyses on these single crystals are made in order to see the pressure effect on cation distribution. The intersite distribution coefficient of Mg and Mn in M1 and M2 sites, K D = (Mn/Mg) M1/(Mn/Mg) M2, of these samples are 0.192 (0 GPa), 0.246 (8 GPa) and 0.281 (12 GPa), indicating cationic disordering with pressure. The small differences of cell dimensions between these samples are determined by powder X-ray diffraction. Cell dimensions b and c decrease, whereas a increases with pressure of equilibration. Cell volume decreases with pressure as a result of a large contraction of the b cell dimension. The effect of pressure on the free energy of the cation exchange reaction is evaluated by the observed relation between the cell volume and the site occupancy numbers. The magnitude of the pressure effect on cation distribution is only a fifth of that predicted from the observed change in volume combined with thermodynamic theory. This phenomenon is attributed to nonideality in this solid solution, and nonideal parameters are required to describe cation distribution determined in the present and previous experiments. We use a five-parameter equation to specify the cationic equilibrium on the basic of thermodynamic theory. It includes one energy parameter of ideal mixing, two parameters for nonideal effects, one volume parameter, and one thermal parameter originated from the lattice vibrational energy. The present data combined with some of the existing data are used to determine the five parameters, and the cation distribution in Mg-Mn olivine is described as a function of temperature, pressure, and composition. The basic framework of describing the cationic behavior in olivine-type mineral is worked out, although the result is preliminary: each of the determined parameters is not accurate enough to enable us to make a reliable prediction.  相似文献   

18.
19.
Thermal equation of state of an Al-rich phase with Na1.13Mg1.51Al4.47Si1.62O12 composition has been derived from in situ X-ray diffraction experiments using synchrotron radiation and a multianvil apparatus at pressures up to 24 GPa and temperatures up to 1,900 K. The Al-rich phase exhibited a hexagonal symmetry throughout the present pressure–temperature conditions and the refined unit-cell parameters at ambient condition were: a=8.729(1) Å, c=2.7695(5) Å, V 0=182.77(6) Å3 (Z=1; formula weight=420.78 g/mol), yielding the zero-pressure density ρ0=3.823(1) g/cm3 . A least-square fitting of the pressure-volume-temperature data based on Anderson’s pressure scale of gold (Anderson et al. in J Appl Phys 65:1534–543, 1989) to high-temperature Birch-Murnaghan equation of state yielded the isothermal bulk modulus K 0=176(2) GPa, its pressure derivative K 0 =4.9(3), temperature derivative (?K T /?T) P =?0.030(3) GPa K?1 and thermal expansivity α(T)=3.36(6)×10?5+7.2(1.9)×10?9 T, while those values of K 0=181.7(4) GPa, (?K T /?T) P =?0.020(2) GPa K?1 and α(T)=3.28(7)×10?5+3.0(9)×10?9 T were obtained when K 0 was assumed to be 4.0. The estimated bulk density of subducting MORB becomes denser with increasing depth as compared with earlier estimates (Ono et al. in Phys Chem Miner 29:527–531 2002; Vanpeteghem et al. in Phys Earth Planet Inter 138:223–230 2003; Guignot and Andrault in Phys Earth Planet Inter 143–44:107–128 2004), although the difference is insignificant (<0.6%) when the proportions of the hexagonal phase in the MORB compositions (~20%) are taken into account.  相似文献   

20.
The elastic properties of CaSnO3 perovskite have been measured by both ultrasonic interferometry and single-crystal X-ray diffraction at high pressures. The single-crystal diffraction data collected using a diamond-anvil cell show that CaSnO3 perovskite does not undergo any phase transitions at pressures below 8.5?GPa at room temperature. Ultrasonic measurements in the multianvil press to a maximum pressure of ~8?GPa at room temperature yielded S- and P-wave velocity data as a function of pressure. For a third-order Birch-Murnaghan EoS the adiabatic elastic moduli and their pressure derivatives determined from these velocity data are K S0=167.2±3.1?GPa, K S0=4.89±0.17, G 0=89.3±1.0?GPa, G 0=0.90±0.02. The quoted uncertainties include contributions from uncertainties in both the room pressure length and density of the specimen, as well as uncertainties in the pressure calibration of the multianvil press. Because the sample is a polycrystalline specimen, this value of K S0 represents an upper limit to the Reuss bound (conditions of uniform stress) on the elastic modulus of CaSnO3 perovskite. If the value of αγT is assumed to be 0.01, the value of K S0 corresponds to K T0=165.5±3.1?GPa. The 10 P-V data obtained by single-crystal diffraction were fit with a third-order Birch–Murnaghan equation-of-state to obtain the parameters V 0=246.059±0.013 Å3, K T0=162.6±1.0?GPa, K T0=5.6±0.3. Because single-crystal measurements under hydrostatic conditions are made under conditions of uniform stress, they yield bulk moduli equivalent to the Reuss bound on a polycrystalline specimen. The results from the X-ray and ultrasonic experiments are therefore consistent. The bulk modulus of CaSnO3 perovskite lies above the linear trend of K 0 with inverse molar volume, previously determined for Ca perovskites. This prevents an estimation of the bulk modulus of CaSiO3 perovskite by extrapolation. However, our value of G 0 for CaSnO3 perovskite combined with values for CaTiO3 and CaGeO3 forms a linear trend of G 0 with octahedral tilt angle. This allows a lower bound of 150?GPa to be placed on the shear modulus of CaSiO3 by extrapolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号