首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead speciation in many aqueous geochemical systems is dominated by carbonate complexation. However, direct observations of Pb2+ complexation by carbonate ions are few in number. This work represents the first investigation of the equilibrium over a range of ionic strength. Through spectrophotometric observations of formation at 25 °C in NaHCO3-NaClO4 solutions, formation constants of the form were determined between 0.001 and 5.0 molal ionic strength. Formation constant results were well represented by the equation:
  相似文献   

2.
Gypsum precipitation kinetics were examined from a wide range of chemical compositions , ionic strengths (4.75-10 m) and saturation state with respect to gypsum (1.16-1.74) in seeded batch experiments of mixtures of Ca2+-rich Dead Sea brine and -rich seawater. Despite the variability in the experimental solutions, a single general rate law was formulated to describe the heterogeneous precipitation rate of gypsum from these mixtures:
  相似文献   

3.
Dissolution kinetics at the aqueous solution-calcite interface at 50 °C were investigated using in situ atomic force microscopy (AFM) to reveal the influence of magnesium concentration and solution saturation state on calcite dissolution kinetics and surface morphology. Under near-equilibrium conditions, dissolved Mg2+ displayed negligible inhibitory effects on calcite dissolution even at concentrations of . Upon the introduction of , the solution saturation state with respect to calcite, , acted as a “switch” for magnesium inhibition whereby no significant changes in step kinetics were observed at Ωcalcite<0.2, whereas a sudden inhibition from Mg2+ was activated at Ωcalcite?0.2. The presence of the Ω-switch in dissolution kinetics indicates the presence of critical undersaturation in accordance with thermodynamic principles. The etch pits formed in solutions with exhibited a unique distorted rhombic profile, different from those formed in Mg-free solutions and in de-ionized water. Such unique etch pit morphology may be associated with the anisotropy in net detachment rates of counter-propagating kink sites upon the addition of Mg2+.  相似文献   

4.
The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3 h) and low concentrations of phosphate (?50 μM). Sorption of phosphate on calcite was studied in 11 different calcite-equilibrated solutions that varied in pH, PCO2, ionic strength and activity of Ca2+, and . Our results show strong sorption of phosphate onto calcite. The kinetics of phosphate sorption onto calcite are fast; adsorption is complete within 2-3 h while desorption is complete in less than 0.5 h. The reversibility of the sorption process indicates that phosphate is not incorporated into the calcite crystal lattice under our experimental conditions. Precipitation of phosphate-containing phases does not seem to take place in systems with ?50 μM total phosphate, in spite of a high degree of super-saturation with respect to hydroxyapatite (SIHAP ? 7.83). The amount of phosphate adsorbed varied with the solution composition, in particular, adsorption increases as the activity decreases (at constant pH) and as pH increases (at constant activity). The primary effect of ionic strength on phosphate sorption onto calcite is its influence on the activity of the different aqueous phosphate species. The experimental results were modeled satisfactorily using the constant capacitance model with >CaPO4Ca0 and either >CaHPO4Ca+ or > as the adsorbed surface species. Generally the model captures the variation in phosphate adsorption onto calcite as a function of solution composition, though it was necessary to include two types of sorption sites (strong and weak) in the model to reproduce the convex shape of the sorption isotherms.  相似文献   

5.
Thermal water samples from Yellowstone National Park (YNP) have a wide range of pH (1-10), temperature, and high concentrations of fluoride (up to 50 mg/l). High fluoride concentrations are found in waters with field pH higher than 6 (except those in Crater Hills) and temperatures higher than 50 °C based on data from more than 750 water samples covering most thermal areas in YNP from 1975 to 2008. In this study, more than 140 water samples from YNP collected in 2006-2009 were analyzed for free-fluoride activity by ion-selective electrode (ISE) method as an independent check on the reliability of fluoride speciation calculations. The free to total fluoride concentration ratio ranged from <1% at low pH values to >99% at high pH. The wide range in fluoride activity can be explained by strong complexing with H+ and Al3+ under acidic conditions and lack of complexing under basic conditions. Differences between the free-fluoride activities calculated with the WATEQ4F code and those measured by ISE were within 0.3-30% for more than 90% of samples at or above 10−6 molar, providing corroboration for chemical speciation models for a wide range of pH and chemistry of YNP thermal waters. Calculated speciation results show that free fluoride, F, and major complexes (, AlF2+, and ) account for more than 95% of total fluoride. Occasionally, some complex species like , FeF2+, , MgF+ and may comprise 1-10% when the concentrations of the appropriate components are high. According to the simulation results by PHREEQC and calculated results, the ratio of main fluoride species to total fluoride varies as a function of pH and the concentrations and ratios of F and Al.  相似文献   

6.
Experiments were performed to determine the partitioning of molybdenum, tungsten and manganese among a rhyolitic melt (melt), pyrrhotite (po), and an immiscible Fe-S-O melt (Fe-S-O). Sulfide phases such as these may be isolated from a silicate melt along with other crystallizing phases during the evolution of arc magma, and partition coefficients are required to model the effect of this process on molybdenum and tungsten budgets.We developed an experimental design to take advantage of properties of the phases under study. Careful control of temperature allowed pyrrhotite and magnetite to be stable along with an Fe-S-O melt, and this phase assemblage allowed the composition of run-product pyrrhotite to be used to calculate both fS2 and fO2 for the experiments. At run temperature, (1042 ± 2 °C), a rhyolitic melt can be formed at low pressure, under nominally dry conditions, which removed the need for confining pressure as well as externally imposed fugacities. The silica-saturated melt allowed the charges to be contained in sealed evacuated silica tubes without danger of reaction, and with closed system behavior for molybdenum and tungsten.Experiments were run for durations up to 2000 min. Molybdenite (mb) and wolframite (wo) were added to the experiments as sources for molybdenum and tungsten, respectively. Manganese was added to the system as both a component of the starting rhyolitic pumice, and of Mn-bearing wolframite. Oxygen fugacity in these experiments was fixed at the Ni-NiO oxygen fugacity buffer. Sulfur fugacity was 10−1 bar. Run products were analyzed by EPMA and LA-ICP-MS. Analysis of the run products yielded ( standard deviation of the mean): , , , and . The partition coefficients for manganese in this system are and .Simple Rayleigh fractionation modeling suggests that oxidized felsic melts produced through fractional crystallization may have lost as much as 14% of their initial molybdenum, but only 2% of their initial tungsten, through the removal of an Fe-S-O melt along with crystalline phases. Modeling consistent with conditions of oxygen and sulfur fugacity influenced by assimilation of sulfide (with low concentrations of molybdenum and tungsten) from, for example, sedimentary rock, results in evolved magmas significantly depleted in molybdenum, but only moderately depleted in tungsten. The molybdenum:tungsten ratio can vary by two orders of magnitude. These systematics may help to explain some of the variability in metal ratios of intrusion-related hydrothermal ore deposits.  相似文献   

7.
We report high-precision analyses of internally-normalised Ni isotope ratios in 12 bulk iron meteorites. Our measurements of 60Ni/61Ni, 62Ni/61Ni and 64Ni/61Ni normalised to 58Ni/61Ni and expressed in parts per ten thousand (?) relative to NIST SRM 986 as and , vary by 0.146, 0.228 and 0.687, respectively. The precision on a typical analysis is 0.03?, 0.05? and 0.08? for , and , respectively, which is comparable to our sample reproducibility. We show that this ‘mass-independent’ Ni isotope variability cannot be ascribed to interferences, inaccurate correction of instrumental or natural mass-dependent fractionation, fractionation controlled by nuclear field shift effects, nor the influence of cosmic ray spallation. These results thus document the presence of mass-independent Ni isotopic heterogeneity in bulk meteoritic samples, as previously proposed by Regelous et al. (2008) (EPSL 272, 330-338), but our new analyses are more precise and include determination of 64Ni. Intriguingly, we find that terrestrial materials do not yield homogenous internally-normalised Ni isotope compositions, which, as pointed out by Young et al. (2002) (GCA 66, 1095-1104), may be the expected result of using the exponential (kinetic) law and atomic masses to normalise all fractionation processes. The certified Ni isotope reference material NIST SRM 986 defines zero in this study, while appropriate ratios for the bulk silicate Earth are given by the peridotites JP-1 and DTS-2 and, relative to NIST SRM 986, yield deviations in , and of −0.006?, 0.036? and 0.119?, respectively. There is a strong positive correlation between and in iron meteorites analyses, with a slope of 3.03 ± 0.71. The variations of Ni isotope anomalies in iron meteorites are consistent with heterogeneous distribution of a nucleosynthetic component from a type Ia supernova into the proto-solar nebula.  相似文献   

8.
Equilibrium mass-dependent magnesium isotope fractionation factors are estimated for a range of crystalline compounds including oxides, silicates, carbonates, and salts containing the solvation complex. Fractionation factors for the gas-phase species Mg and MgO are also presented. Fractionation factors are calculated with density functional perturbation theory (DFPT), using norm-conserving pseudopotentials. The results suggest that there will be substantial inter-mineral fractionation, particularly between tetrahedrally coordinated Mg2+ in spinel (MgAl2O4) and the more common octahedrally coordinated Mg2+-sites in silicate and carbonate minerals. Isotope fractionations calculated for Mg2+ in hexaaquamagnesium(2+) salts are in good agreement with previous fractionation models of based on large molecular clusters (Black et al., 2007), but show possibly more significant disagreement with a more recent study (Rustad et al., 2010). These models further suggest that solvated , in the form of , will have higher 26Mg/24Mg than coexisting magnesite and dolomite. Calculated fractionations are consistent with Mg-isotope fractionations observed in peridotite mineral separates and inorganic carbonate precipitates. Predicted large, temperature-sensitive spinel-silicate fractionations, in particular, may find use in determining equilibration temperatures of peridotites and other high-temperature rock types.  相似文献   

9.
Dissolved boron in modern seawater occurs in the form of two species, trigonal boric acid B(OH)3 and tetrahedral borate ion . One of the key assumption in the use of boron isotopic compositions of carbonates as pH proxy is that only borate ions, , are incorporated into the carbonate. Here, we investigate the speciation of boron in deep-sea coral microstructures (Lophelia pertusa specimen) by using high field magic angle spinning nuclear magnetic resonance (11B MAS NMR) and electron energy-loss spectroscopy (EELS). We observe both boron coordination species, but in different proportions depending on the coral microstructure, i.e. centres of calcification versus fibres. These results suggest that careful sampling is necessary before performing boron isotopic measurements in deep-sea corals. By combining the proportions of B(OH)3 and determined by NMR and our previous ion microprobe boron isotope measurements, we propose a new equation for the relation between seawater pH and boron isotopic composition in deep-sea corals.  相似文献   

10.
Comparative concentrations of carbonate and hydroxide complexes in natural solutions can be expressed in terms of reactions with bicarbonate that have no explicit pH dependence (). Stability constants for this reaction with n = 1 were determined using conventional formation constant data expressed in terms of hydroxide and carbonate. Available data indicate that stability constants appropriate to seawater at 25 °C expressed in the form are on the order of 104.2 for a wide range of cations (Mz+) with z = +1, +2 and +3. Φ1 is sufficiently large that species appear to substantially dominate MOHz−1 species in seawater. Evaluations of comparative stepwise carbonate and hydroxide stability constant behavior leading to the formation of n = 2 and n = 3 complexes suggest that carbonate complexes generally dominate hydroxide complexes in seawater, even for cations whose inorganic speciation schemes in seawater are currently presumed to be strongly dominated by hydrolyzed forms (). Calculated stability constants, and , indicate that the importance of carbonate complexation is sufficiently large that carbonate and hydroxide complexes would be generally comparable even if calculated Φ2 and Φ3 values are overestimated by two or more orders of magnitude. Inclusion of mixed ligand species in carbonate-hydroxide speciation models allows cation complexation intensities (MT/[Mz+]) to be expressed in the following form:
  相似文献   

11.
The speciation of cobalt (II) in Cl and H2S-bearing solutions was investigated spectrophotometrically at temperatures of 200, 250, and 300 °C and a pressure of 100 bars, and by measuring the solubility of cobaltpentlandite at temperatures of 120-300 °C and variable pressures of H2S. From the results of these experiments, it is evident that CoHS+ and predominate in the solutions except at 150 °C, for which the dominant chloride complex is CoCl3. The logarithms of the stability constant for CoHS+ show moderate variation with temperature, decreasing from 6.24 at 120 °C to 5.84 at 200 °C, and increasing to 6.52 at 300 °C. Formation constants for chloride species increase smoothly with temperature and at 300°C their logarithms reach 8.33 for , 6.44 for CoCl3, 4.94 to 5.36 for , and 2.42 for CoCl+. Calculations based on the composition of a model hydrothermal fluid (Ksp-Mu-Qz, KCl = 0.25 m, NaCl = 0.75 m, ΣS = 0.3 m) suggest that at temperatures ?200 °C, cobalt occurs dominantly as CoHS+, whereas at higher temperatures the dominant species is .  相似文献   

12.
The origin of Zn isotope fractionation in sulfides   总被引:2,自引:0,他引:2  
Isotope fractionation of Zn between aqueous sulfide, chloride, and carbonate species (Zn2+, Zn(HS)2, , , ZnS(HS), ZnCl+, ZnCl2, , and ZnCO3) was investigated using ab initio methods. Only little fractionation is found between the sulfide species, whereas carbonates are up to 1‰ heavier than the parent solution. At pH > 3 and under atmospheric-like CO2 pressures, isotope fractionation of Zn sulfides precipitated from sulfidic solutions is affected by aqueous sulfide species and the δ66Zn of sulfides reflect these in the parent solutions. Under high PCO2 conditions, carbonate species become abundant. In high PCO2 conditions of hydrothermal solutions, Zn precipitated as sulfides is isotopically nearly unfractionated with respect to a low-pH parent fluid. In contrast, negative δ66Zn down to at least −0.6‰ can be expected in sulfides precipitated from solutions with pH > 9. Zinc isotopes in sulfides and rocks therefore represent a potential indicator of mid to high pH in ancient hydrothermal fluids.  相似文献   

13.
We performed a series of experiments at high pressures and temperatures to determine the partitioning of a wide range of trace elements between ilmenite (Ilm), armalcolite (Arm) and anhydrous lunar silicate melt, to constrain geochemical models of the formation of titanium-rich melts in the Moon. Experiments were performed in graphite-lined platinum capsules at pressures and temperatures ranging from 1.1 to 2.3 GPa and 1300-1400 °C using a synthetic Ti-enriched Apollo ‘black glass’ composition in the CaO-FeO-MgO-Al2O3-TiO2-SiO2 system. Ilmenite-melt and armalcolite-melt partition coefficients (D) show highly incompatible values for the rare earth elements (REE) with the light REE more incompatible compared to the heavy REE ( 0.0020 ± 0.0010 to 0.069 ± 0.010 for ilmenite; 0.0048 ± 0.0023 to 0.041 ± 0.008 for armalcolite). D values for the high field strength elements vary from highly incompatible for Th, U and to a lesser extent W (for ilmenite: 0.0013 ± 0.0008, 0.0035 ± 0.0015 and 0.039 ± 0.005, and for armalcolite 0.008 ± 0.003, 0.0048 ± 0.0022 and 0.062 ± 0.03), to mildly incompatible for Nb, Ta, Zr, and Hf (e.g. 0.28 ± 0.05 and : 0.76 ± 0.07). Both minerals fractionate the high field strength elements with DTa/DNb and DHf/DZr between 1.3 and 1.6 for ilmenite and 1.3 and 1.4 for armalcolite. Armalcolite is slightly more efficient at fractionating Hf from W during lunar magma ocean crystallisation, with DHf/DW = 12-13 compared to 6.7-7.5 for ilmenite. The transition metals vary from mildly incompatible to compatible, with the highest compatibilities for Cr in ilmenite (D ∼ 7.5) and V in armalcolite (D ∼ 8.1). D values show no clear variation with pressure in the small range covered.Crystal lattice strain modelling of D values for di-, tri- and tetravalent trace elements shows that in ilmenite, divalent elements prefer to substitute for Fe while armalcolite data suggest REE replacing Mg. Tetravalent cations appear to preferentially substitute for Ti in both minerals, with the exception of Th and U that likely substitute for the larger Fe or Mg cations. Crystal lattice strain modelling is also used to identify and correct for very small (∼0.3 wt.%) melt contamination of trace element concentration determinations in crystals.Our results are used to model the Lu-Hf-Ti concentrations of lunar high-Ti mare basalts. The combination of their subchondritic Lu/Hf ratios and high TiO2 contents requires preferential dissolution of ilmenite or armalcolite from late-stage, lunar magma ocean cumulates into low-Ti partial melts of deeper pyroxene-rich cumulates.  相似文献   

14.
Sphalerite oxidation is a common process under acid-mine drainage (AMD) conditions and results in the release of , Zn and potentially toxic trace metals, which can pollute rivers and oceans. However, there are only a few studies on the mechanisms of aerobic sphalerite oxidation. Oxygen and S isotope investigations of the produced may contribute to the understanding of sphalerite oxidation mechanisms so helping to interpret field data from AMD sites. Therefore, batch oxidation experiments with an Fe-rich sphalerite were performed under aerobic abiotic conditions at different initial pH values (2 and 6) for different lengths of time (2–100 days). The O and S isotope composition of the produced indicated changing oxidation pathways during the experiments. During the first 20 days of the experiments at both initial pH values, molecular O2 was the exclusive O source of . Furthermore, the lack of S isotope enrichment processes between and sphalerite indicated that O2 was the electron acceptor from sphalerite S. As the oxidation proceeded, a sufficient amount of released Fe(II) was oxidized to Fe(III) by O2. Therefore, electrons could be transferred from sphalerite S sites to adsorbed hydrous Fe(III) and O from the hydration sphere of Fe was incorporated into the produced as indicated by decreasing δ18OSO4 values which became more similar to the δ18OH2O values. The enrichment of 32S in relative to the sphalerite may also result from sphalerite oxidation by Fe(III).The incorporation of O2 into during the oxidation of sphalerite was associated with an O isotope enrichment factor εSO4–O2 of ca. −22‰. The O isotope enrichment factor εSO4–H2O was determined to be ?4.1‰. A comparison with O and S studies of other sulfides suggests that there is no general oxidation mechanism for acid-soluble sulfides.  相似文献   

15.
The effect of sulfur dissolved as sulfide (S2−) in silicate melts on the activity coefficients of NiO and some other oxides of divalent cations (Ca, Cr, Mn, Fe and Co) has been determined from olivine/melt partitioning experiments at 1400 °C in six melt compositions in the system CaO-MgO-Al2O3-SiO2 (CMAS), and in derivatives of these compositions at 1370 °C, obtained from the six CMAS compositions by substituting Fe for Mg (FeCMAS). Amounts of S2− were varied from zero to sulfide saturation, reaching 4100 μg g−1 S in the most sulfur-rich silicate melt. The sulfide solubilities compare reasonably well with those predicted from the parameterization of the sulfide capacity of silicate melts at 1400 °C of O’Neill and Mavrogenes (2002), although in detail systematic deviations indicate that a more sophisticated model may improve the prediction of sulfide capacities.The results show a barely discernible effect of S2− in the silicate melt on Fe, Co and Ni partition coefficients, and also surprisingly, a tiny but resolvable effect on Ca partitioning, but no detectable effect on Cr, Mn or some other lithophile incompatible elements (Sc, Ti, V, Y, Zr and Hf). Decreasing Mg# of olivine (reflecting increasing FeO in the system) has a significant influence on the partitioning of several of the divalent cations, particularly Ca and Ni. We find a remarkably systematic correlation between and the ionic radius of M2+, where M = Ca, Cr, Mn, Fe, Co or Ni, which is attributable to a simple relationship between size mismatch and excess free energies of mixing in Mg-rich olivine solid solutions.Neither the effect of S2− nor of Mg#ol is large enough by an order of magnitude to account for the reported variations of obtained from electron microprobe analyses of olivine/glass pairs from mid-ocean ridge basalts (MORBs). Comparing these MORB glass analyses with the Ni-MgO systematics of MORB from other studies in the literature, which were obtained using a variety of analytical techniques, shows that these electron microprobe analyses are anomalous. We suggest that the reported variation of with S content in MORB is an analytical artifact.Mass balance of melt and olivine compositions with the starting compositions shows that dissolved S2− depresses the olivine liquidus of haplobasaltic silicate melts by 5.8 × 10−3 (±1.3 × 10−3) K per μg g−1 of S2−, which is negligible in most contexts. We also present data for the partitioning of some incompatible trace elements (Sc, Ti, Y, Zr and Hf) between olivine and melt. The data for Sc and Y confirm previous results showing that and decrease with increasing SiO2 content of the melt. Values of average 0.01 with most falling in the range 0.005-0.015. Zr and Hf are considerably more incompatible than Ti in olivine, with and about 10−3. The ratio / is well constrained at 0.611 ± 0.016.  相似文献   

16.
We performed a series of synthesis experiments at 1 atm pressure to investigate the substitution mechanisms of 1+ and 3+ ions into olivine. Forsterite crystals were grown from bulk compositions that contained the element of interest (e.g. Li) and different amounts of additional single trace elements. By working at constant (major element) liquid composition and temperature we eliminated all compositional effects other than those due to the trace elements. Mineral-melt pairs were then analysed to determine the compositional-dependence of the partition coefficient (D), which corresponds to , and where [element] refers to weight concentration of the element in the respective phase.We find that Li forms a stable coupled substitution with Sc and, at above ∼500 ppm Sc in the crystal, Li+ and Sc3+ ions form an ordered neutral complex ([LiSc]). This complex dissociates at lower trace element concentrations and a second, concentration-independent, mechanism begins to dominate. This second solution mechanism is most likely 2Li+ ⇔ Mg2+ where one of the Li atoms is in an interstitial position in the crystal lattice. Natural olivines show Li contents slightly greater than Sc (on an atomic basis), indicating that both substitution mechanisms are significant. Unlike Sc, Al does not appear to form a stable complex with Li in the olivine structure.Sodium is highly incompatible in olivine with of ∼0.00015-0.03. Olivine-liquid partitioning of Na+ is independent of Sc3+ or Al3+ concentration. This indicates that the coupled substitution of Na+ with any 3+ ions is unlikely. Instead, the relevant substitution mechanism appears to be 2Na+ ⇔ Mg2+. Although independent of 3+ ion concentration, is inversely correlated with the Li concentration of both melts and crystals, implying that Na competes (unsuccessfully) with Li to replace Mg in the olivine structure.Aluminium is highly incompatible in forsterite . Values of are similar for all phase pairs synthesised from starting materials containing between 10 and 100,000 ppm Al. This suggests that Al is principally incorporated in forsterite by replacing one Mg and one Si atom , where the Al atoms on octahedral (Mg) and tetrahedral (Si) sites are dissociated from one another.The incorporation of gallium into forsterite is influenced by the presence of Li. Where Li concentration in the crystal is much greater than that of Ga (on an atomic basis) we find an excellent correlation between and melt Li content. This relationship indicates that Ga3+ and Li+ replace 2Mg2+ on octahedral sites and that the Ga and Li atoms are, like Sc and Li, strongly associated in the crystal structure.The mechanism by which scandium is incorporated into forsterite is strongly governed by the presence Li. As discussed above, ordered complexes form readily in forsterite in Li-rich experiments. Under Li-absent but Sc-rich conditions (Sc in the crystal >∼500 ppm), is proportional to the concentration of Sc in the melt. This indicates that Sc incorporation is charge-balanced by the formation of magnesium vacancies , and that both species are associated . At lower Sc concentrations (<500 ppm in the crystal), the concentration-dependence of partitioning indicates that the complexes dissociate.Our results demonstrate that partitioning of 1+ and 3+ ions into olivine is complex and involves a range of point defects which yield strongly composition-dependent crystal-melt partition coefficients. Since physical and chemical properties of natural olivine, such as diffusion of 6Li and 7Li and H2O solubility, depend on the concentrations of the defects identified in this study, our results provide an important insight into how determining substitution mechanisms can improve our understanding of large-scale mantle processes and properties.  相似文献   

17.
Ammonium fixed in micas of metamorphic rocks is a sensitive indicator both of organic-inorganic interactions during diagenesis as well as of the devolatilization history and fluid/rock interaction during metamorphism. In this study, a collection of geochemically well-characterized biotite separates from a series of graphite-bearing Paleozoic greenschist- to upper amphibolite-facies metapelites, western Maine, USA, were analyzed for ammonium nitrogen () contents and isotopic composition (δ15NNH4) using the HF-digestion distillation technique followed by the EA-IRMS technique. Biotite separates, sampled from 9 individual metamorphic zones, contain 3000 to 100 ppm with a wide range in δ15N from +1.6‰ to +9.1‰. Average contents in biotite show a distinct decrease from about 2750 ppm for the lowest metamorphic grade (∼500 °C) down to 218 ppm for the highest metamorphic grade (∼685 °C). Decreasing abundances in are inversely correlated in a linear fashion with increasing K+ in biotite as a function of metamorphic grade and are interpreted as a devolatilization effect. Despite expected increasing δ15NNH4 values in biotite with nitrogen loss, a significant decrease from the Garnet Zones to the Staurolite Zones was found, followed by an increase to the Sillimanite Zones. This pattern for δ15NNH4 values in biotite inversely correlates with Mg/(Mg + Fe) ratios in biotite and is discussed in the framework of isotopic fractionation due to different exchange processes between or , reflecting devolatilization history and redox conditions during metamorphism.  相似文献   

18.
Chloride complexation of Cu+ controls the solubility of copper(I) oxide and sulfide ore minerals in hydrothermal and diagenetic fluids. Solubility measurements and optical spectra of high temperature CuCl solutions have been interpreted as indicating the formation of CuCl, , and complexes. However, no other monovalent cation forms tri- and tetrachloro complexes. EXAFS spectra of high temperature Cu-Cl solutions, moreover, appear to show only CuCl and complexes at T > 100 °C. To reconcile these results, I investigated the nature and stability of Cu-Cl complexes using ab initio cluster calculations and ab initio (Car-Parrinello) molecular dynamics simulations for CuCl-NaCl-H2O systems at 25 to 450 °C. Ab initio molecular dynamic simulations of 1 m CuCl in a 4 m Cl solution give a stable complex at 25 °C over 4 ps but show that the third Cl is weakly bound. When the temperature is increased along the liquid-vapour saturation curve to 125 °C, the complex dissociates into and Cl; only forms at 325 °C and 1 kbar. Even in a 15.6 m Cl brine at 450 °C, only the complex forms over a 4 ps simulation run.Cluster calculations with a static dielectric continuum solvation field (COSMO) were used in an attempt directly estimate free energies of complex formation in aqueous solution. Consistent with the MD simulations, the complex is slightly stable at 25 °C but decreases in stability with decreasing dielectric constant (ε). The complex is predicted to be unstable at 25 °C and becomes increasingly unstable with decreasing dielectric constant. In hydrothermal fluids (ε < 30) both the and complexes are unstable to dissociation into and Cl.The results obtained here are at odds with recent equations of state that predict and complexes are the predominant species in hydrothermal brines. In contrast, I predict that only complexes will be significant at T > 125 °C, even in NaCl-saturated brines. The high-temperature (T > 125 °C) optical spectra of CuCl solutions and solubility measurements of Cu minerals in Cl-brines need to be reinterpreted in terms of only the CuCl and complexes.  相似文献   

19.
20.
Several studies have shown that there is a strong relationship between the distribution of crenarchaeotal isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) and sea surface temperature (SST). Based on this, a ratio of certain GDGTs, called TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms), was developed as a SST proxy. In this study, we determined the distribution of crenarchaeotal isoprenoid GDGTs in 116 core-top sediments mostly from (sub)polar oceans and combined these data with previously published core-top data. Using this extended global core-top dataset (n = 426), we re-assessed the relationship of crenarchaeal isoprenoid GDGTs with SST. We excluded data from the Red Sea from the global core-top dataset to define new indices and calibration models, as the Red Sea with its elevated salinity appeared to behave differently compared to other parts of the oceans. We tested our new indices and calibration models on three different paleo datasets, representing different temperature ranges. Our results indicate that the crenarchaeol regio-isomer plays a more important role for temperature adaptation in (sub)tropical oceans than in (sub)polar oceans, suggesting that there may be differences in membrane adaptation of the resident crenarchaeotal communities at different temperatures. We, therefore, suggest to apply two different calibration models. For the whole calibration temperature range (−3 to 30 °C), a modified version of TEX86 with a logarithmic function which does not include the crenarchaeol regio-isomer, called , is shown to correlate best with SST: (r= 0.86, n=396, p <0.0001). Application of on sediments from the subpolar Southern Ocean results in realistic absolute SST estimates and a similar SST trend compared to a diatom SST record from the same core. , which is defined as the logarithmic function of TEX86, yields the best correlation with SST, when the data from the (sub)polar oceans are removed: (r= 00.87, n = 255, p < 0.0001). Furthermore, gives the best correlation for mescosm data with temperatures ranging between 10 and 46 °C. For Quaternary sediments from the tropical Arabian Sea, both and yield similar trends and SST estimates. However, the extrapolation of calibration on a sediment record from a greenhouse world ocean predicts more reliable absolute SST estimates and relative SST changes in agreement with estimates based on the δ18O of planktonic foraminifera. Based on the comparison of and derived SSTs using the core top data, we recommend applying above 15 °C and below 15 °C. In cases where paleorecords encompass temperatures both below and above 15 °C, we suggest to use .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号