首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron (hydr)oxides not only serve as potent sorbents and repositories for nutrients and contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and the subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe as well as associated metals. Here we elucidate the pathways and mechanisms of secondary mineralization during dissimilatory iron reduction by a common iron-reducing bacterium, Shewanella putrefaciens (strain CN32), of 2-line ferrihydrite under advective flow conditions. Secondary mineralization of ferrihydrite occurs via a coupled, biotic-abiotic pathway primarily resulting in the production of magnetite and goethite with minor amounts of green rust. Operating mineralization pathways are driven by competing abiotic reactions of bacterially generated ferrous iron with the ferrihydrite surface. Subsequent to the initial sorption of ferrous iron on ferrihydrite, goethite (via dissolution/reprecipitation) and/or magnetite (via solid-state conversion) precipitation ensues resulting in the spatial coupling of both goethite and magnetite with the ferrihydrite surface. The distribution of goethite and magnetite within the column is dictated, in large part, by flow-induced ferrous Fe profiles. While goethite precipitation occurs over a large Fe(II) concentration range, magnetite accumulation is only observed at concentrations exceeding 0.3 mmol/L (equivalent to 0.5 mmol Fe[II]/g ferrihydrite) following 16 d of reaction. Consequently, transport-regulated ferrous Fe profiles result in a progression of magnetite levels downgradient within the column. Declining microbial reduction over time results in lower Fe(II) concentrations and a subsequent shift in magnetite precipitation mechanisms from nucleation to crystal growth. While the initial precipitation rate of goethite exceeds that of magnetite, continued growth is inhibited by magnetite formation, potentially a result of lower Fe(III) activity. Conversely, the presence of lower initial Fe(II) concentrations followed by higher concentrations promotes goethite accumulation and inhibits magnetite precipitation even when Fe(II) concentrations later increase, thus revealing the importance of both the rate of Fe(II) generation and flow-induced Fe(II) profiles. As such, the operating secondary mineralization pathways following reductive dissolution of ferrihydrite at a given pH are governed principally by flow-regulated Fe(II) concentration, which drives mineral precipitation kinetics and selection of competing mineral pathways.  相似文献   

2.
Due to the strong reducing capacity of ferrous Fe, the fate of Fe(II) following dissimilatory iron reduction will have a profound bearing on biogeochemical cycles. We have previously observed the rapid and near complete conversion of 2-line ferrihydrite to goethite (minor phase) and magnetite (major phase) under advective flow in an organic carbon-rich artificial groundwater medium. Yet, in many mineralogically mature environments, well-ordered iron (hydr)oxide phases dominate and may therefore control the extent and rate of Fe(III) reduction. Accordingly, here we compare the reducing capacity and Fe(II) sequestration mechanisms of goethite and hematite to 2-line ferrihydrite under advective flow within a medium mimicking that of natural groundwater supplemented with organic carbon. Introduction of dissolved organic carbon upon flow initiation results in the onset of dissimilatory iron reduction of all three Fe phases (2-line ferrihydrite, goethite, and hematite). While the initial surface area normalized rates are similar (∼10−11 mol Fe(II) m−2 g−1), the total amount of Fe(III) reduced over time along with the mechanisms and extent of Fe(II) sequestration differ among the three iron (hydr)oxide substrates. Following 16 d of reaction, the amount of Fe(III) reduced within the ferrihydrite, goethite, and hematite columns is 25, 5, and 1%, respectively. While 83% of the Fe(II) produced in the ferrihydrite system is retained within the solid-phase, merely 17% is retained within both the goethite and hematite columns. Magnetite precipitation is responsible for the majority of Fe(II) sequestration within ferrihydrite, yet magnetite was not detected in either the goethite or hematite systems. Instead, Fe(II) may be sequestered as localized spinel-like (magnetite) domains within surface hydrated layers (ca. 1 nm thick) on goethite and hematite or by electron delocalization within the bulk phase. The decreased solubility of goethite and hematite relative to ferrihydrite, resulting in lower Fe(III)aq and bacterially-generated Fe(II)aq concentrations, may hinder magnetite precipitation beyond mere surface reorganization into nanometer-sized, spinel-like domains. Nevertheless, following an initial, more rapid reduction period, the three Fe (hydr)oxides support similar aqueous ferrous iron concentrations, bacterial populations, and microbial Fe(III) reduction rates. A decline in microbial reduction rates and further Fe(II) retention in the solid-phase correlates with the initial degree of phase disorder (high energy sites). As such, sustained microbial reduction of 2-line ferrihydrite, goethite, and hematite appears to be controlled, in large part, by changes in surface reactivity (energy), which is influenced by microbial reduction and secondary Fe(II) sequestration processes regardless of structural order (crystallinity) and surface area.  相似文献   

3.
Reduction of As(V) and reductive dissolution and transformation of Fe (hydr)oxides are two dominant processes controlling As retention in soils and sediments. When developed within soils and sediments, Fe (hydr)oxides typically contain various impurities—Al being one of the most prominent—but little is known about how structural Al within Fe (hydr)oxides alters its biotransformation and subsequent As retention. Using a combination of batch and advective flow column studies with Fe(II) and Shewanella sp. ANA-3, we examined (1) the extent to which structural Al influences reductive dissolution and transformations of ferrihydrite, a highly reactive Fe hydroxide, and (2) the impact of adsorbed As on dissolution and transformation of (Al-substituted) ferrihydrite and subsequent As retention. Structural Al diminishes the extent of ferrihydrite reductive transformation; nearly three-orders of magnitude greater concentration of Fe(II) is required to induce Al-ferrihydrite transformation compared to pure two-line ferrihydrite. Structural Al decreases Fe(II) retention/incorporation on/into ferrihydrite and impedes Fe(II)-catalyzed transformation of ferrihydrite. Moreover, owing to cessation of Fe(II)-induced transformation to secondary products, Al-ferrihydrite dissolves (incongruently) to a greater extent compared to pure ferrihydrite during reaction with Shewanella sp. ANA-3. Additionally, adsorption of As(V) to Al-ferrihydrite completely arrests Fe(II)-catalyzed transformation of ferrihydrite, and it diminishes the difference in the rate and extent of ferrihydrite and Al-ferrihydrite reduction by Shewanella sp. ANA-3. Our study further shows that reductive dissolution of Al-ferrihydrite results in enrichment of Al sites, and As(V) reduction accelerates As release due to the low affinity of As(III) on these non-ferric sites.  相似文献   

4.
Aluminum, one of the most abundant elements in soils and sediments, is commonly found co-precipitated with Fe in natural Fe(III) (hydr)oxides; yet, little is known about how Al substitution impacts bacterial Fe(III) reduction. Accordingly, we investigated the reduction of Al substituted (0-13 mol% Al) goethite, lepidocrocite, and ferrihydrite by the model dissimilatory Fe(III)-reducing bacterium (DIRB), Shewanella putrefaciens CN32. Here we reveal that the impact of Al on microbial reduction varies with Fe(III) (hydr)oxide type. No significant difference in Fe(III) reduction was observed for either goethite or lepidocrocite as a function of Al substitution. In contrast, Fe(III) reduction rates significantly decreased with increasing Al substitution of ferrihydrite, with reduction rates of 13% Al-ferrihydrite more than 50% lower than pure ferrihydrite. Although Al substitution changed the minerals’ surface area, particle size, structural disorder, and abiotic dissolution rates, we did not observe a direct correlation between any of these physiochemical properties and the trends in bacterial Fe(III) reduction. Based on projected Al-dependent Fe(III) reduction rates, reduction rates of ferrihydrite fall below those of lepidocrocite and goethite at substitution levels equal to or greater than 18 mol% Al. Given the prevalence of Al substitution in natural Fe(III) (hydr)oxides, our results bring into question the conventional assumptions about Fe (hydr)oxide bioavailability and suggest a more prominent role of natural lepidocrocite and goethite phases in impacting DIRB activity in soils and sediments.  相似文献   

5.
Iron (hydr)oxides are ubiquitous in soils and sediments and play a dominant role in the geochemistry of surface and subsurface environments. Their fate depends on local environmental conditions, which in structured soils may vary significantly over short distances due to mass-transfer limitations on solute delivery and metabolite removal. In the present study, artificial soil aggregates were used to investigate the coupling of physical and biogeochemical processes affecting the spatial distribution of iron (Fe) phases resulting from reductive transformation of ferrihydrite. Spherical aggregates made of ferrihydrite-coated sand were inoculated with the dissimilatory Fe-reducing bacterium Shewanella putrefaciens strain CN-32, and placed into a flow reactor, the reaction cell simulates a diffusion-dominated soil aggregate surrounded by an advective flow domain. The spatial and temporal evolution of secondary mineralization products resulting from dissimilatory Fe reduction of ferrihydrite were followed within the aggregates in response to a range of flow rates and lactate concentrations. Strong radial variations in the distribution of secondary phases were observed owing to diffusively controlled delivery of lactate and efflux of Fe(II) and bicarbonate. In the aggregate cortex, only limited formation of secondary Fe phases were observed over 30 d of reaction, despite high rates of ferrihydrite reduction. Under all flow conditions tested, ferrihydrite transformation was limited in the cortex (70-85 mol.% Fe remained as ferrihydrite) because metabolites such as Fe(II) and bicarbonate were efficiently removed in outflow solutes. In contrast, within the inner fractions of the aggregate, limited mass-transfer results in metabolite (Fe(II) and bicarbonate) build-up and the consummate transformation of ferrihydrite - only 15-40 mol.% Fe remained as ferrihydrite after 30 d of reaction. Goethite/lepidocrocite, and minor amounts of magnetite, formed in the aggregate mid-section and interior at low lactate concentration (0.3 mM) after 30 d of reaction. Under high lactate (3 mM) concentration, magnetite was observed only as a transitory phase, and rather goethite/lepidocrocite and siderite were the dominant secondary mineralization products. Our results illustrate the importance of slow diffusive transport of both electron donor and metabolites concentrations and concomitant biogeochemical reactions within soils and sediments, giving rise to heterogeneous products over small spatial (μm) scale.  相似文献   

6.
Bioreduced anthraquinone-2,6-disulfonate (AH2DS; dihydro-anthraquinone) was reacted with a 2-line, Si-substituted ferrihydrite under anoxic conditions at neutral pH in PIPES buffer. Phosphate (P) and bicarbonate (C); common adsorptive oxyanions and media/buffer components known to effect ferrihydrite mineralization; and Fe(II)aq (as a catalytic mineralization agent) were used in comparative experiments. Heterogeneous AH2DS oxidation coupled with Fe(III) reduction occurred within 0.13-1 day, with mineralogic transformation occurring thereafter. The product suite included lepidocrocite, goethite, and/or magnetite, with proportions varing with reductant:oxidant ratio (r:o) and the presence of P or C. Lepidocrocite was the primary product at low r:o in the absence of P or C, with evidence for multiple formation pathways. Phosphate inhibited reductive recrystallization, while C promoted goethite formation. Stoichiometric magnetite was the sole product at higher r:o in the absence and presence of P. Lepidocrocite was the primary mineralization product in the Fe(II)aq system, with magnetite observed at near equal amounts when Fe(II) was high [Fe(II)/Fe(III)] = 0.5 and P was absent. P had a greater effect on reductive mineralization in the Fe(II)aq system, while AQDS was more effective than Fe(II)aq in promoting magnetite formation. The mineral products of the direct AH2DS-driven reductive reaction are different from those observed in AH2DS-ferrihydite systems with metal reducing bacteria, particularly in presence of P.  相似文献   

7.
The reductive biotransformation of 6-line ferrihydrite located within porous silica (intragrain ferrihydrite) by Shewanella oneidensis MR-1 was investigated and compared to the behavior of 6-line ferrihydrite in suspension (free ferrihydrite). The effect of buffer type (PIPES and NaHCO3), phosphate (P), and an electron shuttle (AQDS) on the extent of reduction and formation of Fe(II) secondary phases was investigated under anoxic conditions. Electron microscopy and micro X-ray diffraction were applied to evaluate the morphology and mineralogy of the biogenic precipitates and to study the distribution of microorganisms on the surface of porous silica after bioreduction. Kinetic reduction experiments with free and intragrain ferrihydrite revealed contrasting behavior with respect to the buffer and presence of P. The overall amount of intragrain ferrihydrite reduction was less than that of free ferrihydrite [at 5 mmol L−1 Fe(III)T]. Reductive mineralization was not observed in the intragrain ferrihydrite incubations without P, and all biogenic Fe(II) concentrated in the aqueous phase. Irrespective of buffer and AQDS addition, rosettes of Fe(II) phosphate of approximate 20-30 μm size were observed on porous silica when P was present. The rosettes grew not only on the silica surface but also within it, forming a coherent spherical structure. These precipitates were well colonized by microorganisms and contained extracellular materials at the end of incubation. Microbial extracellular polymeric substances may have adsorbed Fe(II) promoting Fe(II) phosphate nucleation with subsequent crystal growth proceeding in different directions from a common center.  相似文献   

8.
Mining and metallurgical processing of gold and base metal ores can lead to the release of arsenic into the aqueous environment as a result of the weathering and leaching of As-bearing minerals during processing and following disposal. Arsenic in process solutions and mine drainage can be effectively stabilized through the precipitation of ferrihydrite. However, under anaerobic conditions imposed by burial and waste cover systems, ferrihydrite is susceptible to microbial reduction. This research, stimulated by the paucity of information and limited understanding of the microbial reduction of arsenical ferrihydrite, was conducted on synthetic adsorbed and co-precipitated arsenical 6-line ferrihydrite (Fe/As molar ratio of 10/1) using Shewanella sp. ANA-3 and Shewanella putrefaciens CN32 in a chemically defined medium containing 0.045 mM phosphate concentration. Both bacteria were equally effective in their reducing abilities around pH 7, resulting in initial rates of formation of dissolved As(III) of 0.10 μM/h for the adsorbed, and 0.08 μM/h for the co-precipitated arsenical 6-line ferrihydrite samples. The solid phases in the post-reduction samples were characterized by powder X-ray diffraction (XRD), micro-XRD, scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron microprobe and X-ray absorption spectroscopy (XAS) techniques. The results indicate the formation of secondary phases such as a biogenic Fe(II)–As(III) compound, akaganeite, goethite, hematite and possibly magnetite during bacterial reduction experiments. Holes and bacterial imprints measuring about 1–2 μm were observed on the surfaces of the secondary phases formed after 1200 h of reduction. This study demonstrates the influence of Fe and As reducing bacteria on the release of significant concentrations of more mobile and toxic As(III) species from arsenical 6-line ferrihydrite, more readily from the adsorbed than from the co-precipitated ferrihydrite.  相似文献   

9.
Iron (hydr)oxides are common in natural environments and typically contain large amounts of impurities, presumably the result of coprecipitation processes. Coprecipitation of Al with Fe (hydr)oxides occurs, for example, during alternating reduction-oxidation cycles that promote dissolution of Fe from Fe-containing phases and its re-precipitation as Fe-Al (hydr)oxides. We used chemical and spectroscopic analyses to study the formation and transformation of Al coprecipitates with Fe (hydr)oxides. In addition, periodic density functional theory (DFT) computations were performed to assess the structural and energetic effects of isolated or clustered Al atoms at 8 and 25 mol% Al substitution in the goethite structure. Coprecipitates were synthesized by raising the pH of dilute homogeneous solutions containing a range of Fe and Al concentrations (100% Fe to 100% Al) to 5. The formation of ferrihydrite in initial suspensions with ?20 mol% Al, and of ferrihydrite and gibbsite in initial suspensions with ?25 mol% Al was confirmed by infrared spectroscopic and synchrotron-based X-ray diffraction analyses. While base titrations showed a buffer region that corresponded to the hydrolysis of Fe in initial solutions with ?25 mol% Al, all of the Al present in these solutions was retained by the solid phases at pH 5, thus indicating Al coprecipitation with the primary Fe hydroxide precipitate. In contrast, two buffer regions were observed in solutions with ?30 mol% Al (at pH ∼2.25 for Fe3+ and at pH ∼4 for Al3+), suggesting the formation of Fe and Al (hydr)oxides as two separate phases. The Al content of initial coprecipitates influenced the extent of ferrihydrite transformation and of its transformation products as indicated by the presence of goethite, hematite and/or ferrihydrite in aged suspensions. DFT experiments showed that: (i) optimized unit cell parameters for Al-substituted goethites (8 and 25 mol% Al) in clustered arrangement (i.e., the formation of diaspore-like clusters) were in good agreement with available experimental data whereas optimized unit cell parameters for isolated Al atoms were not, and (ii) Al-substituted goethites with Al in diaspore-like clusters resulted in more energetically favored structures. Combined experimental and DFT results are consistent with the coprecipitation of Al with Fe (hydr)oxides and with the formation of diaspore-like clusters, whereas DFT results suggest isomorphous Al for Fe substitution within goethite is unlikely at ?8 mol% Al substitution.  相似文献   

10.
The Fe(II) adsorption by non-ferric and ferric (hydr)oxides has been analyzed with surface complexation modeling. The CD model has been used to derive the interfacial distribution of charge. The fitted CD coefficients have been linked to the mechanism of adsorption. The Fe(II) adsorption is discussed for TiO2, γ-AlOOH (boehmite), γ-FeOOH (lepidocrocite), α-FeOOH (goethite) and HFO (ferrihydrite) in relation to the surface structure and surface sites. One type of surface complex is formed at TiO2 and γ-AlOOH, i.e. a surface-coordinated Fe2+ ion. At the TiO2 (Degussa) surface, the Fe2+ ion is probably bound as a quattro-dentate surface complex. The CD value of Fe2+ adsorbed to γ-AlOOH points to the formation of a tridentate complex, which might be a double edge surface complex. The adsorption of Fe(II) to ferric (hydr)oxides differs. The charge distribution points to the transfer of electron charge from the adsorbed Fe(II) to the solid and the subsequent hydrolysis of the ligands that coordinate to the adsorbed ion, formerly present as Fe(II). Analysis shows that the hydrolysis corresponds to the hydrolysis of adsorbed Al(III) for γ-FeOOH and α-FeOOH. In both cases, an adsorbed M(III) is found in agreement with structural considerations. For lepidocrocite, the experimental data point to a process with a complete surface oxidation while for goethite and also HFO, data can be explained assuming a combination of Fe(II) adsorption with and without electron transfer. Surface oxidation (electron transfer), leading to adsorbed Fe(III)(OH)2, is favored at high pH (pH > ∼7.5) promoting the deprotonation of two FeIII-OH2 ligands. For goethite, the interaction of Fe(II) with As(III) and vice versa has been modeled too. To explain Fe(II)-As(III) dual-sorbate systems, formation of a ternary type of surface complex is included, which is supposed to be a monodentate As(III) surface complex that interacts with an Fe(II) ion, resulting in a binuclear bidentate As(III) surface complex.  相似文献   

11.
Schwertmannite stability in acidified coastal environments   总被引:1,自引:0,他引:1  
A combination of analytical and field measurements has been used to probe the speciation and cycling of iron in coastal lowland acid sulfate soils. Iron K-edge EXAFS spectroscopy demonstrated that schwertmannite dominated (43-77%) secondary iron mineralization throughout the oxidized and acidified soil profile, while pyrite and illite were the major iron-bearing minerals in the reduced potential acid sulfate soil layers. Analyses of contemporary precipitates from shallow acid sulfate soil groundwaters indicated that 2-line ferrihydrite, in addition to schwertmannite, is presently controlling secondary Fe(III) mineralization. Although aqueous pH values and concentrations of Fe(II) were seasonally high, no evidence was obtained for the Fe(II)-catalyzed crystallization of either mineral to goethite. The results of this study indicate that: (a) schwertmannite is likely to persist in coastal lowland acid sulfate soils on a much longer time-scale than predicted by laboratory experiments; (b) this mineral is less reactive in these types of soils due to surface-site coverage by components such as silicate and possibly, to a lesser extent, natural organic matter and phosphate and; (c) active water table management to promote oxic/anoxic cycles around the Fe(II)-Fe(III) redox couple, or reflooding of these soils, will be ineffective in promoting the Fe(II)-catalyzed transformation of either schwertmannite or 2-line ferrihydrite to crystalline iron oxyhydroxides.  相似文献   

12.
The behaviour of trace amounts of arsenate coprecipitated with ferrihydrite, lepidocrocite and goethite was studied during reductive dissolution and phase transformation of the iron oxides using [55Fe]- and [73As]-labelled iron oxides. The As/Fe molar ratio ranged from 0 to 0.005 for ferrihydrite and lepidocrocite and from 0 to 0.001 for goethite. For ferrihydrite and lepidocrocite, all the arsenate remained associated with the surface, whereas for goethite only 30% of the arsenate was desorbable. The rate of reductive dissolution in 10 mM ascorbic acid was unaffected by the presence of arsenate for any of the iron oxides and the arsenate was not reduced to arsenite by ascorbic acid. During reductive dissolution of the iron oxides, arsenate was released incongruently with Fe2+ for all the iron oxides. For ferrihydrite and goethite, the arsenate remained adsorbed to the surface and was not released until the surface area became too small to adsorb all the arsenate. In contrast, arsenate preferentially desorbs from the surface of lepidocrocite. During Fe2+ catalysed transformation of ferrihydrite and lepidocrocite, arsenate became bound more strongly to the product phases. X-ray diffractograms showed that ferrihydrite was transformed into lepidocrocite, goethite and magnetite whereas lepidocrocite either remained untransformed or was transformed into magnetite. The rate of recrystallization of ferrihydrite was not affected by the presence of arsenate. The results presented here imply that during reductive dissolution of iron oxides in natural sediments there will be no simple correlation between the release of arsenate and Fe2+. Recrystallization of the more reactive iron oxides into more crystalline phases, induced by the appearance of Fe2+ in anoxic aquifers, may be an important trapping mechanism for arsenic.  相似文献   

13.
Amorphous ferric iron species (ferrihydrite or akaganeite of <5 nm in size) is the only known solid ferric iron oxide that can be reductively transformed by dissimilatory iron-reducing bacteria to magnetite completely. The lepidocrocite crystallite can be transformed into magnetite in the presence of abiotic Fe(II) at elevated pH or biogenic Fe(II) with particular growth conditions. The reduction of lepidocrocite by dissimilatory iron-reducing bacteria has been widely investigated showing varying results. Vali et al. (Proc Natl Acad Sci USA 101:16121–16126, 2004) captured a unique biologically mediated mineralization pathway where the amorphous hydrous ferric oxide transformed to lepidocrocite was followed by the complete reduction of lepidocrocite to single-domain magnetite. Here, we report the 57Fe Mössbauer hyperfine parameters of the time-course samples reported in Vali et al. (Proc Natl Acad Sci USA 101:16121–16126, 2004). Both the quadrupole splittings and linewidths of Fe(III) ions decrease consistently with the change of aqueous Fe(II) and transformations of mineral phases, showing the Fe(II)-mediated gradual regulation of the distorted coordination polyhedrons of Fe3+ during the biomineralization process. The aqueous Fe(II) catalyzes the transformations of Fe(III) minerals but does not enter the mineral structures until the mineralization of magnetite. The simulated abiotic reaction between Fe(II) and lepidocrocite in pH-buffered, anaerobic media shows the simultaneous formation of green rust and its gradual transformation to magnetite plus a small fraction of goethite. We suggested that the dynamics of Fe(II) supply is a critical factor for the mineral transformation in the dissimilatory iron-reducing cultures.  相似文献   

14.
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II)(aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III)(s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.  相似文献   

15.
We measured the Fe isotope fractionation during the reactions of Fe(II) with goethite in the presence and absence of a strong Fe(III) chelator (desferrioxamine mesylate, DFAM). All experiments were completed in an O2-free glove box. The concentrations of aqueous Fe(II) ([Fe(II)aq]) decreased below the initial total dissolved Fe concentrations ([Fe(II)total], 2.15 mM) due to fast adsorption within 0.2 day. The concentration of adsorbed Fe(II) ([Fe(II)ads]) was determined as the difference between [Fe(II)aq] and the concentration of extracted Fe(II) in 0.5 M HCl ([Fe(II)extr]) (i.e., [Fe(II)ads] = [Fe(II)extr] − [Fe(II)aq]). [Fe(II)ads] also decreased with time in experiments with and without DFAM, documenting that fast adsorption was accompanied by a second, slower reaction. Interestingly, [Fe(II)extr] was always smaller than [Fe(II)total], indicating that some Fe(II) was sequestered into a pool that is not HCl-extractable. The difference was attributed to Fe(II) incorporated into goethite structure (i.e., [Fe(II)inc] = [Fe(II)total] −[Fe(II)extr]). More Fe(II) was incorporated in the presence of DFAM than in its absence at all time steps. Regardless of the presence of DFAM, both aqueous and extracted Fe(II) (δ56/54Fe(II)aq and δ56/54Fe(II)extr) became isotopically lighter than or similar to goethite (− 0.27‰) at day 7, implying that the isotope exchange occurred between bulk goethite and aqueous Fe. Consistently, the mass balance indicated that the incorporated Fe is isotopically heavier than extracted Fe. These observations suggested that (i) co-adsorption of Fe(II) with DFAM resulted in more pervasive electron transfer, (ii) the electron transfer from heavy Fe(II) in the adsorbed Fe(II) to light Fe(III) in goethite results in the fixation of heavy adsorbed Fe(III) on the surface and accumulation of Fe(II) within the goethite, and (iii) desorption of the reduced, light Fe from goethite does not necessarily occur at the same surface sites where adsorption occurred.  相似文献   

16.
Iron mineral (trans)formation during microbial Fe(III) reduction is of environmental relevance as it can influence the fate of pollutants such as toxic metal ions or hydrocarbons. Magnetite is an important biomineralization product of microbial iron reduction and influences soil magnetic properties that are used for paleoclimate reconstruction and were suggested to assist in the localization of organic and inorganic pollutants. However, it is not well understood how different concentrations of Fe(III) minerals and humic substances (HS) affect magnetite formation during microbial Fe(III) reduction. We therefore used wet-chemical extractions, magnetic susceptibility measurements and X-ray diffraction analyses to determine systematically how (i) different initial ferrihydrite (FH) concentrations and (ii) different concentrations of HS (i.e. the presence of either only adsorbed HS or adsorbed and dissolved HS) affect magnetite formation during FH reduction by Shewanella oneidensis MR-1. In our experiments magnetite formation did not occur at FH concentrations lower than 5 mM, even though rapid iron reduction took place. At higher FH concentrations a minimum fraction of Fe(II) of 25-30% of the total iron present was necessary to initiate magnetite formation. The Fe(II) fraction at which magnetite formation started decreased with increasing FH concentration, which might be due to aggregation of the FH particles reducing the FH surface area at higher FH concentrations. HS concentrations of 215-393 mg HS/g FH slowed down (at partial FH surface coverage with sorbed HS) or even completely inhibited (at complete FH surface coverage with sorbed HS) magnetite formation due to blocking of surface sites by adsorbed HS. These results indicate the requirement of Fe(II) adsorption to, and subsequent interaction with, the FH surface for the transformation of FH into magnetite. Additionally, we found that the microbially formed magnetite was further reduced by strain MR-1 leading to the formation of either dissolved Fe(II), i.e. Fe2+, in HEPES buffered medium or Fe(II) carbonate (siderite) in bicarbonate buffered medium. Besides the different identity of the Fe(II) compound formed at the end of Fe(III) reduction, there was no difference in the maximum rate and extent of microbial iron reduction and magnetite formation during FH reduction in the two buffer systems used. Our findings indicate that microbial magnetite formation during iron reduction depends on the geochemical conditions and can be of minor importance at low FH concentrations or be inhibited by adsorption of HS to the FH surface. Such scenarios could occur in soils with low iron mineral or high organic matter content.  相似文献   

17.
铁(氢)氧化物悬液中磷酸盐的吸附-解吸特性研究   总被引:2,自引:0,他引:2  
铁(氢)氧化物对P的吸持和释放在一定程度上决定着P的生物有效性和水体富营养化。以两种环境中常见晶质铁氧化物(针铁矿和赤铁矿)为对照,采用X射线衍射(XRD)、透射电镜(TEM)、热重分析(TGA)和孔径分析以及动力学和吸附-解吸热力学平衡等技术方法,研究了弱晶质水铁矿对P吸附-解吸特性,并探讨了相关机制。实验表明,三种矿物对P的吸附分为起始的快速反应和随后的慢速反应,它们均符合准一级动力学过程,反应中OH释放明显滞后于P吸附,P吸附经历了从外围到内囤配位、单齿到多齿配位过渡的过程,与晶质氧化铁比,水铁矿吸附容量和OH释放量更大、慢速吸附反应更快、存在缓慢扩散反应阶段,吸附容量依次是:水铁矿(436μmol/m^2)〉针铁矿(262μmol/m^2)〉赤铁矿(228μmol/m^2),针铁矿和赤铁矿吸附P符合L(Langmuir)模型,而水铁矿更符合F(Fremldlictl)模型。中性盐介质(KCl)中在最大吸附量时P的解吸率依次为:水铁矿(85%)〈针铁矿(10%)〈赤铁矿(125%),柠檬酸通过配体解吸和诱导溶解两种机制促进P的解吸,最大吸附量时解吸率依次是:针铁矿(25%)〈水铁矿(32%)〈赤铁矿(50%)。  相似文献   

18.
《Geochimica et cosmochimica acta》1999,63(19-20):3003-3008
Hydroxamate siderophores are biologically-synthesized, Fe(III)-specific ligands which are common in soil environments. In this paper, we report an investigation of their adsorption by the iron oxyhydroxide, goethite; their influence on goethite dissolution kinetics; and their ability to affect Pb(II) adsorption by the goethite surface. The siderophores used were desferrioxamine B (DFO-B), a fungal siderophore, and desferrioxamine D1, an acetyl derivative of DFO-B (DFO-D1). Siderophore adsorption isotherms yielded maximum surface concentrations of 1.5 (DFO-B) or 3.5 (DFO-D1) μmol/g at pH 6.6, whereas adsorption envelopes showed either cation-like (DFO-B) or ligand-like (DFO-D1) behavior. Above pH 8, the adsorbed concentrations of both siderophores were similar. The dissolution rate of goethite in the presence of 240 μM DFO-B or DFO-D1 was 0.02 or 0.17 μmol/g hr, respectively. Comparison of these results with related literature data on the reactions between goethite and acetohydroxamic acid, a monohydroxamate ligand, suggested that the three hydroxamate groups in DFO-D1 coordinate to Fe(III) surface sites relatively independently. The results also demonstrated a significant depleting effect of 240 μM DFO-B or DFO-D1 on Pb(II) adsorption by goethite at pH > 6.5, but there was no effect of adsorbed Pb(II) on the goethite dissolution rate.  相似文献   

19.
Evidence for a simple pathway to maghemite in Earth and Mars soils   总被引:1,自引:0,他引:1  
Soil magnetism is greatly influenced by maghemite (γ-Fe2O3), the presence of which is usually attributed to the following: (1) heating of goethite in the presence of organic matter; (2) oxidation of magnetite (Fe3O4); or (3) dehydroxylation of lepidocrocite (γ-FeOOH). Formation of the latter two minerals in turn requires the presence of Fe(II) in the system. No laboratory experiment or soil study to date has shown whether maghemite can form from ferrihydrite, a poorly crystalline Fe(III) oxide [∼Fe4.5(O,OH,H2O)13.5], below 250°C. However, ferrihydrite is the usual precursor of goethite (α-FeOOH) and hematite (α-Fe2O3), the most frequently occurring crystalline Fe(III) oxides in soils. Here is presented in vitro evidence that ferryhidrite can partly transform into maghemite at 150°C. This transformation occurs upon aging of ferrihydrite precipitated in the presence of phosphate or other ligands capable of ligand exchange with Fe-OH surface groups. This maghemite coexists with hematite and is a transient phase in the transformation of ferrihydrite to hematite, which is apparently stabilized by the adsorbed ligands. Its particle size is small (10 to 30 nm), and its X-ray diffraction pattern exhibits superstructure reflections. The possible formation of maghemite in Mars and in different Earth soils can partly be explained in the light of this pathway with minimal ad hoc assumptions.  相似文献   

20.
The Fe(II)-catalysed transformation of synthetic schwertmannite, ferrihydrite, jarosite and lepidocrocite to more stable, crystalline Fe(III) oxyhydroxides is prevented by high, natural concentrations of Si and natural organic matter (NOM). Adsorption isotherms demonstrate that Si adsorbs to the iron minerals investigated and that increasing amounts of adsorbed Si results in a decrease in isotope exchange between aqueous Fe(II) and the Fe(III) mineral. This suggests that the adsorption of Si inhibits the direct adsorption of Fe(II) onto the mineral surface, providing an explanation for the inhibitory effect of Si on the Fe(II)-catalysed transformation of Fe(III) minerals. During the synthesis of lepidocrocite and ferrihydrite, the presence of equimolar concentrations of Si and Fe resulted in the formation of 2-line ferrihydrite containing co-precipitated Si in both cases. Isotope exchange experiments conducted with this freeze-dried Si co-precipitated ferrihydrite species (Si-ferrihydrite) demonstrated that the rate and extent of isotope exchange between aqueous Fe(II) and solid 55Fe(III) was very similar to that of 2-line ferrihydrite formed in the absence of Si and which had not been allowed to dry. In contrast to un-dried ferrihydrite formed in the absence of Si, Si-ferrihydrite did not transform into a more crystalline Fe(III) mineral phase over the 7-day period of investigation. Reductive dissolution studies using ascorbic acid demonstrated that both dried Si-ferrihydrite and un-dried 2-line ferrihydrite were very reactive, suggesting these species may be major contributors to the rapid release of dissolved iron following flooding and the onset of conditions conducive to reductive dissolution in acid sulphate soil environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号