首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Apollo video photogrammetry estimation of plume impingement effects   总被引:1,自引:0,他引:1  
Future missions to the Moon may require numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the Lander ejects the granular material at high velocities. Much work is needed to understand the physics of plume impingement during landing to protect hardware surrounding the landing sites. While mostly qualitative in nature, the Apollo Lunar Module landing videos can provide a wealth of quantitative information using modern photogrammetry techniques. The authors have used the digitized videos to quantify plume impingement effects of the landing exhaust on the lunar surface. The dust ejection angle from the plume is estimated at 1°-3°. The lofted particle density is estimated at 108-1013 particles/m3. Additionally, evidence for ejection of large 10-15 cm sized objects and a dependence of ejection angle on thrust are presented. Further work is ongoing to continue quantitative analysis of the landing videos.  相似文献   

2.
We report on the detection of H2 as seen in our analysis of twilight observations of the lunar atmosphere observed by the LAMP instrument aboard NASA’s Lunar Reconnaissance Orbiter. Using a large amount of data collected on the lunar atmosphere between September 2009 and March 2013, we have detected and identified, the presence of H2 in the native lunar atmosphere, for the first time. We derive a surface density for H2 of 1.2 ± 0.4 × 103 cm−3 at 120 K. This is about 10 times smaller than originally predicted, and several times smaller than previous upper limits from the Apollo era data.  相似文献   

3.
This is the first review of 3 Apollo experiments, which made the only direct measurements of dust on the lunar surface: (i) minimalist matchbox-sized 270 g Dust Detector Experiments (DDEs) of Apollo 11, 12, 14 and 15, produced 30 million Lunar Day measurements 21 July 1969–30 September, 1977; (ii) Thermal Degradation Samples (TDS) of Apollo 14, sprinkled with dust, photographed, taken back to Earth into quarantine and lost; and (iii) the 7.5 kg Lunar Ejecta and Meteoroids (LEAM) experiment of Apollo 17, whose original tapes and plots are lost. LEAM, designed to measure rare impacts of cosmic dust, registered scores of events each lunation most frequently around sunrise and sunset. LEAM data are accepted as caused by heavily-charged particles of lunar dust at speeds of <100 m/s, stimulating theoretical models of transporting lunar dust and adding significant motivation for returning to the Moon. New analyses here show some raw data are sporadic bursts of 1, 2, 3 or more events within time bubbles smaller than 0.6 s, not predicted by theoretical dust models but consistent with noise bits caused by electromagnetic interference (EMI) from switching of large currents in the Apollo 17 Lunar Surface Experiment Package (ALSEP), as occurred in pre-flight LEAM-acceptance tests. On the Moon switching is most common around sunrise and sunset in a dozen heavy-duty heaters essential for operational survival during 350 h of lunar night temperatures of minus 170 °C. Another four otherwise unexplained features of LEAM data are consistent with the “noise bits” hypothesis. Discoveries with DDE and TDS reported in 1970 and 1971, though overlooked, and extensive DDE discoveries in 2009 revealed strengths of adhesive and cohesive forces of lunar dust. Rocket exhaust gases during Lunar Module (LM) ascent caused dust and debris to (i) contaminate instruments 17 m distant (Apollo 11) as expected, and (ii) unexpectedly cleanse Apollo hardware 130 m (Apollo 12) and 180 m (Apollo 14) from LM. TDS photos uniquely document in situ cohesion of dust particles and their adhesion to 12 different test surfaces. This review finds the entire TDS experiment was contaminated, being inside the aura of outgassing from astronaut Alan Shepard's spacesuit, and applies an unprecedented caveat to all TDS discoveries. Published and further analyses of Apollo DDE, TDS and LEAM measurements can provide evidence-based guidance to theoretical analyses and to management and mitigation of major problems from sticky dust, and thus help optimise future lunar and asteroid missions, manned and robotic.  相似文献   

4.
Lunar soil grain size distribution   总被引:1,自引:0,他引:1  
A comprehensive review has been made of the currently available data for lunar grain size distributions. It has been concluded that there is little or no statistical difference among the large majority of the soil samples from the Apollo 11, 12, 14, and 15 missions. The grain size distribution for these soils has reached a steady state in which the comminution processes are balanced by the aggregation processes. The median particle size for the steady-state soil is 40 to 130 µm. The predictions of lunar grain size distributions based on the Surveyor television photographs have been found to be quantitatively in error and qualitatively misleading.  相似文献   

5.
Lunar position differences between thirteen lunar craters in Mare Serenitatis were computed from VHF radar-imagery obtained by the Lunar Sounder instrument flown on the Apollo 17 Command Module. The radar-derived position differences agree with those obtained by conventional photogrammetric reductions of Apollo metric photography. This demonstrates the feasibility of using the Apollo Lunar Sounder data to determine the positions of lunar features along the Apollo 17 orbital tracks. This will be particularly useful for western limb and farside areas, where no Apollo metric camera pictures are available.This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Administration.  相似文献   

6.
The principal chemical element composition and inferred mineralogy of the powdered lunar surface material at seven mare and one terra sites on the Moon are compared. The mare compositions are all similar to one another and comparable to those of terrestrial ocean ridge basalts except in having higher titanium and much lower sodium contents than the latter. These analyses suggest that most, if not all, lunar maria have this chemical composition and are derived from rocks with an average density of 3.19 g cm–3. Mare Tranquillitatis differs from the other maria in having twice the titanium content of the others.The chemical composition of the single highland site studied (Surveyor 7) is distinctly different from that of any of the maria in having much lower amounts of titanium and iron and larger amounts of aluminium and calcium. Confirmation of these general characteristics of lunar highland material has come from recent observations by the Apollo 15 Orbiter. The inferred mineralogy is 45 mole percent high anorthite plagioclase and the parent rocks have an estimated density of 2.94 g cm–3. The Surveyor 7 chemical composition is the principal contributor to present estimates of the overall chemical composition of the lunar surface.Presented at the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 14–25, 1971. This paper is an expanded and updated version of a paper presented at the Apollo 12 Lunar Science Conference, Houston, Texas, January 11–14, 1971, and published in the Proceedings of this Conference (Turkevich, 1971).  相似文献   

7.
One of the most exciting recent developments in the field of lunar science has been the unambiguous detection of water (either as OH or H2O) or water ice on the Moon through instruments flown on a number of orbiting spacecraft missions. At the same time, continued laboratory-based investigations of returned lunar samples by Apollo missions using high-precision, low-detection, analytical instruments have for the first time, provided the absolute abundance of water (present mostly as structurally bound OH in mineral phases) in lunar samples. These new results suggest that the Moon is not an anhydrous body, questioning conventional wisdom, and indicating the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. However, not all recent results point to a wet Moon and it appears that the distribution of water on the Moon may be highly heterogeneous. Additionally, a number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar-wind hydrogen with the lunar soil. Water on the Moon has implications for future astrobiological investigations as well as for generating resources in situ during future exploration of the Moon and other airless bodies in the Solar System.  相似文献   

8.
Physical conditions in the near-surface layer of the Moon are overviewed. This medium is formed in the course of the permanent micrometeoroid bombardment of the lunar regolith and due to the exposure of the regolith to solar radiation and high-energy charged particles of solar and galactic origin. During a considerable part of a lunar day (more than 20%), the Moon is passing through the Earth’s magnetosphere, where the conditions strongly differ from those in the interplanetary space. The external effects on the lunar regolith form the plasma-dusty medium above the lunar surface, the so-called lunar exosphere, whose characteristic altitude may reach several tens of kilometers. Observations of the near-surface dusty exosphere were carried out with the TV cameras onboard the landers Surveyor 5, 6, and 7 (1967–1968) and with the astrophotometer of Lunokhod-2 (1973). Their results showed that the near-surface layer glows above the sunlit surface of the Moon. This was interpreted as the scattering of solar light by dust particles. Direct detection of particles on the lunar surface was made by the Lunar Ejects and Meteorite (LEAM) instrument deployed by the Apollo 17 astronauts. Recently, the investigations of dust particles were performed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) instrument at an altitude of several tens of kilometers. These observations urged forward the development of theoretical models for the lunar exosphere formation, and these models are being continuously improved. However, to date, many issues related to the dynamics of dust and the near-surface electric fields remain unresolved. Further investigations of the lunar exosphere are planned to be performed onboard the Russian landers Luna-Glob and Luna-Resurs.  相似文献   

9.
Differential very-long-baseline interferometric observations of signals from Apollo Lunar Surface Experiment Package telemetry transmitters will yield the relative projected positions of the transmitters with uncertainty of only 1-3 m, set mainly by uncertainty of the lunar ephemeris. Noise and systematic instrumental errors which in the past affected similar observations have been reduced to the equivalent of a few centimeters on the lunar surface by the development of a new type of differential receiver. Continued observations should yield a determination of the motion of the Moon about its center of mass with uncertainty less than 1 s of selenocentric arc. Improvements (by other means) in our knowledge of the Moon's orbital motion would allow a further order-of-magnitude refinement in the libration and relative position results obtainable by differential VLBI.Communication presented at the conference on Lunar Dynamics and Observational Coordinate Systems held January 15–17, 1973 at the Lunar Science Institute, Houston, Tex. U.S.A.  相似文献   

10.
From the lunar surface survey performed with a narrow-angle camera of the Lunar Reconnaissance Orbiter (LRO) spacecraft, the distributions of the phase ratios of the Apollo 11 and 12 landing sites and the Ranger 9 impact site were mapped. In the acquired images, the traces of the structural disturbances of the lunar regolith layer caused by the jet flows are seen. In the Ranger 9 impact site, one can see the crater of about 15 m across with a ray system, which is hardly noticeable in the brightness picture, but has a high contract in the phase ratio picture. The character of the photometric anomaly of the rays of this crater shows that they are formed by the ejected stones composing the rugged relief, which induces a strong shadow effect. At the same time, the influence of jet flows from the rocket engines smooths the relief and leads to the photometric anomaly of the opposite sign. The estimate of the maturity degree of the lunar regolith in the Apollo 11 and 12 landing sites obtained from the SELENE spectral survey suggests that the depth of the influence of the rocket engines on the soil is small, and the surface of the impact crater formed by the Ranger 9 spacecraft contains a large amount of the immature soil.  相似文献   

11.
We discuss observations of the Moon at a wavelength of 49.3 cm made with the Owens Valley Radio Observatory Interferometer. These observations have been fit to models in order to estimate the lunar dielectric constant, the equatorial subsurface temperature, the latitude dependence of the subsurface temperature, and the subsurface temperature gradient. The models are most consistent with a dielectric constant of 2.52 ± 0.01 (formal errors), an equatorial subsurface temperature of 249?5+8K, and a change in the subsurface temperature with latitude (ψ), which is proportional to cos0.38ψ. Since the temperature of the Moon has been measured by the Apollo Lunar Heat Flow Experiment, we have been able to use our determination of the equatorial temperature to estimate the error in the flux density calibration scale at 49.3cm (608 MHz). This results in a correction factor of 1.03 ± 0.04, which must be applied to the flux density scale. This factor is much different from 1.21 ± 0.09 estimated by Muhleman et al. (1973) from the brightness temperature of Venus and apparently indicates that the observed decrease in the brightness temperature of Venus at long wavelengths is a real effect.The estimates of the temperature gradient, which are based on the measurement of limb darkening, are small and negative (temperature decreases with depth) and may be insignificantly different from zero since they are only as large as their formal errors. We estimate that a temperature gradient in excess of 0.6K/m at 10m depth would have been observed. Thus, a temperature gradient like that measured in situ at the Apollo 15 and 17 landing sites in the upper 2m of the regolith is not typical of the entire lunar frontside at the 10m depths where the 49.3 cm wavelength emission originates. This result may indicate that the mean lunar heat flow is lower than that measured at the Apollo landing sites, that the thermal conductivity is greater at 10m depth than it is at 2m depth, or that the radio opacity is greater at 10m depth than at 2m depth. The negative estimates of the temperature gradient indicate that the Moon appeared limb bright and might be explained by scattering of the emission from boulders or an interface with solid rock. The presence of solid rock at 10m depths will probably cause heat flows like those measured by Apollo to be unobservable by our interferometric method at long wavelengths, since it will cause both the thermal conductivity and radio opacity of the regolith to increase. Thus, our data may be most consistent with a change in the physical properties of the regolith to those of solid rock or a mixture of rock and soil at depths of 7 to 16m. Our results show that future radio measurements for heat flow determinations must utilize wavelengths considerably shorter than 50 cm (25 cm or less) to avoid the rock regions below the regolith.  相似文献   

12.
Wenzhe Fa 《Icarus》2010,207(2):605-615
In China’s first lunar exploration project, Chang-E 1 (CE-1), a multi-channel microwave radiometer was aboard the satellite, with the purpose of measuring microwave brightness temperature (Tb) from lunar surface and surveying the global distribution of lunar regolith layer thickness. In this paper, the primary 621 tracks of swath data measured by CE-1 microwave radiometer from November 2007 to February 2008 are collected and analyzed. Using the nearest neighbor interpolation to collect the Tb data under the same Sun illumination, global distributions of microwave brightness temperature from lunar surface at lunar daytime and nighttime are constructed. Based on the three-layer media modeling (the top dust-soil, regolith and underlying rock media) for microwave thermal emission of lunar surface, the CE-1 measured Tb and its dependence upon latitude, frequency and FeO + TiO2 content, etc. are discussed. The CE-1 Tb data at Apollo landing sites are especially chosen for validation and calibration on the basis of available ground measurements. Using the empirical dependence of physical temperature upon the latitude verified by the CE-1 multi-channel Tb data at Apollo landing sites, the global distribution of regolith layer thickness is further inverted from the CE-1 brightness temperature data at 3 GHz channel. Those inversions at Apollo landing sites and the characteristics of regolith layer thickness for lunar maria are well compared with the Apollo in situ measurements and the regolith thickness derived from the Earth-based radar data. Finally, the statistical distribution of regolith thickness is analyzed and discussed.  相似文献   

13.
We present a model of the absolute radiance of the disk-resolved Moon at visible to near infrared wavelengths. It has been developed in order to use the Moon as a calibration reference, particularly by space-based sensors observing the Earth. We begin with the development of Hillier et al. (Hillier, J., Buratti, B., Hill, K. [1999]. Icarus 141, 205-225) for the reflectance as a function of phase angle and base the lunar reflectance on the Clementine 0.750 μm basemap. We adopt Hapke’s (Hapke, B. [2002]. Icarus 157, 523-534) expression for the multiple scattering term, including the more accurate approximation to the Chandrasekhar H function. The geometry is based on the Jet Propulsion Laboratory Lunar Ephemeris DE 421, and the topographic slope is from the Kaguya-LALT laser altimetry (Araki, H., and 10 colleagues [2009]. Science 323, 897-900). We define three types of terrain by combining the reflectance from the Clementine basemap and the topographic model to specify maria, highlands, and crater regions, and allow mixed types between each class. Parameters of the model are solved for as a function of surface type and wavelength by comparison against data “chips” from the Robotic Lunar Observatory (ROLO; Kieffer, H.H., Stone, T.C. [2005]. Astron. J. 129, 2887-2901). The reflectance in any waveband may be computed by spectral interpolation of the model predictions relative to the scaled Apollo 16 soil spectrum. The accuracy of the model, evaluated against ROLO imagery, was found to be 2-4%.  相似文献   

14.
Each year the Moon is bombarded by about 106 kg of interplanetary micrometeoroids of cometary and asteroidal origin. Most of these projectiles range from 10 nm to about 1 mm in size and impact the Moon at 10–72 km/s speed. They excavate lunar soil about 1000 times their own mass. These impacts leave a crater record on the surface from which the micrometeoroid size distribution has been deciphered. Much of the excavated mass returns to the lunar surface and blankets the lunar crust with a highly pulverized and “impact gardened” regolith of about 10 m thickness. Micron and sub-micron sized secondary particles that are ejected at speeds up to the escape speed of 2300 m/s form a perpetual dust cloud around the Moon and, upon re-impact, leave a record in the microcrater distribution. Such tenuous clouds have been observed by the Galileo spacecraft around all lunar-sized Galilean satellites at Jupiter. The highly sensitive Lunar Dust Experiment (LDEX) onboard the LADEE mission will shed new light on the lunar dust environment. LADEE is expected to be launched in early 2013.Another dust related phenomenon is the possible electrostatic mobilization of lunar dust. Images taken by the television cameras on Surveyors 5, 6, and 7 showed a distinct glow just above the lunar horizon referred to as horizon glow (HG). This light was interpreted to be forward-scattered sunlight from a cloud of dust particles above the surface near the terminator. A photometer onboard the Lunokhod-2 rover also reported excess brightness, most likely due to HG. From the lunar orbit during sunrise the Apollo astronauts reported bright streamers high above the lunar surface, which were interpreted as dust phenomena. The Lunar Ejecta and Meteorites (LEAM) Experiment was deployed on the lunar surface by the Apollo 17 astronauts in order to characterize the lunar dust environment. Instead of the expected low impact rate from interplanetary and interstellar dust, LEAM registered hundreds of signals associated with the passage of the terminator, which swamped any signature of primary impactors of interplanetary origin. It was suggested that the LEAM events are consistent with the sunrise/sunset-triggered levitation and transport of charged lunar dust particles. Currently no theoretical model explains the formation of a dust cloud above the lunar surface but recent laboratory experiments indicate that the interaction of dust on the lunar surface with solar UV and plasma is more complex than previously thought.  相似文献   

15.
Phase-ratio imagery is a new tool of qualitative photometric analyses of the upper layer of the lunar regolith, which allows the identification of natural surface structure anomalies and artificially altered regolith. We apply phase-ratio imagery to analyze the Apollo-14, -15, and -17 landing sites. This reveals photometric anomalies of ∼170 × 120 m size that are characterized by lower values of the phase-function steepness, indicating a smoothing of the surface microstructure caused by the engine jets of the landing modules. Other photometric anomalies characterized by higher phase-function slopes are the result of regolith loosening by astronaut boots and the wheels of the Modular Equipment Transporter and the Lunar Roving Vehicle. We also provide a possible explanation for the high brightness of the wheel tracks seen in on-surface images acquired at very large phase angles.  相似文献   

16.
The chemical reactivity of lunar dust is an important topic of inquiry, of fundamental scientific value and of practical relevance to human exploration of the Moon. Lunar specimens brought back to Earth by the Apollo astronauts provide a key resource for ground-based studies which help to define the initial avenues of inquiry. Even among the limited samples obtained from equatorial exploration sites, however, chemical reactivity analyses indicates that lunar dust is heterogeneous, a finding that parallels heterogeneity revealed by remote sensing studies. The region-to-region variability of lunar dust argues that a full understanding of its chemical reactivity will require in situ analysis, on a region-to-region basis. The data from such investigations will help to shape our understanding of the potential for lunar dust toxicity, and will provide insight into the types of reactions that may occur with when lunar dust interacts with organic molecules on the surface of the Moon.  相似文献   

17.
In the context of sample evidence alone, the high-alumina (HA) basalts appear to be an unique, and rare variety of mare basalt. In addition to their distinct chemistry, radiometric dating reveals these basalts to be among the oldest sampled mare basalts. Yet, HA basalts were sampled by four missions spanning a lateral range of ∼2400 km, with ages demonstrating that aluminous volcanism lasted at least 1 billion years. This evidence suggests that HA basalts may be a widespread phenomenon on the Moon. Knowing the distribution of HA mare basalts on the lunar surface has significance for models of the origin and the evolution of the Lunar Magma Ocean. Surface exposures of HA basalts can be detected with compositional remote sensing data from Lunar Prospector Gamma Ray Spectrometer and Clementine. We searched the lunar surface for regions of interest (ROIs) that correspond to the intersection of three compositional constraints taken from values of sampled HA basalts: 12-18 wt% FeO, 1.5-5 wt% TiO2, and 0-4 ppm Th. We then determined the “true” (unobscured by regolith) composition of basalt units by analyzing the rims and proximal ejecta of small impacts (0.4-4 km in diameter) into the mare surface of these ROIs. This paper focuses on two ROIs that are the best candidates for sources of sampled HA basalts: Mare Fecunditatis, the landing site of Luna 16; and northern Mare Imbrium, hypothesized origin of the Apollo 14 HA basalts. We demonstrate our technique's ability for delineating discrete basalt units and determining which is the best compositional match to the HA basalts sampled by each mission. We identified two units in Mare Fecunditatis that spectrally resemble HA basalts, although only one unit (Iltm) is consistent with the compositional and relative age of the Luna 16 HA samples. Northern Mare Imbrium also reveals two units that are within the compositional constraints of HA basalts, with one (Iltm) best matching the composition of the basalts sampled by Apollo 14.  相似文献   

18.
Seismic data from the Apollo Passive Seismic Network stations are analyzed to determine the velocity structure and to infer the composition and physical properties of the lunar interior. Data from artificial impacts (S-IVB booster and LM ascent stage) cover a distance range of 70–1100 km. Travel times and amplitudes, as well as theoretical seismograms, are used to derive a velocity model for the outer 150 km of the Moon. TheP wave velocity model confirms our earlier report of a lunar crust in the eastern part of Oceanus Procellarum.The crust is about 60 km thick and may consist of two layers in the mare regions. Possible values for theP-wave velocity in the uppermost mantle are between 7.7 km s–1 and 9.0 km s–1. The 9 km s–1 velocity cannot extend below a depth of about 100 km and must decrease below this depth. The elastic properties of the deep interior as inferred from the seismograms of natural events (meteoroid impacts and moonquakes) occurring at great distance indicate that there is an increase in attenuation and a possible decrease of velocity at depths below about 1000 km. This verifies the high temperatures calculated for the deep lunar interior by thermal history models.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   

19.
Abstract— NASA plans to resume human exploration of the Moon in the next decade. One of the pressing concerns is the effect that lunar dust (the fraction of the lunar regolith <20 μm in diameter) will have on systems, both human and mechanical, due to the fact that various problems were caused by dust during the Apollo missions. The loss of vacuum integrity in the lunar sample containers during the Apollo era ensured that the present lunar samples are not in the same condition as they were on the Moon; they have been passivated by oxygen and water vapor. To mitigate the harmful effects of lunar dust on humans, methods of “reactivating” the dust must be developed for experimentation, and, ideally, it should be possible to monitor the level of activity to determine methods of deactivating the dust in future lunar habitats. Here we present results demonstrating that simple grinding, as a simple analog to micrometeorite crushing, is apable of substantially activating lunar dust and lunar simulant, and it is possible to determine the level of chemical activity by monitoring the ability of the dust to produce hydroxyl radicals in aqueous solution. Comparisons between ground samples of lunar dust, lunar simulant, and quartz reveal that ground lunar dust is capable of producing over three times the amount of hydroxyl radicals as lunar simulant and an order of magnitude more than ground quartz.  相似文献   

20.
The study of the elements and molecules of astrobiological interest on the Moon can be made with the Gas Analysis Package (GAP) and associated instruments developed for the Beagle 2 Mars Express Payload. The permanently shadowed polar regions of the Moon may offer a unique location for the “cold-trapping” of the light elements (i.e. H, C, N, O, etc.) and their simple compounds. Studies of the returned lunar samples have shown that lunar materials have undergone irradiation with the solar wind and adsorb volatiles from possible cometary and micrometeoroid impacts. The Beagle 2’s analytical instrument package including the sample processing facility and the GAP mass spectrometer can provide vital isotopic information that can distinguish whether the lunar volatiles are indigenous to the moon, solar wind derived, cometary in origin or from meteoroids impacting on the Moon. As future Lunar Landers are being considered, the suite of instruments developed for the Mars Beagle 2 lander can be consider as the baseline for any lunar volatile or resource instrument package.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号